Related
I would like to calculate the conditional expectation of the Weibull model. In specific, I would like to estimate the remaining tenure of a client looking at random moments (time = t) in his total tenure.
To do so, I have calculated the total tenure for each client (currently active or inactive) and based on the random moment for each client, calculated his/her tenure at that moment.
The example below is a snapshot of my attempt. I use 2 variables STED and TemporalTenure to predict the dependent variable tenure which has either status 0 = active or 1 = inactive. I use the survival package for obtaining the survival object (km_surv).
df = structure(list(ID = c(16008, 21736, 18851, 20387, 30749,
42159), STED = c(2,
5, 1, 3, 2, 2), TemporalTenure = c(84, 98, 255, 392, 108, 278
), tenure = c(152, 166, 273, 460, 160, 289), status = c(0, 0,
1, 0, 1, 1)), row.names = c(NA,
6L), class = "data.frame")
km_surv <- Surv(time = df$tenure, event = df$status)
df <- data.frame(y = km_surv, df[,!(names(df) %in% c("tenure","status", "ID"))])
weibull_fit <- psm(y ~. , dist="weibull", data = df)
quantsurv <- Quantile(weibull_fit, df)
lp <- predict(weibull_fit, df, type="lp")
print(quantsurv(0.5, lp))
The output of these estimations are way too high. I assume this is caused by including the TemporalTenure, but I can't find out how the psm package calculates this and if there are other packages where it's possible to estimate the remaining tenure of client i at time t.
How can I obtain the predicted tenure conditioned over the time that a client is already active (random moment in time: TemporalTenure) where the dependent tenure can either be a client that is still active or one that is inactive?
EDIT
To clarify, whenever I add time conditional variables such as: TemporalTenure, number of received payments and number of complaints until time t, the predicted lifetime explodes in many cases. Therefore, I suspect that the psm is not the right way to go. Similar question is asked here, but the solution given doesn't work for the same reasons.
Below a slightly bigger dataset which already causes problems.
df = structure(list(ID= c(16008, 21736, 18851, 20387, 30749,
42159, 34108, 47511, 47917, 61116, 66600, 131380, 112668, 90799,
113615, 147562, 166247, 191603, 169698, 1020841, 1004077, 1026953,
1125673, 1129788, 22457, 1147883, 1163870, 1220268, 2004623,
1233924, 2009026, 2026688, 2031284, 2042982, 2046137, 2043214,
2033631, 2034252, 2068467, 2070284, 2070697, 2084859, 2090567,
2087133, 2087685, 2095100, 2095720, 2100482, 2105150, 2109353,
28852, 29040, 29592, 29191, 31172, 2126369, 2114207, 2111947,
2102678, 237687, 1093221, 2111607, 2031732, 2105275, 2020226,
1146777, 1028487, 1030165, 1098033, 1142093, 1186763, 2005605,
2007182, 2021092, 2027676, 2027525, 2070471, 2070621, 2072706,
2081862, 2085084, 2085353, 2094429, 2096216, 2109774, 2114526,
2115510, 2117329, 2122045, 2119764, 2122522, 2123080, 2128547,
2130005, 30025, 24166, 61529, 94568, 70809, 159214), STED = c(2,
5, 1, 3, 2, 2, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 4, 1, 4, 3, 2, 4,
1, 1, 2, 1, 4, 1, 1, 1, 2, 4, 2, 5, 4, 1, 4, 2, 5, 3, 2, 1, 4,
2, 1, 5, 3, 1, 1, 5, 2, 2, 2, 2, 3, 4, 3, 5, 1, 1, 5, 2, 5, 1,
3, 5, 3, 1, 1, 1, 2, 2, 2, 2, 1, 2, 1, 3, 5, 2, 2, 1, 2, 1, 2,
3, 1, 1, 3, 5, 1, 2, 2, 2, 2, 1, 2, 1, 3, 1), TemporalTenure = c(84,
98, 255, 392, 108, 278, 120, 67, 209, 95, 224, 198, 204, 216,
204, 190, 36, 160, 184, 95, 140, 256, 142, 216, 56, 79, 194,
172, 155, 158, 78, 24, 140, 87, 134, 111, 15, 126, 41, 116, 66,
60, 0, 118, 22, 116, 110, 52, 66, 0, 325, 323, 53, 191, 60, 7,
45, 73, 42, 161, 30, 17, 30, 12, 87, 85, 251, 120, 7, 6, 38,
119, 156, 54, 11, 141, 50, 25, 33, 3, 48, 58, 13, 113, 25, 18,
23, 2, 102, 5, 90, 0, 101, 83, 44, 125, 226, 213, 216, 186),
tenure = c(152, 166, 273, 460, 160, 289, 188, 72, 233, 163,
266, 266, 216, 232, 247, 258, 65, 228, 252, 99, 208, 324,
201, 284, 124, 84, 262, 180, 223, 226, 146, 92, 208, 155,
202, 179, 80, 185, 64, 184, 120, 65, 6, 186, 45, 120, 170,
96, 123, 12, 393, 391, 64, 259, 73, 42, 69, 141, 47, 229,
37, 19, 37, 17, 155, 99, 319, 188, 75, 11, 49, 187, 180,
55, 52, 209, 115, 93, 88, 6, 53, 126, 31, 123, 26, 26, 24,
9, 114, 6, 111, 4, 168, 84, 112, 193, 294, 278, 284, 210),
status = c(0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1,
0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0,
1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 1, 0, 1), TotalValue = c(2579.35, 2472.85,
581.19, 2579.35, 2472.85, 0, 1829.18, 0, 936.79, 2098.2,
850.47, 2579.35, 463.68, 463.68, 2171.31, 3043.03, 561.16,
3043.03, 3043.03, -68.06, 2098.2, 2504.4, 1536.67, 2719.7,
3043.03, 109.91, 2579.35, 265.57, 3560.34, 2266.95, 3123.16,
3544.4, 1379.19, 2288.35, 2472.85, 2560.48, 1414.45, 3741.49,
202.2, 2856.23, 1457.75, 313.68, 191.32, 2266.95, 661.01,
0, 2050.81, 298.76, 1605.44, 373.86, 3043.03, 2579.35, 448.63,
3043.03, 463.68, 977.28, 818.06, 2620.06, 0, 3235.8, 280.99,
0, 0, 194.04, 3212.75, -23.22, 1833.46, 1829.18, 2786.7,
0, 0, 3250.38, 936.79, 0, 1045.21, 3043.03, 1988.36, 2472.85,
1197.94, 0, 313.68, 3212.75, 1419.33, 531.14, 0, 96.28, 0,
142.92, 174.79, 0, 936.79, 156.19, 2472.85, 463.68, 3520.69,
2579.35, 3328.87, 2567.88, 3043.03, 1081.14)), row.names = c(NA,
100L), class = "data.frame")
So here's what I have done: 1) added library call to load pkg:rms, removed the attempt to place a Surv object in a dataframe column, 3) built the Surv object inside formula as Therneau expects formulas to be built, and removed ID from the covariates where it most probably does not belong.
library(survival); library(rms)
#km_surv <- Surv(time = df$tenure, event = df$status)
#df <- data.frame(y = km_surv, df[,!(names(df) %in% c("tenure","status"))])
weibull_fit <- psm(Surv(time = tenure, event = status) ~TemporalTenure +STED , dist="weibull", data = df)
quantsurv <- Quantile(weibull_fit, df)
lp <- predict(weibull_fit, df, type="lp")
Results#
print(quantsurv(0.5, lp))
1 2 3 4 5 6
151.4129 176.0490 268.4644 466.8266 164.8640 301.2630
I am trying to create a triangular plot,that three dimensions of which represent three herbal strategies.
One dimension represents the strategy of C (competitive plant), the second dimension “S” (stress tolerant plants) and the third dimension ”R” (ruderal plants), the points on it represent the plant species.
I want to write the species name outside the triangle and connect it to the points inside the triangle with an arrow. How do I draw this ternary plot?
The following is the data structure and my code
require(Ternary)
TernaryPlot()
#Plot two stylised plots side by side, and plot data
par(mfrow=c(1, 1), mar=rep(0.3, 4))
TernaryPlot(atip='C%', btip='R%', ctip='S%',
point='UP', lab.cex=0.8, grid.minor.lines=0,
grid.lty='solid', col='#FFFFFF', grid.col='GREY',
axis.col=rgb(0.1, 0.1, 0.1), ticks.col=rgb(0.1, 0.1, 0.1),
padding=0.08)
data_points <- list("Bromus dantonia" = c(47, 59, 149),
"Calamagrosis psoudo phragmatis" = c(90, 102, 63),
"Carex diluta" = c(109, 64, 82),
"Carex divisa" = c(96, 99, 59),
"Carex pseudocyperus" = c(130, 71, 54),
"Carex stenophylla" = c(97, 98, 59),
"Catabrosa aquatica" = c(100, 5, 150),
"Centaurea iberica" = c(124, 85, 46),
"Cirsium hygrophilum" = c(158, 42, 55),
"Cladium mariscus" = c(159, 96, 0),
"cod2" = c(54, 82, 119),
"Cynodon dactylon" = c(121, 54, 80),
"Eleocharis palustri" = c(124, 100, 31),
"Epilobium parviflorum" = c(67, 80, 107),
"Eromopoa persica" = c(83, 15, 157),
"Funaria cf.microstoma" = c(8, 0, 247),
"Glaux maritime" = c(4, 196, 55),
"Hordeum brevisubulatum" = c(76, 70, 109),
"Hordeum glaucum" = c(40, 79, 136),
"Inula britannica" = c(95, 108, 51),
"Juncus articulatus" = c(107, 79, 69),
"Blysmus compressus" = c(81, 127, 47),
"Juncusinflexus"= c(149, 106, 0),
"Medicago polymorpha" = c(60, 86, 109),
"Mentha spicata" = c(150, 23, 82),
"Ononis spinosa" = c(66, 112, 77),
"Phragmites australis" = c(234, 0, 21),
"Plantago amplexicaulis" = c(108, 83, 64),
"Poa trivialis" = c(90, 28, 138),
"Polygonum paronychioides" = c(20, 12, 223),
"Potentila reptans" = c(106, 41, 108),
"Potentilla anserina" = c(105, 58, 91),
"Ranunculus grandiflorus" = c(129, 25, 101),
"Schoenus nigricans" = c(143, 91, 21),
"Setaria viridis" = c(10, 7, 238),
"Sonchus oleraceus" = c(178, 0, 77),
"Taraxacum officinale" = c(117, 28, 110),
"Trifolium repens" = c(94, 4, 157),
"Triglochin martima" = c(63, 96, 95),
"Veronica anagallis-aquatica" = c(55, 37, 163)
)
AddToTernary(points, data_points, pch=21, cex=1.2,
bg=vapply(data_points,
function (x) rgb(x[1], x[2], x[3], 128,
maxColorValue=255),
character(1))
)
AddToTernary(text, data_points, names(data_points), cex=0.8, font=1)
Im creating a ggplot with geom_vline at a specific location on the x axis. i would like the x axis to show that specific value
Following is my data + code:
dput(agg_data)
structure(list(latency = structure(c(0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 26, 28,
29, 32, 36, 37, 40, 43, 46, 47, 48, 49, 54, 64, 71, 72, 75, 87,
88, 89, 93, 134, 151), class = "difftime", units = "days"), count = c(362,
11, 8, 5, 4, 2, 8, 6, 4, 2, 2, 1, 5, 1, 2, 2, 2, 1, 1, 1, 2,
1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1), cum_sum = c(362, 373, 381, 386, 390, 392, 400, 406,
410, 412, 414, 415, 420, 421, 423, 425, 427, 428, 429, 430, 432,
433, 435, 436, 437, 438, 439, 440, 441, 442, 444, 446, 447, 448,
449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460), cum_dist = c(0.78695652173913,
0.810869565217391, 0.828260869565217, 0.839130434782609, 0.847826086956522,
0.852173913043478, 0.869565217391304, 0.882608695652174, 0.891304347826087,
0.895652173913044, 0.9, 0.902173913043478, 0.91304347826087,
0.915217391304348, 0.919565217391304, 0.923913043478261, 0.928260869565217,
0.930434782608696, 0.932608695652174, 0.934782608695652, 0.939130434782609,
0.941304347826087, 0.945652173913043, 0.947826086956522, 0.95,
0.952173913043478, 0.954347826086957, 0.956521739130435, 0.958695652173913,
0.960869565217391, 0.965217391304348, 0.969565217391304, 0.971739130434783,
0.973913043478261, 0.976086956521739, 0.980434782608696, 0.982608695652174,
0.984782608695652, 0.98695652173913, 0.989130434782609, 0.991304347826087,
0.993478260869565, 0.995652173913044, 0.997826086956522, 1)), .Names = c("latency",
"count", "cum_sum", "cum_dist"), row.names = c(NA, -45L), class = "data.frame")
and code:
library(ggplot2)
library(ggthemes)
russ<-ggplot(data=agg_data,aes(x=as.numeric(latency),y=cum_dist))+geom_line(size=2)
russ<-russ+ggtitle("Latency from first click to Qualified Demo:") + xlab("in Days")+ ylab("Proportion of maturity")+theme_economist()
russ<-russ+geom_vline(aes(xintercept=10), color="black", linetype="dashed")
russ
which creates the following plot:
I want the plot show the value '10' (same location as the vline) on the x-axis
I looked for some other similar answers, like in Customize axis labels
but this one re creates the x axis labels (with scale_x_discrete), and does not add a new number to the current scale, which is more of what im looking for.
thanks in advance!
In your case x scale is continuous, so you can use function scale_x_continuous() and provide breaks at positions you need.
russ + scale_x_continuous(breaks=c(0,10,50,100,150))
I have the following 3 tables:
AggData <- structure(list(Path = c("NonBrand", "Brand", "NonBrand,NonBrand",
"Brand,Brand", "NonBrand,NonBrand,NonBrand", "Brand,Brand,Brand",
"Brand,NonBrand", "NonBrand,Brand", "NonBrand,NonBrand,NonBrand,NonBrand",
"Brand,Brand,Brand,Brand", "NonBrand,NonBrand,NonBrand,NonBrand,NonBrand",
"Brand,Brand,Brand,Brand,Brand", "Brand,Brand,NonBrand", "NonBrand,Brand,Brand",
"Brand,NonBrand,NonBrand", "NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand",
"NonBrand,NonBrand,Brand", "Brand,NonBrand,Brand", "NonBrand,Brand,NonBrand",
"NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand",
"Brand,Brand,Brand,Brand,Brand,Brand", "NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand",
"NonBrand,Brand,Brand,Brand", "NonBrand,NonBrand,NonBrand,Brand",
"Brand,Brand,Brand,NonBrand", "Brand,Brand,Brand,Brand,Brand,Brand,Brand",
"Brand,NonBrand,NonBrand,NonBrand", "NonBrand,NonBrand,Brand,Brand",
"Brand,Brand,NonBrand,NonBrand", "Brand,NonBrand,Brand,Brand",
"NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand",
"Brand,Brand,NonBrand,Brand", "NonBrand,Brand,NonBrand,NonBrand",
"Brand,Brand,Brand,Brand,Brand,Brand,Brand,Brand", "NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand",
"NonBrand,NonBrand,Brand,NonBrand", "Brand,NonBrand,NonBrand,Brand",
"NonBrand,Brand,Brand,Brand,Brand", "NonBrand,NonBrand,NonBrand,NonBrand,Brand",
"Brand,NonBrand,Brand,NonBrand", "NonBrand,Brand,Brand,NonBrand",
"Brand,Brand,Brand,Brand,NonBrand", "Brand,NonBrand,NonBrand,NonBrand,NonBrand",
"Brand,Brand,Brand,Brand,Brand,Brand,Brand,Brand,Brand", "NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand",
"Brand,NonBrand,Brand,Brand,Brand", "NonBrand,Brand,NonBrand,Brand",
"Brand,Brand,Brand,NonBrand,Brand", "NonBrand,NonBrand,Brand,Brand,Brand",
"NonBrand,NonBrand,NonBrand,Brand,Brand", "Brand,Brand,NonBrand,Brand,Brand",
"Brand,Brand,Brand,NonBrand,NonBrand", "Brand,Brand,Brand,Brand,Brand,Brand,Brand,Brand,Brand,Brand",
"NonBrand,NonBrand,NonBrand,Brand,NonBrand", "Brand,Brand,NonBrand,NonBrand,NonBrand",
"NonBrand,Brand,Brand,Brand,Brand,Brand", "NonBrand,Brand,NonBrand,NonBrand,NonBrand",
"NonBrand,NonBrand,Brand,NonBrand,NonBrand", "NonBrand,NonBrand,NonBrand,NonBrand,NonBrand,Brand",
"Brand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand", "Brand,Brand,Brand,Brand,Brand,NonBrand",
"NonBrand,Brand,Brand,NonBrand,NonBrand", "Brand,NonBrand,NonBrand,Brand,Brand",
"NonBrand,NonBrand,NonBrand,NonBrand,Brand,Brand", "NonBrand,NonBrand,Brand,Brand,Brand,Brand",
"NonBrand,NonBrand,NonBrand,NonBrand,Brand,NonBrand", "NonBrand,NonBrand,Brand,NonBrand,Brand",
"Brand,NonBrand,NonBrand,Brand,NonBrand", "NonBrand,NonBrand,NonBrand,Brand,Brand,Brand",
"NonBrand,Brand,Brand,NonBrand,Brand", "Brand,NonBrand,NonBrand,NonBrand,NonBrand,Brand",
"Brand,Brand,NonBrand,NonBrand,NonBrand,NonBrand,NonBrand", "Brand,Brand,Brand,Brand,NonBrand,NonBrand,NonBrand"
), click_count = c(1799265, 874478, 198657, 128159, 45728, 30172,
20520, 17815, 16718, 9479, 6554, 3722, 3561, 3408, 3391, 3366,
3256, 2526, 1846, 1708, 1682, 1013, 951, 899, 881, 782, 780,
703, 642, 625, 615, 601, 453, 442, 414, 407, 362, 343, 313, 284,
281, 281, 271, 269, 268, 229, 223, 218, 215, 212, 204, 162, 161,
158, 155, 145, 132, 130, 115, 103, 102, 86, 77, 77, 72, 68, 68,
67, 58, 52, 32, 18, 18), conv_count = c(30938, 19652, 7401, 3803,
2014, 1072, 1084, 981, 652, 379, 230, 166, 205, 246, 254, 93,
239, 104, 112, 51, 76, 23, 66, 81, 55, 29, 62, 57, 50, 37, 17,
33, 38, 17, 8, 41, 33, 30, 24, 16, 26, 18, 16, 17, 7, 21, 10,
8, 27, 23, 11, 13, 6, 15, 14, 16, 8, 10, 6, 6, 11, 11, 8, 9,
8, 8, 9, 7, 7, 6, 6, 6, 7), CR = c(0.0171947989873643, 0.0224728352228415,
0.0372551684561833, 0.0296740767328085, 0.0440430370888733, 0.0355296301206417,
0.0528265107212476, 0.0550659556553466, 0.0389998803684651, 0.0399831205823399,
0.0350930729325603, 0.0445996775926921, 0.057568098848638, 0.0721830985915493,
0.0749041580654674, 0.0276292335115865, 0.0734029484029484, 0.0411718131433096,
0.0606717226435536, 0.0298594847775176, 0.0451843043995244, 0.0227048371174729,
0.0694006309148265, 0.0901001112347052, 0.0624290578887628, 0.0370843989769821,
0.0794871794871795, 0.0810810810810811, 0.0778816199376947, 0.0592,
0.0276422764227642, 0.0549084858569052, 0.0838852097130243, 0.0384615384615385,
0.0193236714975845, 0.100737100737101, 0.0911602209944751, 0.0874635568513119,
0.0766773162939297, 0.0563380281690141, 0.0925266903914591, 0.0640569395017794,
0.0590405904059041, 0.0631970260223048, 0.0261194029850746, 0.091703056768559,
0.0448430493273543, 0.036697247706422, 0.125581395348837, 0.108490566037736,
0.053921568627451, 0.0802469135802469, 0.0372670807453416, 0.0949367088607595,
0.0903225806451613, 0.110344827586207, 0.0606060606060606, 0.0769230769230769,
0.0521739130434783, 0.058252427184466, 0.107843137254902, 0.127906976744186,
0.103896103896104, 0.116883116883117, 0.111111111111111, 0.117647058823529,
0.132352941176471, 0.104477611940299, 0.120689655172414, 0.115384615384615,
0.1875, 0.333333333333333, 0.388888888888889)), .Names = c("Path",
"click_count", "conv_count", "CR"), row.names = c(NA, -73L), class = "data.frame")
another one here:
breakVector <- structure(list(breakVector = structure(c(1L, 1L), .Label = "NonBrand", class = "factor"),
CR = c(0.461541302855402, 0.538458697144598)), .Names = c("breakVector",
"CR"), row.names = c(NA, -2L), class = "data.frame")
and:
FinalTable <- structure(list(autribution_category = structure(c(2L, 1L), .Label = c("Brand",
"NonBrand"), class = "factor"), attributed_result = c(0, 0)), .Names = c("autribution_category",
"attributed_result"), row.names = 1:2, class = "data.frame")
when I run the following command:
if (FinalTable [2,1] == breakVector[1,1]) {
FinalTable$attributed_result[2] <- FinalTable$attributed_result[2] +
breakVector[1,2] * AggData$conv_count[3];
break}
I get the following error:
Error in Ops.factor(FinalTable[2, 1], breakVector[1, 1]) :
level sets of factors are different
This is pretty weird, since both values that im comparing are factors, I don't see any reason why R cant compare the two levels?
FinalTable[2,1] and breakVector[1,1] do not have the same levels:
> FinalTable[2,1]
[1] Brand
Levels: Brand NonBrand
> breakVector[1,1]
[1] NonBrand
Levels: NonBrand
This is easily fixed by using
breakVector[,1] <- factor(breakVector[,1], levels=c("Brand", "NonBrand"))
or, more generally
breakVector[,1] <- factor(breakVector[,1], levels=levels(FinalTable[,1]))
Perhaps, it will better compare both variables like a string:
if (as.character(FinalTable [2,1]) == as.character(breakVector[1,1])) {
FinalTable$attributed_result[2] <- FinalTable$attributed_result[2] +
breakVector[1,2] * AggData$conv_count[3];
break}
I have a dataframe of 3500 X 4000. I am trying to write a professional command in R to remove any columns in a matrix that show the same variance. I am able to do this a with a long, complicated command such as
datavar <- apply(data, 2, var)
datavar <- datavar[!duplicated(datavar)]
then assemble my data by matching the remaining column names, but this is SAD! I was hoping to do this in a single go. I was thinking of something like
data <- data[, which(apply(data, 2, function(col) !any(var(data) = any(var(data)) )))]
I know the last part of the above command is nonsense, but I also know there is someway it can be done in some... smart command!
Here's some data that applies to the question
data <- structure(list(V1 = c(3, 213, 1, 135, 5, 2323, 1231, 351, 1,
33, 2, 213, 153, 132, 1321, 53, 1, 231, 351, 3135, 13), V2 = c(1,
1, 1, 2, 3, 5, 13, 33, 53, 132, 135, 153, 213, 213, 231, 351,
351, 1231, 1321, 2323, 3135), V3 = c(65, 41, 1, 53132, 1, 6451,
3241, 561, 321, 534, 31, 135, 1, 1351, 31, 351, 31, 31, 3212,
3132, 1), V4 = c(2, 2, 5, 4654, 5641, 21, 21, 1, 1, 465, 31,
4, 651, 35153, 13, 132, 123, 1231, 321, 321, 5), V5 = c(23, 13,
213, 135, 15341, 564, 564, 8, 464, 8, 484, 6546, 132, 165, 123,
135, 132, 132, 123, 123, 2), V6 = c(2, 1, 84, 86468, 464, 18,
45, 55, 2, 5, 12, 4512, 5, 123, 132465, 12, 456, 15, 45, 123213,
12), V7 = c(1, 2, 2, 5, 5, 12, 12, 12, 15, 18, 45, 45, 55, 84,
123, 456, 464, 4512, 86468, 123213, 132465)), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7"), row.names = c(NA, 21L), class = "data.frame")
Would I be able to keep one of the "similar variance" columns too?
Thanks,
I might go a more cautious route, like
data[, !duplicated(round(sapply(data,var),your_precision_here))]
This is pretty similar to what you've come up with:
vars <- lapply(data,var)
data[,which(sapply(1:length(vars), function(x) !vars[x] %in% vars[-x]))]
One thing to think about though is whether you want to match variances exactly (as in this example) or just variances that are close. The latter would be a significantly more challenging problem.
... or as alternative:
data[ , !c(duplicated(apply(data, 2, var)) | duplicated(apply(data, 2, var), fromLast=TRUE))]
...but also not shorter :)