move for a chess game - functional-programming

I have a move procedure that applies a legal move to a chess piece on the board by passing a pair:
(cons source dest) so (cons 1 2) takes a piece on position 1 from the board and moves it to position 2.
I'm trying to make a procedure that applies the same move it made before. I tried to do
(move (reverse move)) which would pass in (cons 2 1) thereby moving the piece back.
unfortunately, reverse doesnt work for pairs. I can't convert it to a list because that would have to change a lot of the code to accommodate for the null at the end.
Can anyone think of anything?
I'm using MIT Scheme by the way.

You need to implement your own reverse-pair procedure for this, it can be as simple as this:
(define (reverse-pair p)
(cons (cdr p) (car p)))
Or this, a bit fancier but less readable:
(define (reverse-pair p)
`(,(cdr p) . ,(car p)))
Either way it works as intended:
(reverse-pair '(1 . 2))
=> '(2 . 1)

If the reverse function doesn't work on pairs, write your own reverse-pair function then. I don't remember the scheme syntax for that but I think you already have the tools for that, since you would basically need to know how to read the two values from the pair (something you already do on your "move" function) and then how to build a new tuple based on that data.
I don't see why you think this would complicate things too much either. As far as the code outside the new function goes, it would look just the same as the original version you proposed using the "reverse" function.

If you limit yourself to pairs of `(a . b) then it's pretty easy to flip them. Something as simple as
(define reverse-pair
(lambda (p)
(cons (cdr p) (car p))))
Will do it. From your context I gather that your not going to be in the position where you have '(1 2 3 4 . 5) and need to reverse that so you should be fine with the one above.

Related

some strategies to refactor my Common Lisp code

I'm Haruo. My pleasure is solving SPOJ in Common Lisp(CLISP). Today I solved Classical/Balk! but in SBCL not CLISP. My CLISP submit failed due to runtime error (NZEC).
I hope my code becomes more sophisticated. Today's problem is just a chance. Please the following my code and tell me your refactoring strategy. I trust you.
https://github.com/haruo-wakakusa/SPOJ-ClispAnswers/blob/0978813be14b536bc3402f8238f9336a54a04346/20040508_adrian_b.lisp
Haruo
Take for example get-x-depth-for-yz-grid.
(defun get-x-depth-for-yz-grid (planes//yz-plane grid)
(let ((planes (get-planes-including-yz-grid-in planes//yz-plane grid)))
(unless (evenp (length planes))
(error "error in get-x-depth-for-yz-grid"))
(sort planes (lambda (p1 p2) (< (caar p1) (caar p2))))
(do* ((rest planes (cddr rest)) (res 0))
((null rest) res)
(incf res (- (caar (second rest)) (caar (first rest)))))))
style -> ERROR can be replaced by ASSERT.
possible bug -> SORT is possibly destructive -> make sure you have a fresh list consed!. If it is already fresh allocated by get-planes-including-yz-grid-in, then we don't need that.
bug -> SORT returns a sorted list. The sorted list is possibly not a side-effect. -> use the returned value
style -> DO replaced with LOOP.
style -> meaning of CAAR unclear. Find better naming or use other data structures.
(defun get-x-depth-for-yz-grid (planes//yz-plane grid)
(let ((planes (get-planes-including-yz-grid-in planes//yz-plane grid)))
(assert (evenp (length planes)) (planes)
"error in get-x-depth-for-yz-grid")
(setf planes (sort (copy-list planes) #'< :key #'caar))
(loop for (p1 p2) on planes by #'cddr
sum (- (caar p2) (caar p1)))))
Some documentation makes a bigger improvement than refactoring.
Your -> macro will confuse sbcl’s type inference. You should have (-> x) expand into x, and (-> x y...) into (let (($ x)) (-> y...))
You should learn to use loop and use it in more places. dolist with extra mutation is not great
In a lot of places you should use destructuring-bind instead of eg (rest (rest )). You’re also inconsistent as sometimes you’d write (cddr...) for that instead.
Your block* suffers from many problems:
It uses (let (foo) (setf foo...)) which trips up sbcl type inference.
The name block* implies that the various bindings are scoped in a way that they may refer to those previously defined things but actually all initial value may refer to any variable or function name and if that variable has not been initialised then it evaluates to nil.
The style of defining lots of functions inside another function when they can be outside is more typical of scheme (which has syntax for it) than Common Lisp.
get-x-y-and-z-ranges really needs to use loop. I think it’s wrong too: the lists are different lengths.
You need to define some accessor functions instead of using first, etc. Maybe even a struct(!)
(sort foo) might destroy foo. You need to do (setf foo (sort foo)).
There’s basically no reason to use do. Use loop.
You should probably use :key in a few places.
You write defvar but I think you mean defparameter
*t* is a stupid name
Most names are bad and don’t seem to tell me what is going on.
I may be an idiot but I can’t tell at all what your program is doing. It could probably do with a lot of work

SICP 2.64 order of growth of recursive procedure

I am self-studyinig SICP and having a hard time finding order of growth of recursive functions.
The following procedure list->tree converts an ordered list to a balanced search tree:
(define (list->tree elements)
(car (partial-tree elements (length elements))))
(define (partial-tree elts n)
(if (= n 0)
(cons '() elts)
(let ((left-size (quotient (- n 1) 2)))
(let ((left-result (partial-tree elts left-size)))
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
(right-size (- n (+ left-size 1))))
(let ((this-entry (car non-left-elts))
(right-result (partial-tree (cdr non-left-elts)
right-size)))
(let ((right-tree (car right-result))
(remaining-elts (cdr right-result)))
(cons (make-tree this-entry left-tree right-tree)
remaining-elts))))))))
I have been looking at the solution online, and the following website I believe offers the best solution but I have trouble making sense of it:
jots-jottings.blogspot.com/2011/12/sicp-exercise-264-constructing-balanced.html
My understanding is that the procedure 'partial-tree' repeatedly calls three argument each time it is called - 'this-entry', 'left-tree', and 'right-tree' respectively. (and 'remaining-elts' only when it is necessary - either in very first 'partial-tree' call or whenever 'non-left-elts' is called)
this-entry calls : car, cdr, and cdr(left-result)
left-entry calls : car, cdr, and itself with its length halved each step
right-entry calls: car, itself with cdr(cdr(left-result)) as argument and length halved
'left-entry' would have base 2 log(n) steps, and all three argument calls 'left-entry' separately.
so it would have Ternary-tree-like structure and the total number of steps I thought would be similar to 3^log(n). but the solution says it only uses each index 1..n only once. But doesn't 'this-entry' for example reduce same index at every node separate to 'right-entry'?
I am confused..
Further, in part (a) the solution website states:
"in the non-terminating case partial-tree first calculates the number
of elements that should go into the left sub-tree of a balanced binary
tree of size n, then invokes partial-tree with the elements and that
value which both produces such a sub-tree and the list of elements not
in that sub-tree. It then takes the head of the unused elements as the
value for the current node"
I believe the procedure does this-entry before left-tree. Why am I wrong?
This is my very first book on CS and I have yet to come across Master Theorem.
It is mentioned in some solutions but hopefully I should be able to do the question without using it.
Thank you for reading and I look forward to your kind reply,
Chris
You need to understand how let forms work. In
(let ((left-tree (car left-result))
(non-left-elts (cdr left-result))
left-tree does not "call" anything. It is created as a new lexical variable, and assigned the value of (car left-result). The parentheses around it are just for grouping together the elements describing one variable introduced by a let form: the variable's name and its value:
(let ( ( left-tree (car left-result) )
;; ^^ ^^
( non-left-elts (cdr left-result) )
;; ^^ ^^
Here's how to understand how the recursive procedure works: don't.
Just don't try to understand how it works; instead analyze what it does, assuming that it does (for the smaller cases) what it's supposed to do.
Here, (partial-tree elts n) receives two arguments: the list of elements (to be put into tree, presumably) and the list's length. It returns
(cons (make-tree this-entry left-tree right-tree)
remaining-elts)
a cons pair of a tree - the result of conversion, and the remaining elements, which are supposed to be none left, in the topmost call, if the length argument was correct.
Now that we know what it's supposed to do, we look inside it. And indeed assuming the above what it does makes total sense: halve the number of elements, process the list, get the tree and the remaining list back (non-empty now), and then process what's left.
The this-entry is not a tree - it is an element that is housed in a tree's node:
(let ((this-entry (car non-left-elts))
Setting
(right-size (- n (+ left-size 1))
means that n == right-size + 1 + left-size. That's 1 element that goes into the node itself, the this-entry element.
And since each element goes directly into its node, once, the total running time of this algorithm is linear in the number of elements in the input list, with logarithmic stack space use.

operation between two lists

In common lisp there is map, which lets you do this kind of thing:
(map (lambda (x y) (/ x y)) (list 2 4 6 8 10 12) (list 1 2 3 4 5 6))
returning (2 2 2 2 2 2)
However now I am working at ACL2 and there is no such a thing as map.
So in my mind the only choice left I have is doing recursion to calculate what I want, unless there is another simpler and/or more efficient way of doing it.
... Which is exactly my question. Is there a better way of doing it than to create a recursive function called something like divide-two-lists? It just feels like something that a lisp-based language should naturally do instead of having you to create another function specifically just for it, hence why I am asking.
You could pretty easily write your own map. From the GNU Emacs guide:
(defun mapcar* (function &rest args)
"Apply FUNCTION to successive cars of all ARGS.
Return the list of results."
;; If no list is exhausted,
(if (not (memq nil args))
;; apply function to cars.
(cons (apply function (mapcar 'car args))
(apply 'mapcar* function
;; Recurse for rest of elements.
(mapcar 'cdr args)))))
(mapcar* 'cons '(a b c) '(1 2 3 4))
⇒ ((a . 1) (b . 2) (c . 3))
I'm unfamiliar with acl2, so you might have to change some functions (e.g. memq), or deal differently with how apply or &rest arguments work, but this is the meat of the code.
ACL2 is based on first order logic. In first order logic, statements like
(define (P R A) (R A))
are not allowed because R is being used as both a parameter and a function.
It is theoretically possible to get around this limitation by literally defining your own language within first order logic that includes the constructs for higher order logic. Otherwise, you are correct, your best option is to define something like divide-two-lists every single time you want to use a map function.
That's tedious, but it is how ACL2 was meant to be used.
This isn't exactly suitable to your question, but it's related, and so I mention it in case it helps someone else who is looking at your question.
Consider the book "std/util/defprojection", which provides a macro that lets you map a function across a list.

Accumulators, conj and recursion

I've solved 45 problems from 4clojure.com and I noticed a recurring problem in the way I try to solve some problems using recursion and accumulators.
I'll try to explain the best I can what I'm doing to end up with fugly solutions hoping that some Clojurers would "get" what I'm not getting.
For example, problem 34 asks to write a function (without using range) taking two integers as arguments and creates a range (without using range). Simply put you do (... 1 7) and you get (1 2 3 4 5 6).
Now this question is not about solving this particular problem.
What if I want to solve this using recursion and an accumulator?
My thought process goes like this:
I need to write a function taking two arguments, I start with (fn [x y] )
I'll need to recurse and I'll need to keep track of a list, I'll use an accumulator, so I write a 2nd function inside the first one taking an additional argument:
(fn
[x y]
((fn g [x y acc] ...)
x
y
'())
(apparently I can't properly format that Clojure code on SO!?)
Here I'm already not sure I'm doing it correctly: the first function must take exactly two integer arguments (not my call) and I'm not sure: if I want to use an accumulator, can I use an accumulator without creating a nested function?
Then I want to conj, but I cannot do:
(conj 0 1)
so I do weird things to make sure I've got a sequence first and I end up with this:
(fn
[x y]
((fn g [x y acc] (if (= x y) y (conj (conj acc (g (inc x) y acc)) x)))
x
y
'()))
But then this produce this:
(1 (2 (3 4)))
Instead of this:
(1 2 3 4)
So I end up doing an additional flatten and it works but it is totally ugly.
I'm beginning to understand a few things and I'm even starting, in some cases, to "think" in a more clojuresque way but I've got a problem writing the solution.
For example here I decided:
to use an accumulator
to recurse by incrementing x until it reaches y
But I end up with the monstrosity above.
There are a lot of way to solve this problem and, once again, it's not what I'm after.
What I'm after is how, after I decided to cons/conj, use an accumulator, and recurse, I can end up with this (not written by me):
#(loop [i %1
acc nil]
(if (<= %2 i)
(reverse acc)
(recur (inc i) (cons i acc))))
Instead of this:
((fn
f
[x y]
(flatten
((fn
g
[x y acc]
(if (= x y) acc (conj (conj acc (g (inc x) y acc)) x)))
x
y
'())))
1
4)
I take it's a start to be able to solve a few problems but I'm a bit disappointed by the ugly solutions I tend to produce...
i think there are a couple of things to learn here.
first, a kind of general rule - recursive functions typically have a natural order, and adding an accumulator reverses that. you can see that because when a "normal" (without accumulator) recursive function runs, it does some work to calculate a value, then recurses to generate the tail of the list, finally ending with an empty list. in contrast, with an accumulator, you start with the empty list and add things to the front - it's growing in the other direction.
so typically, when you add an accumulator, you get a reversed order.
now often this doesn't matter. for example, if you're generating not a sequence but a value that is the repeated application of a commutative operator (like addition or multiplication). then you get the same answer either way.
but in your case, it is going to matter. you're going to get the list backwards:
(defn my-range-0 [lo hi] ; normal recursive solution
(if (= lo hi)
nil
(cons lo (my-range-0 (inc lo) hi))))
(deftest test-my-range-1
(is (= '(0 1 2) (my-range-0 0 3))))
(defn my-range-1 ; with an accumulator
([lo hi] (my-range-1 lo hi nil))
([lo hi acc]
(if (= lo hi)
acc
(recur (inc lo) hi (cons lo acc)))))
(deftest test-my-range-1
(is (= '(2 1 0) (my-range-1 0 3)))) ; oops! backwards!
and often the best you can do to fix this is just reverse that list at the end.
but here there's an alternative - we can actually do the work backwards. instead of incrementing the low limit you can decrement the high limit:
(defn my-range-2
([lo hi] (my-range-2 lo hi nil))
([lo hi acc]
(if (= lo hi)
acc
(let [hi (dec hi)]
(recur lo hi (cons hi acc))))))
(deftest test-my-range-2
(is (= '(0 1 2) (my-range-2 0 3)))) ; back to the original order
[note - there's another way of reversing things below; i didn't structure my argument very well]
second, as you can see in my-range-1 and my-range-2, a nice way of writing a function with an accumulator is as a function with two different sets of arguments. that gives you a very clean (imho) implementation without the need for nested functions.
also you have some more general questions about sequences, conj and the like. here clojure is kind-of messy, but also useful. above i've been giving a very traditional view with cons based lists. but clojure encourages you to use other sequences. and unlike cons lists, vectors grow to the right, not the left. so another way to reverse that result is to use a vector:
(defn my-range-3 ; this looks like my-range-1
([lo hi] (my-range-3 lo hi []))
([lo hi acc]
(if (= lo hi)
acc
(recur (inc lo) hi (conj acc lo)))))
(deftest test-my-range-3 ; except that it works right!
(is (= [0 1 2] (my-range-3 0 3))))
here conj is adding to the right. i didn't use conj in my-range-1, so here it is re-written to be clearer:
(defn my-range-4 ; my-range-1 written using conj instead of cons
  ([lo hi] (my-range-4 lo hi nil))
  ([lo hi acc]
    (if (= lo hi)
      acc
      (recur (inc lo) hi (conj acc lo)))))
(deftest test-my-range-4
(is (= '(2 1 0) (my-range-4 0 3))))
note that this code looks very similar to my-range-3 but the result is backwards because we're starting with an empty list, not an empty vector. in both cases, conj adds the new element in the "natural" position. for a vector that's to the right, but for a list it's to the left.
and it just occurred to me that you may not really understand what a list is. basically a cons creates a box containing two things (its arguments). the first is the contents and the second is the rest of the list. so the list (1 2 3) is basically (cons 1 (cons 2 (cons 3 nil))). in contrast, the vector [1 2 3] works more like an array (although i think it's implemented using a tree).
so conj is a bit confusing because the way it works depends on the first argument. for a list, it calls cons and so adds things to the left. but for a vector it extends the array(-like thing) to the right. also, note that conj takes an existing sequence as first arg, and thing to add as second, while cons is the reverse (thing to add comes first).
all the above code available at https://github.com/andrewcooke/clojure-lab
update: i rewrote the tests so that the expected result is a quoted list in the cases where the code generates a list. = will compare lists and vectors and return true if the content is the same, but making it explicit shows more clearly what you're actually getting in each case. note that '(0 1 2) with a ' in front is just like (list 0 1 2) - the ' stops the list from being evaluated (without it, 0 would be treated as a command).
After reading all that, I'm still not sure why you'd need an accumulator.
((fn r [a b]
(if (<= a b)
(cons a (r (inc a) b))))
2 4)
=> (2 3 4)
seems like a pretty intuitive recursive solution. the only thing I'd change in "real" code is to use lazy-seq so that you won't run out of stack for large ranges.
how I got to that solution:
When you're thinking of using recursion, I find it helps to try and state the problem with the fewest possible terms you can think up, and try to hand off as much "work" to the recursion itself.
In particular, if you suspect you can drop one or more arguments/variables, that is usually the way to go - at least if you want the code to be easy to understand and debug; sometimes you end up compromising simplicity in favor of execution speed or reducing memory usage.
In this case, what I thought when I started writing was: "the first argument to the function is also the start element of the range, and the last argument is the last element". Recursive thinking is something you kind of have to train yourself to do, but a fairly obvious solution then is to say: a range [a, b] is a sequence starting with element a followed by a range of [a + 1, b]. So ranges can indeed be described recursively. The code I wrote is pretty much a direct implementation of that idea.
addendum:
I've found that when writing functional code, accumulators (and indexes) are best avoided. Some problems require them, but if you can find a way to get rid of them, you're usually better off if you do.
addendum 2:
Regarding recursive functions and lists/sequences, the most useful way to think when writing that kind of code is to state your problem in terms of "the first item (head) of a list" and "the rest of the list (tail)".
I cannot add to the already good answers you have received, but I will answer in general. As you go through the Clojure learning process, you may find that many but not all solutions can be solved using Clojure built-ins, like map and also thinking of problems in terms of sequences. This doesn't mean you should not solve things recursively, but you will hear -- and I believe it to be wise advice -- that Clojure recursion is for solving very low level problems you cannot solve another way.
I happen to do a lot of .csv file processing, and recently received a comment that nth creates dependencies. It does, and use of maps can allow me to get at elements for comparison by name and not position.
I'm not going to throw out the code that uses nth with clojure-csv parsed data in two small applications already in production. But I'm going to think about things in a more sequency way the next time.
It is difficult to learn from books that talk about vectors and nth, loop .. recur and so on, and then realize learning Clojure grows you forward from there.
One of the things I have found that is good about learning Clojure, is the community is respectful and helpful. After all, they're helping someone whose first learning language was Fortran IV on a CDC Cyber with punch cards, and whose first commercial programming language was PL/I.
If I solved this using an accumulator I would do something like:
user=> (defn my-range [lb up c]
(if (= lb up)
c
(recur (inc lb) up (conj c lb))))
#'user/my-range
then call it with
#(my-range % %2 [])
Of course, I'd use letfn or something to get around not having defn available.
So yes, you do need an inner function to use the accumulator approach.
My thought process is that once I'm done the answer I want to return will be in the accumulator. (That contrasts with your solution, where you do a lot of work on finding the ending-condition.) So I look for my ending-condition and if I've reached it, I return the accumulator. Otherwise I tack on the next item to the accumulator and recur for a smaller case. So there are only 2 things to figure out, what the end-condition is, and what I want to put in the accumulator.
Using a vector helps a lot because conj will append to it and there's no need to use reverse.
I'm on 4clojure too, btw. I've been busy so I've fallen behind lately.
It looks like your question is more about "how to learn" then a technical/code problem. You end up writing that kind of code because from whatever way or source you learned programming in general or Clojure in specific has created a "neural highway" in your brain that makes you thinking about the solutions in this particular way and you end up writing code like this. Basically whenever you face any problem (in this particular case recursion and/or accumulation) you end up using that "neural highway" and always come up with that kind of code .
The solution for getting rid of this "neural highway" is to stop writing code for the moment, keep that keyboard away and start reading a lot of existing clojure code (from existing solutions of 4clojure problem to open source projects on github) and think about it deeply (even read a function 2-3 times to really let it settle down in your brain). This way you would end up destroying your existing "neural highway" (which produce the code that you write now) and will create a new "neural highway" that would produce the beautiful and idiomatic Clojure code. Also, try not to jump to typing code as soon as you saw a problem, rather give yourself some time to think clearly and deeply about the problem and solutions.

find free variables in lambda expression

Does anyone know how I can figure out the free variables in a lambda expression? Free variables are the variables that aren't part of the lambda parameters.
My current method (which is getting me nowhere) is to simply use car and cdr to go through the expression. My main problem is figuring out if a value is a variable or if it's one of the scheme primitives. Is there a way to test if something evaluates to one of scheme's built-in functions? For example:
(is-scheme-primitive? 'and)
;Value: #t
I'm using MIT scheme.
For arbitrary MIT Scheme programs, there isn't any way to do this. One problem is that the function you describe just can't work. For example, this doesn't use the 'scheme primitive' and:
(let ((and 7)) (+ and 1))
but it certainly uses the symbol 'and.
Another problem is that lots of things, like and, are special forms that are implemented with macros. You need to know what all of the macros in your program expand into to figure out even what variables are used in your program.
To make this work, you need to restrict the set of programs that you accept as input. The best choice is to restrict it to "fully expanded" programs. In other words, you want to make sure that there aren't any uses of macros left in the input to your free-variables function.
To do this, you can use the expand function provided by many Scheme systems. Unfortunately, from the online documentation, it doesn't look like MIT Scheme provides this function. If you're able to use a different system, Racket provides the expand function as well as local-expand which works correctly inside macros.
Racket actually also provides an implementation of the free-variables function that you ask for, which, as I described, requires fully expanded programs as input (such as the output of expand or local-expand). You can see the source code as well.
For a detailed discussion of the issues involved with full expansion of source code, see this upcoming paper by Flatt, Culpepper, Darais and Findler.
[EDIT 4] Disclaimer; or, looking back a year later:
This is actually a really bad way to go about solving this problem. It works as a very quick and dirty method that accomplishes the basic goal of the OP, but does not stand up to any 'real life' use cases. Please see the discussion in the comments on this answer as well as the other answer to see why.
[/EDIT]
This solution is probably less than ideal, but it will work for any lambda form you want to give it in the REPL environment of mit-scheme (see edits). Documentation for the procedures I used is found at the mit.edu doc site. get-vars takes a quoted lambda and returns a list of pairs. The first element of each pair is the symbol and the second is the value returned by environment-reference-type.
(define (flatten lst)
(cond ((null? lst) ())
((pair? (car lst)) (append (flatten (car lst)) (flatten (cdr lst))))
(else
(cons (car lst) (flatten (cdr lst))))))
(define (get-free-vars proc-form)
(let ((env (ge (eval proc-form user-initial-environment))))
(let loop ((pf (flatten proc-form))
(out ()))
(cond ((null? pf) out)
((symbol? (car pf))
(loop (cdr pf) (cons (cons (car pf) (environment-reference-type env (car pf))) out)))
(else
(loop (cdr pf) out))))))
EDIT: Example usage:
(define a 100)
(get-vars '(lambda (x) (* x a g)))
=> ((g . unbound) (a . normal) (x . unbound) (* . normal) (x . unbound) (lambda . macro))
EDIT 2: Changed code to guard agains calling environment-reference-type being called with something other than a symbol.
EDIT 3: As Sam has pointed out in the comments, this will not see the symbols bound in a let under the lambda as having any value.. not sure there is an easy fix for this. So, my statement about this taking any lambda is wrong, and should have read more like "Any simple lambda that doesn't contain new binding forms"... oh well.

Resources