the difference between = and <- operator in the function system.time() - r

I am using the function system.time() and I have discovered something which surprises me. I often use the allocation symbol “=” instead of “<-”. I am aware most R users use “<-” but I consider “=” clearer in my codes. Thus, I used “=” to allocate a value in a function system.line() and the following error message appeared : Error: unexpected '=' in "system.time(a[,1] ="
Here is the code :
a = matrix(1, nrow = 10000)
require(stats)
system.time(a[,1] = a[,1]*2) #this line doesn't work
#Error: unexpected '=' in "system.time(a[,1] ="
system.time(a[,1] = a[,1]*2) #this line works
system.time(for(i in 1:100){a[,1] = a[,1]*i}) #this line works!!!!
I found : Is there a technical difference between "=" and "<-" which explains that I can’t use “=” in a function to allocate since it is the symbol to assign argument in a function. But I have been surprised to see that it can work sometimes (see following code).
Does anyone know why it works here? (also why it doesn't work in the first case since I guess, a[,1] is not a parameter of the function system.time()...)
Thank you very much.
Edwin.

Wrap your code in { ... } braces and it will work:
system.time({a[,1] = a[,1]*2})
user system elapsed
0 0 0
From ?"<-"
The operators <- and = assign into the environment in which they are
evaluated. The operator <- can be used anywhere, whereas the operator
= is only allowed at the top level (e.g., in the complete expression typed at the command prompt) or as one of the subexpressions in a
braced list of expressions.

In system.time(a[,1] = a[,1]*2) the equals sign does not mean assignment, it is interpreted as an attempt to bind a "named argument"; but system.time does not have an argument of that name.
In system.time(for(i in 1:100){a[,1] = a[,1]*i}) the equals sign really is doing an assignment; and that works fine.
If you wrote system.time(a[,1] <- a[,1]*2) the <- can only mean assignment, not argument binding, and it works!
But beware! If you wrote system.time(a[,1] < - a[,1]*2), it also "works" but probably doesn't do what you meant!

Related

return value of if statement in r

So, I'm brushing up on how to work with data frames in R and I came across this little bit of code from https://cloud.r-project.org/web/packages/data.table/vignettes/datatable-intro.html:
input <- if (file.exists("flights14.csv")) {
"flights14.csv"
} else {
"https://raw.githubusercontent.com/Rdatatable/data.table/master/vignettes/flights14.csv"
}
Apparently, this assigns the strings (character vectors?) in the if and else statements to input based on the conditional. How is this working? It seems like magic. I am hoping to find somewhere in the official R documentation that explains this.
From other languages I would have just done:
if (file.exists("flights14.csv")) {
input <- "flights14.csv"
} else {
input <- "https://raw.githubusercontent.com/Rdatatable/data.table/master/vignettes/flights14.csv"
}
or in R there is ifelse which also seems designed to do exactly this, but somehow that first example also works. I can memorize that this works but I'm wondering if I'm missing the opportunity to understand the bigger picture about how R works.
From the documentation on the ?Control help page under "Value"
if returns the value of the expression evaluated, or NULL invisibly if none was (which may happen if there is no else).
So the if statement is kind of like a function that returns a value. The value that's returned is the result of either evaulating the if or the then block. When you have a block in R (code between {}), the brackets are also like a function that just return the value of the last expression evaluated in the block. And a string literal is a valid expression that returns itself
So these are the same
x <- "hello"
x <- {"hello"}
x <- {"dropped"; "hello"}
x <- if(TRUE) {"hello"}
x <- if(TRUE) {"dropped"; "hello"}
x <- if(TRUE) {"hello"} else {"dropped"}
And you only really need blocks {} with if/else statements when you have more than one expression to run or when spanning multiple lines. So you could also do
x <- if(TRUE) "hello" else "dropped"
x <- if(FALSE) "dropped" else "hello"
These all store "hello" in x
You are not really missing anything about the "big picture" in R. The R if function is atypical compared both to other languages as well as to R's typical behavior. Unlike most functions in R which do require assignment of their output to a "symbol", i.e a proper R name, if allows assignments that occur within its consequent or alternative code blocks to occur within the global environment. Most functions would return only the final evaluation, while anything else that occurred inside the function body would be garbage collected.
The other common atypical function is for. R for-loops only
retain these interior assignments and always return NULL. The R Language Definition calls these atypical R functions "control structures". See section 3.3. On my machine (and I suspect most Linux boxes) that document is installed at: http://127.0.0.1:10731/help/doc/manual/R-lang.html#Control-structures. If you are on another OS then there is probably a pulldown Help menu in your IDE that will have a pointer to it. Thew help document calls them "control flow constructs" and the help page is at ?Control. Note that it is necessary to quote these terms when you wnat to access that help page using one of those names since they are "reserved words". So you would need ?'if' rather than typing ?if. The other reserved words are described in the ?Reserved page.
?Control
?'if' ; ?'for'
?Reserved
# When you just type:
?if # and hit <return>
# you will see a "+"-sign which indicateds an incomplete expression.
# you nthen need to hit <escape> to get back to a regular R interaction.
In R, functions don't need explicit return. If not specified the last line of the function is automatically returned. Consider this example :
a <- 5
b <- 1
result <- if(a == 5) {
a <- a + 1
b <- b + 1
a
} else {b}
result
#[1] 6
The last line in if block was saved in result. Similarly, in your case the string values are "returned" implicitly.

How does R evaluate these weird expressions?

I was trying to make Python 3-style assignment unpacking possible in R (e.g., a, *b, c = [1,2,3], "C"), and although I got so close (you can check out my code here), I ultimately ran into a few (weird) problems.
My code is meant to work like this:
a %,*% b %,% c <- c(1,2,3,4,5)
and will assign a = 1, b = c(2,3,4) and c = 5 (my code actually does do this, but with one small snag I will get to later).
In order for this to do anything, I have to define:
`%,%` <- function(lhs, rhs) {
...
}
and
`%,%<-` <- function(lhs, rhs, value) {
...
}
(as well as %,*% and %,*%<-, which are slight variants of the previous functions).
First issue: why R substitutes *tmp* for the lhs argument
As far as I can tell, R evaluates this code from left to right at first (i.e., going from a to c, until it reaches the last %,%, where upon, it goes back from right to left, assigning values along the way. But the first weird thing I noticed is that when I do match.call() or substitute(lhs) in something like x %infix% y <- z, it says that the input into the lhs argument in %infix% is *tmp*, instead of say, a or x.
This is bizarre to me, and I couldn't find any mention of it in the R manual or docs. I actually make use of this weird convention in my code (i.e., it doesn't show this behavior on the righthand side of the assignment, so I can use the presence of the *tmp* input to make %,% behave differently on this side of the assignment), but I don't know why it does this.
Second issue: why R checks for object existence before anything else
My second problem is what makes my code ultimately not work. I noticed that if you start with a variable name on the lefthand side of any assignment, R doesn't seem to even start evaluating the expression---it returns the error object '<variable name>' not found. I.e., if x is not defined, x %infix% y <- z won't evaluate, even if %infix% doesn't actually use or evaluate x.
Why does R behave like this, and can I change it or get around it? If I could to run the code in %,% before R checks to see if x exists, I could probably hack it so that I wouldn't be a problem, and my Python unpacking code would be useful enough to actually share. But as it is now, the first variable needs to already exist, which is just too limiting in my opinion. I know that I could probably do something by changing the <- to a custom infix operator like %<-%, but then my code would be so similar to the zeallot package, that I wouldn't consider it worth it. (It's already very close in what it does, but I like my style better.)
Edit:
Following Ben Bolker's excellent advice, I was able to find a way around the problem... by overwriting <-.
`<-` <- function(x, value) {
base::`<-`(`=`, base::`=`)
find_and_assign(match.call(), parent.frame())
do.call(base::`<-`, list(x = substitute(x), value = substitute(value)),
quote = FALSE, envir = parent.frame())
}
find_and_assign <- function(expr, envir) {
base::`<-`(`<-`, base::`<-`)
base::`<-`(`=`, base::`=`)
while (is.call(expr)) expr <- expr[[2]]
if (!rlang::is_symbol(expr)) return()
var <- rlang::as_string(expr) # A little safer than `as.character()`
if (!exists(var, envir = envir)) {
assign(var, NULL, envir = envir)
}
}
I'm pretty sure that this would be a mortal sin though, right? I can't exactly see how it would mess anything up, but the tingling of my programmer senses tells me this would not be appropriate to share in something like a package... How bad would this be?
For your first question, about *tmp* (and maybe related to your second question):
From Section 3.4.4 of the R Language definition:
Assignment to subsets of a structure is a special case of a general mechanism for complex assignment:
x[3:5] <- 13:15
The result of this command is as if the following had been executed
`*tmp*` <- x
x <- "[<-"(`*tmp*`, 3:5, value=13:15)
rm(`*tmp*`)
Note that the index is first converted to a numeric index and then the elements are replaced sequentially along the numeric index, as if a for loop had been used. Any existing variable called *tmp* will be overwritten and deleted, and this variable name should not be used in code.
The same mechanism can be applied to functions other than [. The replacement function has the same name with <- pasted on. Its last argument, which must be called value, is the new value to be assigned.
I can imagine that your second problem has to do with the first step of the "as if" code: if R is internally trying to evaluate *tmp* <- x, it may be impossible to prevent from trying to evaluate x at this point ...
If you want to dig farther, I think the internal evaluation code used to deal with "complex assignment" (as it seems to be called in the internal comments) is around here ...

rlang: Error: Can't convert a function to a string

I created a function to convert a function name to string. Version 1 func_to_string1 works well, but version 2 func_to_string2 doesn't work.
func_to_string1 <- function(fun){
print(rlang::as_string(rlang::enexpr(fun)))
}
func_to_string2 <- function(fun){
is.function(fun)
print(rlang::as_string(rlang::enexpr(fun)))
}
func_to_string1 works:
> func_to_string1(sum)
[1] "sum"
func_to_string2 doesn't work.
> func_to_string2(sum)
Error: Can't convert a primitive function to a string
Call `rlang::last_error()` to see a backtrace
My guess is that by calling the fun before converting it to a string, it gets evaluated inside function and hence throw the error message. But why does this happen since I didn't do any assignments?
My questions are why does it happen and is there a better way to convert function name to string?
Any help is appreciated, thanks!
This isn't a complete answer, but I don't think it fits in a comment.
R has a mechanism called pass-by-promise,
whereby a function's formal arguments are lazy objects (promises) that only get evaluated when they are used.
Even if you didn't perform any assignment,
the call to is.function uses the argument,
so the promise is "replaced" by the result of evaluating it.
Nevertheless, in my opinion, this seems like an inconsistency in rlang*,
especially given cory's answer,
which implies that R can still find the promise object even after a given parameter has been used;
the mechanism to do so might not be part of R's public API though.
*EDIT: see coments.
Regardless, you could treat enexpr/enquo/ensym like base::missing,
in the sense that you should only use them with parameters you haven't used at all in the function's body.
Maybe use this instead?
func_to_string2 <- function(fun){
is.function(fun)
deparse(substitute(fun))
#print(rlang::as_string(rlang::enexpr(fun)))
}
> func_to_string2(sum)
[1] "sum"
This question brings up an interesting point on lazy evaluations.
R arguments are lazily evaluated, meaning the arguments are not evaluated until its required.
This is best understood in the Advanced R book which has the following example,
f <- function(x) {
10
}
f(stop("This is an error!"))
the result is 10, which is surprising because x is never called and hence never evaluated. We can force x to be evaluated by using force()
f <- function(x) {
force(x)
10
}
f(stop("This is an error!"))
This behaves as expected. In fact we dont even need force() (Although it is good to be explicit).
f <- function(x) {
x
10
}
f(stop("This is an error!"))
This what is happening with your call here. The function sum which is a symbol initially is being evaluated with no arguments when is.function() is being called. In fact, even this will fail.
func_to_string2 <- function(fun){
fun
print(rlang::as_string(rlang::ensym(fun)))
}
Overall, I think its best to use enexpr() at the very beginning of the function.
Source:
http://adv-r.had.co.nz/Functions.html

Confused by ...()?

In another question, sapply(substitute(...()), as.character) was used inside a function to obtain the names passed to the function. The as.character part sounds fine, but what on earth does ...() do?
It's not valid code outside of substitute:
> test <- function(...) ...()
> test(T,F)
Error in test(T, F) : could not find function "..."
Some more test cases:
> test <- function(...) substitute(...())
> test(T,F)
[[1]]
T
[[2]]
F
> test <- function(...) substitute(...)
> test(T,F)
T
Here's a sketch of why ...() works the way it does. I'll fill in with more details and references later, but this touches on the key points.
Before performing substitution on any of its components, substitute() first parses an R statement.
...() parses to a call object, whereas ... parses to a name object.
... is a special object, intended only to be used in function calls. As a consequence, the C code that implements substitution takes special measures to handle ... when it is found in a call object. Similar precautions are not taken when ... occurs as a symbol. (The relevant code is in the functions do_substitute, substitute, and substituteList (especially the latter two) in R_SRCDIR/src/main/coerce.c.)
So, the role of the () in ...() is to cause the statement to be parsed as a call (aka language) object, so that substitution will return the fully expanded value of the dots. It may seem surprising that ... gets substituted for even when it's on the outside of the (), but: (a) calls are stored internally as list-like objects and (b) the relevant C code seems to make no distinction between the first element of that list and the subsequent ones.
Just a side note: for examining behavior of substitute or the classes of various objects, I find it useful to set up a little sandbox, like this:
f <- function(...) browser()
f(a = 4, 77, B = "char")
## Then play around within the browser
class(quote(...)) ## quote() parses without substituting
class(quote(...()))
substitute({...})
substitute(...(..., X, ...))
substitute(2 <- (makes * list(no - sense))(...))

Why the "=" R operator should not be used in functions?

The manual states:
The operator ‘<-’ can be used anywhere,
whereas the operator ‘=’ is only allowed at the top level (e.g.,
in the complete expression typed at the command prompt) or as one
of the subexpressions in a braced list of expressions.
The question here mention the difference when used in the function call. But in the function definition, it seems to work normally:
a = function ()
{
b = 2
x <- 3
y <<- 4
}
a()
# (b and x are undefined here)
So why the manual mentions that the operator ‘=’ is only allowed at the top level??
There is nothing about it in the language definition (there is no = operator listed, what a shame!)
The text you quote says at the top level OR in a braced list of subexpressions. You are using it in a braced list of subexpressions. Which is allowed.
You have to go to great lengths to find an expression which is neither toplevel nor within braces. Here is one. You sometimes want to wrap an assignment inside a try block: try( x <- f() ) is fine, but try( x = f(x) ) is not -- you need to either change the assignment operator or add braces.
Expressions not at the top level include usage in control structures like if. For example, the following programming error is illegal.
> if(x = 0) 1 else x
Error: syntax error
As mentioned here: https://stackoverflow.com/a/4831793/210673
Also see http://developer.r-project.org/equalAssign.html
Other than some examples such as system.time as others have shown where <- and = have different results, the main difference is more philisophical. Larry Wall, the creater of Perl, said something along the lines of "similar things should look similar, different things should look different", I have found it interesting in different languages to see what things are considered "similar" and which are considered "different". Now for R assignment let's compare 2 commands:
myfun( a <- 1:10 )
myfun( a = 1:10 )
Some would argue that in both cases we are assigning 1:10 to a so what we are doing is similar.
The other argument is that in the first call we are assigning to a variable a that is in the same environment from which myfun is being called and in the second call we are assigning to a variable a that is in the environment created when the function is called and is local to the function and those two a variables are different.
So which to use depends on whether you consider the assignments "similar" or "different".
Personally, I prefer <-, but I don't think it is worth fighting a holy war over.

Resources