How to create cohesive Spatial Pixels from Spatial Points Dataset - r

I have a Spatial Point DF spo (covering an irregular shaped area of interest). The data are not on a regular grid due to crs transformation.
My goal is a raster with predefined resolution and extent of the area of interest ( more spatial point data are to be mapped on this master raster) .
Problems start when I
rasterize(spo, raster(ncol, nrow, extent, crs), spo$param)
I need to adjust nrowand ncol in a way so that I wont get moire patterns of NAs within my area of interest. I can't use a predefined (higher) resolution, since rasterize has no interpolation capabilities.
As a solution to this, I thought I might need some kind of Spatial Pixel DF spi, that covers my whole area of interest (just like meuse.grid in library(raster); data(meuse.grid)), and serves as a master grid. Then, I can use it to interpolate my data, e.g.
idw(param~1,spo,spi)
and by this, get full cover of my area of interest at my chosen resolution.
But how can a SpatialPixelsDataFrame be produced from the point data?
So in my view, the question boils down to: How to produce meuse.grid from meuse dataset?
Maybe I'm taking the wrong approach here, so please let me know if more easily can achieved what I'm after, using a different way.

If you have a polygon that defines the boundary of your region of interest, (which you should), then it is straight forward. One approach is to use the polygrid function from geoR, which itself is just a wrapper for SpatialPoints, expand.grid and overlay
Lets assume that you have a polygon that defines your region of interest called called ROI
In this case I will create one from meuse.grid
data(meuse.grid)
coordinates(meuse.grid) = ~x+y
x <- chull(meuse.grid#coords)
borders <- meuse.grid#coords[c(x,x[1]),]
ROI <- SpatialPolygons(list(Polygons(list(Polygon(borders)), ID = 'border')))
In reality, to use polygrid you only need the coordinates of the polygon that define your region of interest.
To create 10-m grid covering the area of this ROI you can create a call to polygrid
# get the bounding box for ROI an convert to a list
bboxROI <- apply(bbox(ROI), 1, as.list)
# create a sequence from min(x) to max(x) in each dimension
seqs <- lapply(bboxROI, function(x) seq(x$min, x$max, by= 10))
# rename to xgrid and ygrid
names(seqs) <- c('xgrid','ygrid')
thegrid <- do.call(polygrid,c(seqs, borders = list(ROI#polygons[[1]]#Polygons[[1]]#coords)))

Related

Query raster brick layer based on another raster in R

I have a NetCDF file of global oceanographic (OmegaA) data at relatively coarse spatial resolution with 33 depth levels. I also have a global bathymetry raster at much finer resolution. My goal is to use get the seabed OmegaA data from the NetCDF file, using the bathymetry data to determine the desired depth. My code so far;
library(raster)
library(rgdal)
library(ncdf4)
# Aragonite data. Defaults to CRS WGS84
ncin <- nc_open("C:/..../GLODAPv2.2016b.OmegaA.nc")
ncin.depth <- ncvar_get(ncin, "Depth")# 33 depth levels
omegaA.brk <- brick("C:/.../GLODAPv2.2016b.OmegaA.nc")
omegaA.brk <-rotate(omegaA.bkr)# because netCDF is in Lon 0-360.
# depth raster. CRS WGS84
r<-raster("C:/....GEBCO.tif")
# resample the raster brick to the resolution that matches the bathymetry raster
omegaA.brk <-resample(omegaA.brk, r, method="bilinear")
# create blank final raster
omegaA.rast <- raster(ncol = r#ncols, nrow = r#nrows)
extent(omegaA.rast) <- extent(r)
omegaA.rast[] <- NA_real_
# create vector of indices of desired depth values
depth.values<-getValues(r)
depth.values.index<-which(!is.na(depth.values))
# loop to find appropriate raster brick layer, and extract the value at the desired index, and insert into blank raster
for (p in depth.values.index) {
dep.index <-which(abs(ncin.depth+depth.values[p]) == min(abs(ncin.depth+depth.values[p]))) ## this sometimes results in multiple levels being selected
brk.level <-omegaA.brk[[dep.index]] # can be more than on level if multiple layers selected above.
omegaA.rast[p] <-omegaA.brk[[1]][p] ## here I choose the first level if multiple levels have been selected above
print(paste(p, "of", length(depth.values.index))) # counter to look at progress.
}
The problem: The result is a raster with massive gaps (NAs) in it where there should be data. The gaps often take a distinctive shape - eg, follow a contour, or along a long straight line. I've pasted a cropped example.
enter image description here
I think this could be because either 1) for some reason the 'which' statement in the loop is not finding a match or 2) a misalignment of the projections is created which I've read can happen when using 'Rotate'.
I've tried to make sure all the extents, resolutions, number of cells, and CRS's are all the same, which they seem to be.
To speed up the process I've cropped the global brick and bathy raster to my area of interest, again checking that all the spatial resolutions, etc etc match - I've not included those steps here for simplicity.
At a loss. Any help welcome!
Without a reproducible example, this kind of problems is hard to solve. I can't tell where your problem is but I'll present to you the approach I would try. Maybe it's good, maybe it's bad, I don't know but it may inspire you to find a way to go around your problem.
To my understanding, you have a brick of OmegaA (33 layers/depth) and a bathymetry raster. You want to get the OmegaA value at the bottom of the sea. Here is how I would do:
Make OmegaA raster to the same resolution and extent to the bathymetry one
Transforme the bathymetry raster into a raster brick of 33 three layers of 0-1. e.g. If the sea bottom is at 200m for one particular pixel, than this pixel on all depth layer other than 200 is 0 and 1 for the 200. To program this, I would go the long way, something like
:
r_1 <- r
values(r_1) <- values(r)==10 # where 10 is the depth (it could be a range with < or >)
r_2 <- r
values(r_2) <- values(r)==20
...
r_33 <- r
values(r_33) <- values(r)==250
r_brick <- brick(r_1, r_2, ..., r_33)
then you multiple both your raster bricks. They have the same dimension, it should be easy. The output should be a raster brick of 33 layers with 0 everywhere where it isn't the bottom of the sea and the value of OmegaA anywhere else.
Combine all the layer of the brick obtained previously into a simple raster with a sum.
This should work. If you have problem with dealing with raster brick, you could make the data into base R arrays, it could be simpler.
Good luck.

Create Grid in R for kriging in gstat

lat long
7.16 124.21
8.6 123.35
8.43 124.28
8.15 125.08
Consider these coordinates, these coordinates correspond to weather stations that measure rainfall data.
The intro to the gstat package in R uses the meuse dataset. At some point in this tutorial: https://rpubs.com/nabilabd/118172, the guys makes use of a "meuse.grid" in this line of code:
data("meuse.grid")
I do not have such a file and I do not know how to create it, can I create one using these coordinates? Or at least point me to material that discusses how to create a custom grid for a custom area (i.e not using administrative boundaries from GADM).
Probably wording this wrong, don't even know if this question makes sense to R savvy people. Still, would love to hear some direction, or at least tips. Thanks a lot!
Total noob at R and statistics.
EDIT: See the sample grid that the tutorial I posted looks like, that's the thing I want to make.
EDIT 2: Would this method be viable? https://rstudio-pubs-static.s3.amazonaws.com/46259_d328295794034414944deea60552a942.html
I am going to share my approach to create a grid for kriging. There are probably more efficient or elegant ways to achieve the same task, but I hope this will be a start to facilitate some discussions.
The original poster was thinking about 1 km for every 10 pixels, but that is probably too much. I am going to create a grid with cell size equals to 1 km * 1 km. In addition, the original poster did not specify an origin of the grid, so I will spend some time determining a good starting point. I also assume that the Spherical Mercator projection coordinate system is the appropriate choice for the projection. This is a common projection for Google Map or Open Street Maps.
1. Load Packages
I am going to use the following packages. sp, rgdal, and raster are packages provide many useful functions for spatial analysis. leaflet and mapview are packages for quick exploratory visualization of spatial data.
# Load packages
library(sp)
library(rgdal)
library(raster)
library(leaflet)
library(mapview)
2. Exploratory Visualization of the station locations
I created an interactive map to inspect the location of the four stations. Because the original poster provided the latitude and longitude of these four stations, I can create a SpatialPointsDataFrame with Latitude/Longitude projection. Notice the EPSG code for Latitude/Longitude projection is 4326. To learn more about EPSG code, please see this tutorial (https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/OverviewCoordinateReferenceSystems.pdf).
# Create a data frame showing the **Latitude/Longitude**
station <- data.frame(lat = c(7.16, 8.6, 8.43, 8.15),
long = c(124.21, 123.35, 124.28, 125.08),
station = 1:4)
# Convert to SpatialPointsDataFrame
coordinates(station) <- ~long + lat
# Set the projection. They were latitude and longitude, so use WGS84 long-lat projection
proj4string(station) <- CRS("+init=epsg:4326")
# View the station location using the mapview function
mapview(station)
The mapview function will create an interactive map. We can use this map to determine what could be a suitable for the origin of the grid.
3. Determine the origin
After inspecting the map, I decided that the origin could be around longitude 123 and latitude 7. This origin will be on the lower left of the grid. Now I need to find the coordinate representing the same point under Spherical Mercator projection.
# Set the origin
ori <- SpatialPoints(cbind(123, 7), proj4string = CRS("+init=epsg:4326"))
# Convert the projection of ori
# Use EPSG: 3857 (Spherical Mercator)
ori_t <- spTransform(ori, CRSobj = CRS("+init=epsg:3857"))
I first created a SpatialPoints object based on the latitude and longitude of the origin. After that I used the spTransform to perform project transformation. The object ori_t now is the origin with Spherical Mercator projection. Notice that the EPSG code for Spherical Mercator is 3857.
To see the value of coordinates, we can use the coordinates function as follows.
coordinates(ori_t)
coords.x1 coords.x2
[1,] 13692297 781182.2
4. Determine the extent of the grid
Now I need to decide the extent of the grid that can cover all the four points and the desired area for kriging, which depends on the cell size and the number of cells. The following code sets up the extent based on the information. I have decided that the cell size is 1 km * 1 km, but I need to experiment on what would be a good cell number for both x- and y-direction.
# The origin has been rounded to the nearest 100
x_ori <- round(coordinates(ori_t)[1, 1]/100) * 100
y_ori <- round(coordinates(ori_t)[1, 2]/100) * 100
# Define how many cells for x and y axis
x_cell <- 250
y_cell <- 200
# Define the resolution to be 1000 meters
cell_size <- 1000
# Create the extent
ext <- extent(x_ori, x_ori + (x_cell * cell_size), y_ori, y_ori + (y_cell * cell_size))
Based on the extent I created, I can create a raster layer with number all equal to 0. Then I can use the mapview function again to see if the raster and the four stations matches well.
# Initialize a raster layer
ras <- raster(ext)
# Set the resolution to be
res(ras) <- c(cell_size, cell_size)
ras[] <- 0
# Project the raster
projection(ras) <- CRS("+init=epsg:3857")
# Create interactive map
mapview(station) + mapview(ras)
I repeated this process several times. Finally I decided that the number of cells is 250 and 200 for x- and y-direction, respectively.
5. Create spatial grid
Now I have created a raster layer with proper extent. I can first save this raster as a GeoTiff for future use.
# Save the raster layer
writeRaster(ras, filename = "ras.tif", format="GTiff")
Finally, to use the kriging functions from the package gstat, I need to convert the raster to SpatialPixels.
# Convert to spatial pixel
st_grid <- rasterToPoints(ras, spatial = TRUE)
gridded(st_grid) <- TRUE
st_grid <- as(st_grid, "SpatialPixels")
The st_grid is a SpatialPixels that can be used in kriging.
This is an iterative process to determine a suitable grid. Throughout the process, users can change the projection, origin, cell size, or cell number depends on the needs of their analysis.
#yzw and #Edzer bring up good points for creating a regular rectangular grid, but sometimes, there is the need to create an irregular grid over a defined polygon, usually for kriging.
This is a sparsely documented topic. One good answer can be found here. I expand on it with code below:
Consider the the built in meuse dataset. meuse.grid is an irregularly shaped grid. How do we make an grid like meuse.grid for our unique study area?
library(sp)
data(meuse.grid)
ggplot(data = meuse.grid) + geom_point(aes(x, y))
Imagine an irregularly shaped SpatialPolygon or SpatialPolygonsDataFrame, called spdf. You first build a regular rectangular grid over it, then subset the points in that regular grid by the irregularly-shaped polygon.
# First, make a rectangular grid over your `SpatialPolygonsDataFrame`
grd <- makegrid(spdf, n = 100)
colnames(grd) <- c("x", "y")
# Next, convert the grid to `SpatialPoints` and subset these points by the polygon.
grd_pts <- SpatialPoints(
coords = grd,
proj4string = CRS(proj4string(spdf))
)
# subset all points in `grd_pts` that fall within `spdf`
grd_pts_in <- grd_pts[spdf, ]
# Then, visualize your clipped grid which can be used for kriging
ggplot(as.data.frame(coordinates(grd_pts_in))) +
geom_point(aes(x, y))
If you have your study area as a polygon, imported as a SpatialPolygons, you could either use package raster to rasterize it, or use sp::spsample to sample it using sampling type regular.
If you don't have such a polygon, you can create points regularly spread over a rectangular long/lat area using expand.grid, using seq to generate a sequence of long and lat values.

In R, how to average spatial points data over spatial grid squares

Managed to solve problem now
I have a set of around 50 thousand points that have coordinates and one value associated with them. I would like to be able to place points into a grid averaging the associated value of all points that fall into a grid square. So I want to end up with an object that identifies each grid square and gives the average inside the grid square.
I have the data in a spatial points data frame and a spatial grid object if that helps.
Improving answer: I have definitely done some searching, sorry about the initial state of the question I had only managed to frame the question inside my own head; hadn't had to communicate it to anyone else before...
Here is example data that hopefully illustrates the problem more clearly
##make some data
longi <- runif(100,0,10)
lati <- runif(100,0,10)
value <- runif(500,20,30)
##put in data frame then change to spatial data frame
df <- data.frame("lon"=longi,"lat"=lati,"val"=value)
coordinates(df) <- c("lon","lat")
proj4string(df) <- CRS("+proj=longlat")
##create a grid that bounds the data
grd <- GridTopology(cellcentre.offset=bbox(df)[,1],
cellsize=c(1,1),cells.dim=c(11,11))
sg <- SpatialGrid(grd)
Then I hope to get an object albeit a vector/data frame/list that gives me the average of value in each grid cell/square and some way of identifying which cell it is.
Solution
##convert the grid into a polygon##
polys <- as.SpatialPolygons.GridTopology(grd)
proj4string(polys) <- CRS("+proj=longlat")
##can now use the function over to select the correct points and average them
results <- rep(0, length(polys))
for(i in 1:length(polys)) {
results[i] = mean(df$val[which(!is.na(over(x=df,y=polys[i])))])
}
My question now is if this is the best way to do it or is there a more efficient way?
Your description is vague at best. Please try to ask more specific answers preferably, with code illustrating what you have already tried. Averaging a single value in your point data or a single raster cell makes absolutely no sense.
The best guess at an answer I can provide is to use raster extract() to assign the raster values to a sp point object and then use tapply() to aggregate the values to your grouping values in the points. You can use the coordinates of the points to identify cell location or alternately, the cellnumbers returned from extract (per below example).
require(raster)
require(sp)
# Create example data
r <- raster(ncol=500, nrow=500)
r[] <- runif(ncell(r))
pts <- sampleRandom(r, 100, sp=TRUE)
# Add a grouping value to points
pts#data <- data.frame(ID=rownames(pts#data), group=c( rep(1,25),rep(2,25),
rep(3,25),rep(4,25)) )
# Extract raster values and add to #data slot dataframe. Note, the "cells"
# attribute indicates the cell index in the raster.
pts#data <- data.frame(pts#data, extract(r, pts, cellnumbers=TRUE))
head(pts#data)
# Use tapply to cal group means
tapply(pts#data$layer, pts#data$group, FUN=mean)

How to get count of non-NA raster cells within polygon

I've been running into all sorts of issues using ArcGIS ZonalStats and thought R could be a great way. Saying that I'm fairly new to R, but got a coding background.
The situation is that I have several rasters and a polygon shape file with many features of different sizes (though all features are bigger than a raster cell and the polygon features are aligned to the raster).
I've figured out how to get the mean value for each polygon feature using the raster library with extract:
#load packages required
require(rgdal)
require(sp)
require(raster)
require(maptools)
# ---Set the working directory-------
datdir <- "/test_data/"
#Read in a ESRI grid of water depth
ras <- readGDAL("test_data/raster/pl_sm_rp1000/w001001.adf")
#convert it to a format recognizable by the raster package
ras <- raster(ras)
#read in polygon shape file
proxNA <- readShapePoly("test_data/proxy/PL_proxy_WD_NA_test")
#plot raster and shp
plot(ras)
plot(proxNA)
#calc mean depth per polygon feature
#unweighted - only assigns grid to district if centroid is in that district
proxNA#data$RP1000 <- extract(ras, proxNA, fun = mean, na.rm = TRUE, weights = FALSE)
#check results
head(proxNA)
#plot depth values
spplot(proxNA[,'RP1000'])
The issue I have is that I also need an area based ratio between the area of the polygon and all non NA cells in the same polygon. I know what the cell size of the raster is and I can get the area for each polygon, but the missing link is the count of all non-NA cells in each feature. I managed to get the cell number of all the cells in the polygon proxNA#data$Cnumb1000 <- cellFromPolygon(ras, proxNA)and I'm sure there is a way to get the actual value of the raster cell, which then requires a loop to get the number of all non-NA cells combined with a count, etc.
BUT, I'm sure there is a much better and quicker way to do that! If any of you has an idea or can point me in the right direction, I would be very grateful!
I do not have access to your files, but based on what you described, this should work:
library(raster)
mask_layer=shapefile(paste0(shapedir,"AOI.shp"))
original_raster=raster(paste0(template_raster_dir,"temp_raster_DecDeg250.tif"))
nonNA_raster=!is.na(original_raster)
masked_img=mask(nonNA_raster,mask_layer) #based on centroid location of cells
nonNA_count=cellStats(masked_img, sum)

sp::over() for point in polygon analysis

I have a shapefile named "ind_adm" and a SpatialPointsDataFrame called "pnts". The "pnts" contains points generated at random, and some of the points overlap with the polygon. See picture below.
Now, I want do do a point in polygon analysis, i.e. I want to find out which points lie inside the gray polygon representing the boundary of India. For this I am using the over() function in the sp library.
pt.in.poly <- sp::over(ind_adm, pnts, fn = mean) #do the join
However, the output I am getting is
>pt.in.poly
values
0 6.019467
I should actually get the index of the points that are "in" the polygon.
Where am I going wrong?
Found this concise and intuitive syntax for over:
pnts[ind_adm,]
from this Intro document
You should not supply a function. You are aggregating the attribute values of your points over the geometry of the polygon, (i.e. the number returned is the mean of the attribute of the points that fall within the polygon). In addition you have your x and y the wrong way round for what you want to do. Should be...
over( pnts , ind_adm , fn = NULL)
You can use point.in.poly fom spatialEco package. It "intersects point and polygon feature classes and adds polygon attributes to points".
library(spatialEco)
new_shape <- point.in.poly(pnts, ind_adm)
You could also use the st_intersection function from the sf package:
Load the library
library(sf)
Create a simple feature geometry (polygon) from your polygon
ind_adm <- st_as_sf(ind_adm)
Create a simple feature geometry (point) from your points of interest
(24047 is the EPSG code for India)
pnts <- st_as_sf(pnts) %>% st_set_crs(., 24047)
Keep only the points inside the polygon
kept_points <- st_intersection(ind_adm, pnts)

Resources