Lifting a partial definition to a quotient type - isabelle

I have a partially-defined operator (disj_union below) on sets that I would like to lift to a quotient type (natq). Morally, I think this should be ok, because it is always possible to find in the equivalence class some representative for which the operator is defined [*]. However, I cannot complete the proof that the lifted definition preserves the equivalence, because disj_union is only partially defined. In my theory file below, I propose one way I have found to define my disj_union operator, but I don't like it because it features lots of abs and Rep functions, and I think it would be hard to work with (right?).
What is a good way to define this kind of thing using quotients in Isabelle?
theory My_Theory imports
"~~/src/HOL/Library/Quotient_Set"
begin
(* A ∪-operator that is defined only on disjoint operands. *)
definition "X ∩ Y = {} ⟹ disj_union X Y ≡ X ∪ Y"
(* Two sets are equivalent if they have the same cardinality. *)
definition "card_eq X Y ≡ finite X ∧ finite Y ∧ card X = card Y"
(* Quotient sets of naturals by this equivalence. *)
quotient_type natq = "nat set" / partial: card_eq
proof (intro part_equivpI)
show "∃x. card_eq x x" by (metis card_eq_def finite.emptyI)
show "symp card_eq" by (metis card_eq_def symp_def)
show "transp card_eq" by (metis card_eq_def transp_def)
qed
(* I want to lift my disj_union operator to the natq type.
But I cannot complete the proof, because disj_union is
only partially defined. *)
lift_definition natq_add :: "natq ⇒ natq ⇒ natq"
is "disj_union"
oops
(* Here is another attempt to define natq_add. I think it
is correct, but it looks hard to prove things about,
because it uses abstraction and representation functions
explicitly. *)
definition natq_add :: "natq ⇒ natq ⇒ natq"
where "natq_add X Y ≡
let (X',Y') = SOME (X',Y').
X' ∈ Rep_natq X ∧ Y' ∈ Rep_natq Y ∧ X' ∩ Y' = {}
in abs_natq (disj_union X' Y')"
end
[*] This is a little bit like how capture-avoiding substitution is only defined on the condition that bound variables do not clash; a condition that can always be satisfied by renaming to another representative in the alpha-equivalence class.

What about something like this (just an idea):
definition disj_union' :: "nat set ⇒ nat set ⇒ nat set"
where "disj_union' X Y ≡
let (X',Y') = SOME (X',Y').
card_eq X' X ∧ card_eq Y' Y ∧ X' ∩ Y' = {}
in disj_union X' Y'"
lift_definition natq_add :: "natq ⇒ natq ⇒ natq"
is "disj_union'" oops

For the record, here is Ondřej's suggestion (well, a slight amendment thereof, in which only one of the operands is renamed, not both) carried out to completion...
(* A version of disj_union that is always defined. *)
definition disj_union' :: "nat set ⇒ nat set ⇒ nat set"
where "disj_union' X Y ≡
let Y' = SOME Y'.
card_eq Y' Y ∧ X ∩ Y' = {}
in disj_union X Y'"
(* Can always choose a natural that is not in a given finite subset of ℕ. *)
lemma nats_infinite:
fixes A :: "nat set"
assumes "finite A"
shows "∃x. x ∉ A"
proof (rule ccontr, simp)
assume "∀x. x ∈ A"
hence "A = UNIV" by fast
hence "finite UNIV" using assms by fast
thus False by fast
qed
(* Can always choose n naturals that are not in a given finite subset of ℕ. *)
lemma nat_renaming:
fixes x :: "nat set" and n :: nat
assumes "finite x"
shows "∃z'. finite z' ∧ card z' = n ∧ x ∩ z' = {}"
using assms
apply (induct n)
apply (intro exI[of _ "{}"], simp)
apply (clarsimp)
apply (rule_tac x="insert (SOME y. y ∉ x ∪ z') z'" in exI)
apply (intro conjI, simp)
apply (rule someI2_ex, rule nats_infinite, simp, simp)+
done
lift_definition natq_add :: "natq ⇒ natq ⇒ natq"
is "disj_union'"
apply (unfold disj_union'_def card_eq_def)
apply (rule someI2_ex, simp add: nat_renaming)
apply (rule someI2_ex, simp add: nat_renaming)
apply (metis card.union_inter_neutral disj_union_def empty_iff finite_Un)
done

Related

Proving a type classed theorem in Isabelle

I am to prove a triviality using type classes:
class order =
fixes lesseq :: " 'a ⇒ 'a ⇒ bool" (infix "≼" 50)
assumes refl: "x ≼ x"
and trans: "x ≼ y ⟹ y ≼ z ⟹ x ≼ z"
and antisym: "x ≼ y ⟹ y ≼ x ⟹ x = y"
begin
theorem "(myle:: ('b::order) ⇒ 'b ⇒ bool) x x"
proof -
show ?thesis by (rule refl)
qed
end
Here, Isabelle/jEdit highlights by (rule refl) in pink and says
Failed to apply initial proof method⌂:
goal (1 subgoal):
1. myle x x
What is the problem here? Otherwise the proof seems to go through.
myle and ≼ are not the same function.
The type annotation (myle:: ('b::order) ⇒ 'b ⇒ bool) just states that myle is a function that takes two elements of type 'b and returns a boolean and that 'b is a type belonging to the order typeclass.
If you want to prove something about ≼ just use the same symbol or the name lesseq.

Using the type-to-sets approach for defining quotients

Isabelle has some automation for quotient reasoning through the quotient package. I would like to see if that automation is of any use for my example. The relevant definitions is:
definition e_proj where "e_proj = e'_aff_bit // gluing"
So I try to write:
typedef e_aff_t = e'_aff_bit
quotient_type e_proj_t = "e'_aff_bit" / "gluing
However, I get the error:
Extra type variables in representing set: "'a"
The error(s) above occurred in typedef "e_aff_t"
Because as Manuel Eberl explains here, we cannot have type definitions that depend on type parameters. In the past, I was suggested to use the type-to-sets approach.
How would that approach work in my example? Would it lead to more automation?
In the past, I was suggested to use the type-to-sets approach ...
The suggestion that was made in my previous answer was to use the standard set-based infrastructure for reasoning about quotients. I only mentioned that there exist other options for completeness.
I still believe that it is best not to use Types-To-Sets, provided that the definition of a quotient type is the only reason why you wish to use Types-To-Sets:
Even with Types-To-Sets, you will only be able to mimic the behavior of a quotient type in a local context with certain additional assumptions. Upon leaving the local context, the theorems that use locally defined quotient types would need to be converted to the set-based theorems that would inevitably rely on the standard set-based infrastructure for reasoning about quotients.
One would need to develop additional Isabelle/ML infrastructure before Local Typedef Rule can be used to define quotient types locally conveniently. It should not be too difficult to develop an infrastructure that is useable, but it would take some time to develop something that is universally applicable. Personally, I do not consider this application to be sufficiently important to invest my time in it.
In my view, it is only viable to use Types-To-Sets for the definition of quotient types locally if you are already using Types-To-Sets for its intended purpose in a given development. Then, the possibility of using the framework for the definition of quotient types locally can be seen as a 'value-added benefit'.
For completeness, I provide an example that I developed for an answer on the mailing list some time ago. Of course, this is merely the demonstration of the concept, not a solution that can be used for work that is meant to be published in some form. To make this useable, one would need to convert this development to an Isabelle/ML command that would take care of all the details automatically.
theory Scratch
imports Main
"HOL-Types_To_Sets.Prerequisites"
"HOL-Types_To_Sets.Types_To_Sets"
begin
locale local_typedef =
fixes R :: "['a, 'a] ⇒ bool"
assumes is_equivalence: "equivp R"
begin
(*The exposition subsumes some of the content of
HOL/Types_To_Sets/Examples/Prerequisites.thy*)
context
fixes S and s :: "'s itself"
defines S: "S ≡ {x. ∃u. x = {v. R u v}}"
assumes Ex_type_definition_S:
"∃(Rep::'s ⇒ 'a set) (Abs::'a set ⇒ 's). type_definition Rep Abs S"
begin
definition "rep = fst (SOME (Rep::'s ⇒ 'a set, Abs). type_definition Rep
Abs S)"
definition "Abs = snd (SOME (Rep::'s ⇒ 'a set, Abs). type_definition Rep
Abs S)"
definition "rep' a = (SOME x. a ∈ S ⟶ x ∈ a)"
definition "Abs' x = (SOME a. a ∈ S ∧ a = {v. R x v})"
definition "rep'' = rep' o rep"
definition "Abs'' = Abs o Abs'"
lemma type_definition_S: "type_definition rep Abs S"
unfolding Abs_def rep_def split_beta'
by (rule someI_ex) (use Ex_type_definition_S in auto)
lemma rep_in_S[simp]: "rep x ∈ S"
and rep_inverse[simp]: "Abs (rep x) = x"
and Abs_inverse[simp]: "y ∈ S ⟹ rep (Abs y) = y"
using type_definition_S
unfolding type_definition_def by auto
definition cr_S where "cr_S ≡ λs b. s = rep b"
lemmas Domainp_cr_S = type_definition_Domainp[OF type_definition_S
cr_S_def, transfer_domain_rule]
lemmas right_total_cr_S = typedef_right_total[OF type_definition_S
cr_S_def, transfer_rule]
and bi_unique_cr_S = typedef_bi_unique[OF type_definition_S cr_S_def,
transfer_rule]
and left_unique_cr_S = typedef_left_unique[OF type_definition_S cr_S_def,
transfer_rule]
and right_unique_cr_S = typedef_right_unique[OF type_definition_S
cr_S_def, transfer_rule]
lemma cr_S_rep[intro, simp]: "cr_S (rep a) a" by (simp add: cr_S_def)
lemma cr_S_Abs[intro, simp]: "a∈S ⟹ cr_S a (Abs a)" by (simp add: cr_S_def)
(* this part was sledgehammered - please do not pay attention to the
(absence of) proof style *)
lemma r1: "∀a. Abs'' (rep'' a) = a"
unfolding Abs''_def rep''_def comp_def
proof-
{
fix s'
note repS = rep_in_S[of s']
then have "∃x. x ∈ rep s'" using S equivp_reflp is_equivalence by force
then have "rep' (rep s') ∈ rep s'"
using repS unfolding rep'_def by (metis verit_sko_ex')
moreover with is_equivalence repS have "rep s' = {v. R (rep' (rep s'))
v}"
by (smt CollectD S equivp_def)
ultimately have arr: "Abs' (rep' (rep s')) = rep s'"
unfolding Abs'_def by (smt repS some_sym_eq_trivial verit_sko_ex')
have "Abs (Abs' (rep' (rep s'))) = s'" unfolding arr by (rule
rep_inverse)
}
then show "∀a. Abs (Abs' (rep' (rep a))) = a" by auto
qed
lemma r2: "∀a. R (rep'' a) (rep'' a)"
unfolding rep''_def rep'_def
using is_equivalence unfolding equivp_def by blast
lemma r3: "∀r s. R r s = (R r r ∧ R s s ∧ Abs'' r = Abs'' s)"
apply(intro allI)
apply standard
subgoal unfolding Abs''_def Abs'_def
using is_equivalence unfolding equivp_def by auto
subgoal unfolding Abs''_def Abs'_def
using is_equivalence unfolding equivp_def
by (smt Abs''_def Abs'_def CollectD S comp_apply local.Abs_inverse
mem_Collect_eq someI_ex)
done
definition cr_Q where "cr_Q = (λx y. R x x ∧ Abs'' x = y)"
lemma quotient_Q: "Quotient R Abs'' rep'' cr_Q"
unfolding Quotient_def
apply(intro conjI)
subgoal by (rule r1)
subgoal by (rule r2)
subgoal by (rule r3)
subgoal by (rule cr_Q_def)
done
(* instantiate the quotient lemmas from the theory Lifting *)
lemmas Q_Quotient_abs_rep = Quotient_abs_rep[OF quotient_Q]
(*...*)
(* prove the statements about the quotient type 's *)
(*...*)
(* transfer the results back to 'a using the capabilities of transfer -
not demonstrated in the example *)
lemma aa: "(a::'a) = (a::'a)"
by auto
end
thm aa[cancel_type_definition]
(* this shows {x. ∃u. x = {v. R u v}} ≠ {} ⟹ ?a = ?a *)
end

How do I convert a predicate to a function in Isabelle?

In Isabelle HOL, I have a predicate on two numbers like this:
definition f :: "nat ⇒ nat ⇒ bool"
where
...
I can prove that this predicate is morally a function:
lemma f_function:
fixes x :: nat
shows "∃! y . f x y""
...
Intuitively, this should be enough for me to construct a function f' :: nat ⇒ nat that is provably equivalent to f', i.e.:
lemma f'_correct:
"f x y = (f' x = y)"
But how do I do that?
definition f' :: "nat ⇒ nat"
where
"f' x ≡ ?"
What do I put in for the question mark?
The typical approach is to use the definite description operator THE:
definition f' :: "nat ⇒ nat" where "f' x = (THE y. f x y)"
If you have already proven that this y is unique, you can then use e.g. the theorem theI' to show that f x (f' x) holds and theI_unique to show that if f x y holds, then y = f' x.
For more information about THE, SOME, etc. see the following:
Isabelle/HOL: What does the THE construct denote?
Proving intuitive statements about THE in Isabelle

How to generate code for less_eq operation

I need to generate a code calculating all values greater or equal to some value:
datatype ty = A | B | C
instantiation ty :: order
begin
fun less_ty where
"A < x = (x = C)"
| "B < x = (x = C)"
| "C < x = False"
definition "(x :: ty) ≤ y ≡ x = y ∨ x < y"
instance
apply intro_classes
apply (metis less_eq_ty_def less_ty.elims(2) ty.distinct(3) ty.distinct(5))
apply (simp add: less_eq_ty_def)
apply (metis less_eq_ty_def less_ty.elims(2))
using less_eq_ty_def less_ty.elims(2) by fastforce
end
instantiation ty :: enum
begin
definition [simp]: "enum_ty ≡ [A, B, C]"
definition [simp]: "enum_all_ty P ≡ P A ∧ P B ∧ P C"
definition [simp]: "enum_ex_ty P ≡ P A ∨ P B ∨ P C"
instance
apply intro_classes
apply auto
by (case_tac x, auto)+
end
lemma less_eq_code_predI [code_pred_intro]:
"Predicate_Compile.contains {z. x ≤ z} y ⟹ x ≤ y"
(* "Predicate_Compile.contains {z. z ≤ y} x ⟹ x ≤ y"*)
by (simp_all add: Predicate_Compile.contains_def)
code_pred [show_modes] less_eq
by (simp add: Predicate_Compile.containsI)
values "{x. A ≤ x}"
(* values "{x. x ≤ C}" *)
It works fine. But the theory looks over-complicated. Also I can't calculate values less or equal to some value. If one will uncoment the 2nd part of less_eq_code_predI lemma, then less_eq will have only one mode i => i => boolpos.
Is there a simpler and more generic approach?
Can less_eq support i => o => boolpos and o => i => boolpos at the same time?
Is it possible not to declare ty as an instance of enum class? I can declare a function returning a set of elements greater or equal to some element:
fun ge_values where
"ge_values A = {A, C}"
| "ge_values B = {B, C}"
| "ge_values C = {C}"
lemma ge_values_eq_less_eq_ty:
"{y. x ≤ y} = ge_values x"
by (cases x; auto simp add: dual_order.order_iff_strict)
This would allow me to remove enum and code_pred stuff. But in this case I will not be able to use this function in the definition of other predicates. How to replace (≤) by ge_values in the following definition?
inductive pred1 where
"x ≤ y ⟹ pred1 x y"
code_pred [show_modes] pred1 .
I need pred1 to have at least i => o => boolpos mode.
The predicate compiler has an option inductify that tries to convert functional definitions into inductive ones. It is somewhat experimental and does not work in every case, so use it with care. In the above example, the type classes make the whole situation a bit more complicated. Here's what I managed to get working:
case_of_simps less_ty_alt: less_ty.simps
definition less_ty' :: "ty ⇒ ty ⇒ bool" where "less_ty' = (<)"
declare less_ty_alt [folded less_ty'_def, code_pred_def]
code_pred [inductify, show_modes] "less_ty'" .
values "{x. less_ty' A x}"
The first line convertes the pattern-matching equations into one with a case expression on the right. It uses the command case_of_simps from HOL-Library.Simps_Case_Conv.
Unfortunately, the predicate compiler seems to have trouble with compiling type class operations. At least I could not get it to work.
So the second line introduces a new constant for (<) on ty.
The attribute code_pred_def tells the predicate compiler to use the given theorem (namely less_ty_alt with less_ty' instead of (<)) as the "defining equation".
code_pred with the inductify option looks at the equation for less_ty' declared by code_pred_def and derives an inductive definition out of that. inductify usually works well with case expressions, constructors and quantifiers. Everything beyond that is at your own risk.
Alternatively, you could also manually implement the enumeration similar to ge_values and register the connection between (<) and ge_values with the predicate compiler. See the setup block at the end of the Predicate_Compile theory in the distribution for an example with Predicate.contains. Note however that the predicate compiler works best with predicates and not with sets. So you'd have to write ge_values in the predicate monad Predicate.pred.

What happens during function proofs

I am trying to proof a property of the icmp6 checksum function (sum 16bit integers, add carry, invert 16bit integer).
I defined the functions in isabelle. (I know my proofs are terrible)
But for some reason, isabelle can't proof something about the icmp_csum function, it wants to have.
When I replace the oops in the paste with done it produces thousands of lines that just says:
"linarith_split_limit exceeded (current value is 9)"
theory Scratch
imports Main Int List
begin
fun norm_helper :: "nat ⇒ nat" where
"norm_helper x = (let y = divide x 65536 in (y + x - y * 65536))"
lemma "x ≥ 65536 ⟹ norm_helper x < x" by simp
lemma h: "norm_helper x ≤ x" by simp
fun normalize :: "nat ⇒ nat" where
"normalize x = (if x ≥ 65536
then normalize (norm_helper x)
else x)"
inductive norm_to :: "nat ⇒ nat ⇒ bool" where
"(x < 65536) ⟹ norm_to x x"
| "norm_to y z ⟹ y = norm_helper x ⟹ norm_to x z"
lemma ne: "norm_to x y ⟹ y = normalize x"
apply (induct x y rule: norm_to.induct) by simp+
lemma i: "norm_to x y ⟹ x ≥ y"
apply (induct x y rule: norm_to.induct) by simp+
lemma l: "norm_to x y ⟹ y < 65536"
apply (induct x y rule: norm_to.induct) by simp+
lemma en: "y = normalize x ⟹ norm_to x y"
apply (induct x rule: normalize.induct)
proof -
fix x :: nat
assume 1: "(x ≥ 65536 ⟹ y = Scratch.normalize (norm_helper x) ⟹ norm_to (norm_helper x) y)"
assume 2: "y = Scratch.normalize x"
show "norm_to x y"
proof (cases "x ≥ 65536")
show "¬ 65536 ≤ x ⟹ norm_to x y"
using norm_to.intros(1)[of x] 2 by simp
{
assume s: "65536 ≤ x"
have d: "y = normalize (norm_helper x)" using 2 s by simp
show "65536 ≤ x ⟹ norm_to x y"
using 1 d norm_to.intros(2)[of "norm_helper x" y x]
by blast
}
qed
qed
lemma "normalize x ≤ x" using en i by simp
lemma n[simp]: "normalize x < 65536" using en l by blast
fun sum :: "nat list ⇒ nat" where
"sum [] = 0"
| "sum (x#xs) = x + sum xs"
fun csum :: "nat list ⇒ nat" where
"csum xs = normalize (sum xs)"
fun invert :: "nat ⇒ nat" where
"invert x = 65535 - x"
lemma c: "csum xs ≤ 65535" using n[of "sum xs"] by simp
lemma ic: "invert (csum xs) ≥ 0" using c[of xs] by blast
lemma asdf:
assumes "xs = ys"
shows "invert (csum xs) = invert (csum ys)"
using HOL.arg_cong[of "csum xs" "csum ys" invert,
OF HOL.arg_cong[of xs ys csum]] assms(1)
by blast
function icmp_csum :: "nat list ⇒ nat" where
"icmp_csum xs = invert (csum xs)"
apply simp
apply (rule asdf)
apply simp
oops
end
I have no idea why there is tracing output from linarith there, but given that your definition is neither recursive nor performs pattern matching, you can write it as a definition:
definition icmp_csum :: "nat list ⇒ nat" where
"icmp_csum xs = invert (csum xs)"
Another possibility is to change invert to a definition instead of a fun. (In general, if it's neither recursive nor performs pattern matching, definition is preferable because it has much less overhead than fun.)
NB, just import Main, not Main Int List.
Edit: An explanation from Tobias Nipkow on the mailing list:
This is a known issue. In the outdated LNCS 2283 you can find a discussion what to do about it in Section 3.5.3 Simplification and Recursive Functions. The gist: don't use "if", use pattern matching or "case". Or disable if_split.

Resources