If I have a data frame with a column of monotonically increasing values such as:
x
1
2
3
4
1
2
3
1
2
3
4
5
6
1
2
How do I add a column to group each increasing sequence that results in:
x y
1 1
2 1
3 1
4 1
1 2
2 2
3 2
1 3
2 3
3 3
4 3
5 3
6 3
1 4
2 4
I can only think of using a loop which will be slow.
You may choose cumsum function to do it.
> x <- c(1,2,3,4,1,2,3,1,2,4,5,1,2)
> cumsum(x==1)
[1] 1 1 1 1 2 2 2 3 3 3 3 4 4
I would use diff and compute the cumulative sum:
df$y <- c(1, cumsum(diff(df$x) < 0 ) + 1)
> df
x y
1 1 1
2 2 1
3 3 1
4 4 1
5 1 2
6 2 2
7 3 2
8 1 3
9 2 3
10 3 3
11 4 3
12 5 3
13 6 3
14 1 4
15 2 4
I have a data frame that looks like this:
Subject N S
Sub1-1 3 1
Sub1-2 3 1
Sub1-3 3 1
Sub1-4 3 1
Sub2-1 3 1
Sub2-2 3 1
Sub2-3 3 1
Sub2-4 3 1
Sub3-1 3 2
Sub3-2 3 2
Sub3-3 3 2
Sub4-1 3 2
Sub4-2 3 2
Sub4-3 3 2
Sub5-1 3 2
Sub5-2 3 2
Sub6-1 1 1
Sub6-2 1 1
Sub6-3 1 1
Sub7-1 1 1
Sub7-2 1 1
Sub7-3 1 1
Sub8-1 1 1
Sub8-2 1 1
Sub8-3 1 2
Sub9-1 1 2
Sub9-2 1 2
Sub1-1 1 2
Sub1-2 1 2
Sub1-3 1 2
Sub5-1 1 2
Sub5-2 1 2
Sub1-5 2 1
Sub1-6 2 1
Sub1-7 2 1
Sub1-5 2 1
Sub2-6 2 1
Sub2-5 2 1
Sub2-6 2 1
Sub2-7 2 1
Sub3-8 2 2
Sub3-5 2 2
Sub3-6 2 2
Sub4-7 2 2
Sub4-5 2 2
Sub4-6 2 2
Sub5-7 2 2
Sub5-8 2 2
As you can see in this data frame there are 6 different combinations in the N and S columns, and 8 consecutive rows of each combination. I want to create a new data frame where one row from each combination (be it 3 & 1 or 1 & 2) is randomly selected and then put into a new data frame so there are 8 consecutive rows of each different combination. That way the entire data frame of all 48 rows is completely reorganized. Is this possible in R code?
Edit: The desired output would be something like this, but repeating until all 48 rows are full and the subject number for each row would have be random because it is a randomly selected row of each N & S combo.
Subject N S
3 1
1 1
3 2
1 2
2 2
2 1
2 2
3 2
2 1
1 1
3 1
1 2
A solution using functions from dplyr.
# Load package
library(dplyr)
# Set seed for reproducibility
set.seed(123)
# Process the data
dt2 <- dt %>%
group_by(N, S) %>%
sample_n(size = 1)
# View the result
dt2
## A tibble: 6 x 3
## Groups: N, S [6]
# Subject N S
# <chr> <int> <int>
#1 Sub6-3 1 1
#2 Sub5-1 1 2
#3 Sub1-5 2 1
#4 Sub5-8 2 2
#5 Sub2-4 3 1
#6 Sub3-1 3 2
Update: Reorganize the row
The following randomize all rows.
dt3 <- dt %>% slice(sample(1:n(), n()))
Data Preparation
dt <- read.table(text = "Subject N S
Sub1-1 3 1
Sub1-2 3 1
Sub1-3 3 1
Sub1-4 3 1
Sub2-1 3 1
Sub2-2 3 1
Sub2-3 3 1
Sub2-4 3 1
Sub3-1 3 2
Sub3-2 3 2
Sub3-3 3 2
Sub4-1 3 2
Sub4-2 3 2
Sub4-3 3 2
Sub5-1 3 2
Sub5-2 3 2
Sub6-1 1 1
Sub6-2 1 1
Sub6-3 1 1
Sub7-1 1 1
Sub7-2 1 1
Sub7-3 1 1
Sub8-1 1 1
Sub8-2 1 1
Sub8-3 1 2
Sub9-1 1 2
Sub9-2 1 2
Sub1-1 1 2
Sub1-2 1 2
Sub1-3 1 2
Sub5-1 1 2
Sub5-2 1 2
Sub1-5 2 1
Sub1-6 2 1
Sub1-7 2 1
Sub1-5 2 1
Sub2-6 2 1
Sub2-5 2 1
Sub2-6 2 1
Sub2-7 2 1
Sub3-8 2 2
Sub3-5 2 2
Sub3-6 2 2
Sub4-7 2 2
Sub4-5 2 2
Sub4-6 2 2
Sub5-7 2 2
Sub5-8 2 2",
header = TRUE, stringsAsFactors = FALSE)
I try to count triplets; for this I use three vectors that are packed in a dataframe:
X=c(4,4,4,4,4,4,4,4,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3)
Y=c(1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,4,2,2,2,2,3,4,1,1,2,2,3,3,4,4)
Z=c(4,4,5,4,4,4,4,4,6,1,1,1,1,1,1,1,2,2,2,2,7,2,3,3,3,3,3,3,3,3)
Count_Frame=data.frame(matrix(NA, nrow=(length(X)), ncol=3))
Count_Frame[1]=X
Count_Frame[2]=Y
Count_Frame[3]=Z
Counts=data.frame(table(Count_Frame))
There is the following problem: if I increase the value range in the vectors or use even more vectors the "Counts" dataframe quickly approaches its size limit due to the many 0-counts. Is there a way to exclude the 0-counts while generating "Counts"?
We can use data.table. Convert the 'data.frame' to 'data.table' (setDT(Count_Frame)), grouped by all the columns (.(X, Y, Z)), we get the number or rows (.N).
library(data.table)
setDT(Count_Frame)[,.N ,.(X, Y, Z)]
# X Y Z N
# 1: 4 1 4 7
# 2: 4 1 5 1
# 3: 1 1 6 1
# 4: 1 1 1 3
# 5: 1 2 1 2
# 6: 1 3 1 1
# 7: 1 4 1 1
# 8: 2 2 2 4
# 9: 2 3 7 1
#10: 2 4 2 1
#11: 3 1 3 2
#12: 3 2 3 2
#13: 3 3 3 2
#14: 3 4 3 2
Instead of naming all the columns, we can use names(Count_Frame) as well (if there are many columns)
setDT(Count_Frame)[,.N , names(Count_Frame)]
You can accomplish this with aggregate:
Count_Frame$one <- 1
aggregate(one ~ X1 + X2 + X3, data=Count_Frame, FUN=sum)
This will calculate the positive instances of table, but will not list the zero counts.
One solution is to create a combination of the column values and count those instead:
library(tidyr)
as.data.frame(table(unite(Count_Frame, tmp, X1, X2, X3))) %>%
separate(Var1, c('X1', 'X2', 'X3'))
Resulting output is:
X1 X2 X3 Freq
1 1 1 1 3
2 1 1 6 1
3 1 2 1 2
4 1 3 1 1
5 1 4 1 1
6 2 2 2 4
7 2 3 7 1
8 2 4 2 1
9 3 1 3 2
10 3 2 3 2
11 3 3 3 2
12 3 4 3 2
13 4 1 4 7
14 4 1 5 1
Or using plyr:
library(plyr)
count(Count_Frame, colnames(Count_Frame))
output
# > count(Count_Frame, colnames(Count_Frame))
# X1 X2 X3 freq
# 1 1 1 1 3
# 2 1 1 6 1
# 3 1 2 1 2
# 4 1 3 1 1
# 5 1 4 1 1
# 6 2 2 2 4
# 7 2 3 7 1
# 8 2 4 2 1
# 9 3 1 3 2
# 10 3 2 3 2
# 11 3 3 3 2
# 12 3 4 3 2
# 13 4 1 4 7
# 14 4 1 5 1
The dataframe looks like this :
Customer_id A B C D E F G
10000001 1 1 2 3 1 3 1
10000001 1 2 3 1 2 1 3
10000002 2 2 2 3 1 3 1
10000002 2 2 1 4 2 3 1
10000003 1 5 2 4 7 2 4
10000003 1 5 2 6 3 7 2
10000003 1 1 2 2 1 2 1
10000004 1 2 3 1 2 3 1
10000004 1 3 2 3 1 3 2
10000004 1 3 2 1 3 2 1
10000004 1 4 1 4 1 3 1
10000006 1 2 3 4 5 1 2
10000006 1 3 1 4 1 2 1
10000008 2 3 2 3 2 1 2
10000008 2 3 1 1 2 1 2
10000008 1 3 1 1 2 2 1
There are multiple entries for each customer_id. I need to create another data frame from this existing data frame. The new data frame should contain only the last row for every customer_id. It should look like this
10000001 1 1 2 3 1 3 1
10000002 2 2 1 4 2 3 1
10000003 1 1 2 2 1 2 1
10000004 1 4 1 4 1 3 1
10000006 1 3 1 4 1 2 1
10000008 1 3 1 1 2 2 1
Something like this (hard to code without the data in R format):
dataframe[ rev(!duplicated(rev(dataframe$Customer_id))),]
or better
dataframe[ !duplicated(dataframe$Customer_id,fromLast=TRUE),]
You can also use aggregate
aggregate(. ~ Customer_id, data = DF, FUN = tail, 1)
## Customer_id A B C D E F G
## 1 10000001 1 2 3 1 2 1 3
## 2 10000002 2 2 1 4 2 3 1
## 3 10000003 1 1 2 2 1 2 1
## 4 10000004 1 4 1 4 1 3 1
## 5 10000006 1 3 1 4 1 2 1
## 6 10000008 1 3 1 1 2 2 1
Assume your data is named dat,
Here's one way using by and rbind, although the other two methods (aggregate and duplicated) are much nicer:
> do.call(rbind, by(dat,dat$Customer_id,FUN=tail,1))
## Customer_id A B C D E F G
## 2 10000001 1 2 3 1 2 1 3
## 4 10000002 2 2 1 4 2 3 1
## 7 10000003 1 1 2 2 1 2 1
## 11 10000004 1 4 1 4 1 3 1
## 13 10000006 1 3 1 4 1 2 1
## 16 10000008 1 3 1 1 2 2 1
I'm sure this has been asked before but for the life of me I can't figure out what to search for!
I have the following data:
x y
1 3
1 3
1 3
1 2
1 2
2 2
2 4
3 4
3 4
And I would like to output a running count that resets everytime either x or y changes value.
x y o
1 3 1
1 3 2
1 3 3
1 2 1
1 2 2
2 2 1
2 4 1
3 4 1
3 4 2
Try something like
df<-read.table(header=T,text="x y
1 3
1 3
1 3
1 2
1 2
2 2
2 4
3 4
3 4")
cbind(df,o=sequence(rle(paste(df$x,df$y))$lengths))
> cbind(df,o=sequence(rle(paste(df$x,df$y))$lengths))
x y o
1 1 3 1
2 1 3 2
3 1 3 3
4 1 2 1
5 1 2 2
6 2 2 1
7 2 4 1
8 3 4 1
9 3 4 2
After seeing #ttmaccer's I see my first attempt with ave was wrong and this is perhaps what is needed:
> dat$o <- ave(dat$y, list(dat$y, dat$x), FUN=seq )
# there was a warning but the answer is corect.
> dat
x y o
1 1 3 1
2 1 3 2
3 1 3 3
4 1 2 1
5 1 2 2
6 2 2 1
7 2 4 1
8 3 4 1
9 3 4 2