Here is a subset of my data:
Fr Sig Code NumDet Date.Time Aerial
62 150102 102 15 195 2012-09-14 18:28:00 1
63 150102 102 15 189 2012-09-14 18:32:00 1
64 150102 106 15 213 2012-09-14 18:36:00 1
65 150102 102 15 152 2012-09-14 18:40:00 1
66 150102 105 15 190 2012-09-14 18:46:00 1
67 150102 97 15 4 2012-09-14 18:51:00 2
I am trying to calculate time between first detection on Aerial 1 and first detection on Aerial 2. Hence in this data set it would be 23mins
I have tried variations of difftime but can't seem to select specific times based on the Aerial number.
I have tried:
a <- difftime(table$Date.Time[2:length(table$Aerial == "1")],
table$Date.Time[2:length(table$Aerial == "2")])
but it's not even close.
This command using difftime
difftime(table$Date.Time[table$Aerial == "2"][1],
table$Date.Time[table$Aerial == "1"][1])
will return
Time difference of 23 mins
Related
I am using a code based on Deseq2. One of my goals is to plot a heatmap of data.
heatmap.data <- counts(dds)[topGenes,]
The error I am getting is
Error in counts(dds)[topGenes, ]: subscript out of bounds
the first few line sof my counts(dds) function looks like this.
99h1 99h2 99h3 99h4 wth1 wth2
ENSDARG00000000002 243 196 187 117 91 96
ENSDARG00000000018 42 55 53 32 48 48
ENSDARG00000000019 91 91 108 64 95 94
ENSDARG00000000068 3 10 10 10 30 21
ENSDARG00000000069 55 47 43 53 51 30
ENSDARG00000000086 46 26 36 18 37 29
ENSDARG00000000103 301 289 289 199 347 386
ENSDARG00000000151 18 19 17 14 22 19
ENSDARG00000000161 16 17 9 19 10 20
ENSDARG00000000175 10 9 10 6 16 12
ENSDARG00000000183 12 8 15 11 8 9
ENSDARG00000000189 16 17 13 10 13 21
ENSDARG00000000212 227 208 259 234 78 69
ENSDARG00000000229 68 72 95 44 71 64
ENSDARG00000000241 71 92 67 76 88 74
ENSDARG00000000324 11 9 6 2 8 9
ENSDARG00000000370 12 5 7 8 0 5
ENSDARG00000000394 390 356 339 283 313 286
ENSDARG00000000423 0 0 2 2 7 1
ENSDARG00000000442 1 1 0 0 1 1
ENSDARG00000000472 16 8 3 5 7 8
ENSDARG00000000476 2 1 2 4 6 3
ENSDARG00000000489 221 203 169 144 84 114
ENSDARG00000000503 133 118 139 89 91 112
ENSDARG00000000529 31 25 17 26 15 24
ENSDARG00000000540 25 17 17 10 28 19
ENSDARG00000000542 15 9 9 6 15 12
How do I ensure all the elements of the top genes are present in it?
When I try to see 20 top genes in the dataset. it looks like a list of genes
6339" "12416" "1241" "3025" "12791" "846" "15090"
[8] "6529" "14564" "4863" "12777" "1122" "7454" "13716"
[15] "5790" "3328" "1231" "13734" "2797" "9072" with the column head V1.
I have used both
topGenes <- read.table("E://mir99h50 Cheng data//topGenesresordered.txt",header = TRUE)
and
topGenes <- read.table("E://mir99h50 Cheng data//topGenesresordered.txt",header = FALSE)
to see if the out of bounds error is removed. However it was of no use. I guess the V1 head is causing the issue.
The top genes function has been generated using the above code snippet.
resordered <- res[order(res$padj),]
#Reorder gene list by increasing pAdj
resordered <- as.data.frame(res[order(res$padj),])
#Filter for genes that are differentially expressed with an FDR < 0.01
ii <- which(res$padj < 0.01)
length(ii)
# Use the rownames() function to get the top 20 differentially expressed genes from our results table
topGenes <- rownames(resordered[1:20,])
topGenes
# Get the counts from the DESeqDataSet using the counts() function
heatmap.data <- counts(dds)[topGenes,]
Perhaps this will do what you want?
counts_dds <- counts(dds)
topgenes <- c("ENSDARG00000000002", "ENSDARG00000000489", "ENSDARG00000000503",
"ENSDARG00000000540", "ENSDARG00000000529", "ENSDARG00000000542")
heatmap.data <- counts_dds[rownames(counts_dds) %in% topgenes,]
If you provide more information it will be easier to advise you on how to fix your problem.
i need to distribute some days along the year.
I have 213 activities and 247 days.. i need to plan this activities, but i need to cover the maximum time what can be possible.
I am substracting the total days - activities, in this case 34, i divide the total days with the previous result: 247/34= 7,26...
With this number i know what every seven days y have one without activity.
To code this part i doing this:
where day is a "for" variable what its looping a dataframe with dates and integer its the integer part of 7,26, in this case 7
if(day%%integer==0) {
aditional <- 0
} else {
aditional <- 1
}
#
if(day%%7==0) {
aditional <- 0
} else {
aditional <- 1
}
The result will be:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
In bold font the day without activity
This way its cool, but its not so precise how i want.
I know i need to use the decimal part of the result of 7,26... 26, but i dont know how do it.
Can you help me please?
Thanks and sorry for my english
Make these 34 days the non-activity days:
round((247/34) * seq(34))
giving:
[1] 7 15 22 29 36 44 51 58 65 73 80 87 94 102 109 116 124 131 138
[20] 145 153 160 167 174 182 189 196 203 211 218 225 232 240 247
I have a dataset in a given format:
USER.ID avgfrequency
1 3 3.7821782
2 7 14.7500000
3 9 13.4761905
4 13 5.1967213
5 16 6.7812500
6 26 41.7500000
7 49 13.6666667
8 50 7.0000000
9 51 1.0000000
10 52 17.7500000
11 69 4.5000000
12 75 9.9500000
13 91 84.2000000
14 98 8.0185185
15 138 14.2000000
16 139 34.7500000
17 149 7.6666667
18 155 35.3333333
19 167 24.0000000
20 170 7.3529412
21 171 4.4210526
22 175 6.5781250
23 176 19.2857143
24 177 10.4864865
25 178 28.0000000
26 180 4.8461538
27 183 25.5000000
28 184 13.0000000
29 210 32.0000000
30 215 13.4615385
31 220 11.3611111
32 223 26.2500000
I want to first sort the dataset by avgfrequency and then I want to plot count of USER.ID's that fall under different bin categories.
I want to divide avgfrequency into different bin categories of width 10.
I am trying to sort data using:
user_avgfrequency <- user_avgfrequency[order(user_avgfrequency[,1]), ]
but getting an error.
df <- data.frame(USER.ID=c(3,7,9,13,16,26,49,50,51,52,69,75,91,98,138,139,149,155,167,170,171,175,176,177,178,180,183,184,210,215,220,223), avgfrequency=c(3.7821782,14.7500000,13.4761905,5.1967213,6.7812500,41.7500000,13.6666667,7.0000000,1.0000000,17.7500000,4.5000000,9.9500000,84.2000000,8.0185185,14.2000000,34.7500000,7.6666667,35.3333333,24.0000000,7.3529412,4.4210526,6.5781250,19.2857143,10.4864865,28.0000000,4.8461538,25.5000000,13.0000000,32.0000000,13.4615385,11.3611111,26.2500000) );
breaks <- seq(0,ceiling(max(df$avgfrequency)/10)*10,10);
cols <- colorRampPalette(c('blue','green','red'))(length(breaks)-1);
hist(df$avgfrequency,breaks,col=cols,axes=F,xlab='Average Frequency',ylab='Count');
axis(1,breaks);
axis(2,0:max(tabulate(cut(df$avgfrequency,breaks))));
I have a large data table Divvy (over 2.4 million records) that appears as such (some columns removed):
X trip_id from_station_id.x to_station_id.x
1 1109420 94 69
2 1109421 69 216
3 1109427 240 245
4 1109431 113 94
5 1109433 127 332
3 1109429 240 245
I would like to find the number of trips from each station to each opposing station. So for example,
From X To Y Sum
94 69 1
240 245 2
etc. and then join it back to the inital table using dplyr to make something like the below and then limit it to distinct from_station_id/to_combos, which I'll use to map routes (I have lat/long for each station):
X trip_id from_station_id.x to_station_id.x Sum
1 1109420 94 69 1
2 1109421 69 216 1
3 1109427 240 245 2
4 1109431 113 94 1
5 1109433 127 332 1
3 1109429 240 245 1
I successfully used count to get some of this, such as:
count(Divvy$from_station_id.x==94 & Divvy$to_station_id.x == 69)
x freq
1 FALSE 2454553
2 TRUE 81
But this is obviously labor intensive as there are 300 unique stations, so well over 44k poss combinations. I created a helper table thinking I could loop it.
n <- select(Divvy, from_station_id.y )
from_station_id.x
1 94
2 69
3 240
4 113
5 113
6 127
count(Divvy$from_station_id.x==n[1,1] & Divvy$to_station_id.x == n[2,1])
x freq
1 FALSE 2454553
2 TRUE 81
I felt like a loop such as
output <- matrix(ncol=variables, nrow=iterations)
output <- matrix()
for(i in 1:n)(output[i, count(Divvy$from_station_id.x==n[1,1] & Divvy$to_station_id.x == n[2,1]))
should work but come to think of it that will still only return 300 rows, not 44k, so it would have to then loop back and do n[2] & n[1] etc...
I felt like there might also be a quicker dplyr solution that would let me return a count of each combo and append it directly without the extra steps/table creation, but I haven't found it.
I'm newer to R and I have searched around/think I'm close, but I can't quite connect that last dot of joining that result to Divvy. Any help appreciated.
#Here is the data.table solution, which is useful if you are working with large data:
library(data.table)
setDT(DF)[,sum:=.N,by=.(from_station_id.x,to_station_id.x)][] #DF is your dataframe
X trip_id from_station_id.x to_station_id.x sum
1: 1 1109420 94 69 1
2: 2 1109421 69 216 1
3: 3 1109427 240 245 2
4: 4 1109431 113 94 1
5: 5 1109433 127 332 1
6: 3 1109429 240 245 2
Since you said "limit it to distinct from_station_id/to_combos", the following code seems to provide what you are after. Your data is called mydf.
library(dplyr)
group_by(mydf, from_station_id.x, to_station_id.x) %>%
count(from_station_id.x, to_station_id.x)
# from_station_id.x to_station_id.x n
#1 69 216 1
#2 94 69 1
#3 113 94 1
#4 127 332 1
#5 240 245 2
I'm not entirely sure that's what you're looking for as a result, but this calculates the number of trips having the same origin and destination. Feel free to comment and let me know if that's not quite what you expect as a final result.
dat <- read.table(text="X trip_id from_station_id.x to_station_id.x
1 1109420 94 69
2 1109421 69 216
3 1109427 240 245
4 1109431 113 94
5 1109433 127 332
3 1109429 240 245", header=TRUE)
dat$from.to <- paste(dat$from_station_id.x, dat$to_station_id.x, sep="-")
freqs <- as.data.frame(table(dat$from.to))
names(freqs) <- c("from.to", "sum")
dat2 <- merge(dat, freqs, by="from.to")
dat2 <- dat2[order(dat2$trip_id),-1]
Results
dat2
# X trip_id from_station_id.x to_station_id.x sum
# 6 1 1109420 94 69 1
# 5 2 1109421 69 216 1
# 3 3 1109427 240 245 2
# 4 3 1109429 240 245 2
# 1 4 1109431 113 94 1
# 2 5 1109433 127 332 1
I am trying to solve the DSC(Differential scanning calorimetry) data with R but it seems that I ran into some troubles. All this used to be done in Origin or Qtiplot tediously in my lab.But I wonder if there is another way to do it in batch.But the result did not goes well. For example, maybe I have used the wrong colnames of my data.frame,the code
dat$0.5min
Error: unexpected numeric constant in "dat$0.5"
can not reach my data.
So below is the full description of my purpose, thank you in advance!
the DSC data is like this(I store the CSV file in my GoogleDrive Link ) :
T1 0.5min T2 1min
40.59 -0.2904 40.59 -0.2545
40.81 -0.281 40.81 -0.2455
41.04 -0.2747 41.04 -0.2389
41.29 -0.2728 41.29 -0.2361
41.54 -0.2553 41.54 -0.2239
41.8 -0.07 41.8 -0.0732
42.06 0.1687 42.06 0.1414
42.32 0.3194 42.32 0.2817
42.58 0.3814 42.58 0.3421
42.84 0.3863 42.84 0.3493
43.1 0.3665 43.11 0.3322
43.37 0.3438 43.37 0.3109
43.64 0.3265 43.64 0.2937
43.9 0.3151 43.9 0.2819
44.17 0.3072 44.17 0.2735
44.43 0.2995 44.43 0.2656
44.7 0.2899 44.7 0.2563
44.96 0.2779 44.96 0.245
in fact I have merge the data into a data.frame and hope I can adjust it and do something further.
the command is:
dat<-read.csv("Book1.csv",header=F)
colnames(dat)<-c('T1','0.5min','T2','1min','T3','2min','T4','4min','T5','8min','T6','10min',
'T7','20min','T8','ascast1','T9','ascast2','T10','ascast3','T11','ascast4',
'T12','ascast5'
)
so actually dat is a data.frame with 1163 obs. of 24 variables.
T1,T2,T3.....T12 means temperature that the samples were tested of DSC although in the same interval they do differ a little due to the unstability of the machine.
And the colname along T1~T12 is Heat Flow of different heat treatment durations that records by the machine and ascast1~ascast5 means nothing done to the sample to check the accuracy of the machine.
Now I need to do something like the following:
for T1~T2 is in Celsius Degrees,I need to change them into Kelvin Degrees whichi means every data plus 273.16.
Two temperature is chosen to compare the result that is Ts=180.25,Te=240.45(all is discussed in Celsius Degrees and I have seen it Qtiplot to make sure). To be clear I list the two temperature and the first 6 columns data.
T1 0.5min T2 1min T3 2min T4 4min
180.25 -0.01710000 180.25 -0.01780000 180.25 -0.02120000 180.25 -0.02020000
. . . .
. . . .
240.45 0.05700000 240.45 0.04500000 240.45 0.05780000 240.45 0.05580000
That all Heat Flow in Ts should be the same that can be made 0 for convenience. So based on the different values Heat Flow of different times like 0.5min,1min,2min,4min,8min,10min,20min and ascas1~ascast5 all Heat Flow value should be minus the Heat Flow value in Ts.
And for Heat Flow in Te, the value should be adjust to make sure that all the Heat Flow data are the same in Te. The purpose is like the following, (1) calculate mean of the 12 heat flow data in Te. Let's use Hmean for the mean heat flow.So Hmean is the value that all Heat Flow should be. (2) for data in column 0.5min,I use col("0.5min") to denote, and the lineal transform formula is like the following:
col("0.5min")-[([0.05700000-(-0.01710000)]-Hmean)/(Te-Ts)]*(col(T1)-Ts)
Actually, [0.05700000-(-0.01710000)] is done in step 2,but I write it for your reference. And this formula is used for different pair of T1~T12 and columns,like (T1,0.5min),(T2, 1min),(T3,1min).....all is 12 pairs.
Now we can plot the 12 pairs of data on the same plot with intervals from 180~240(also in Celsius Degrees) to magnify the details of differences between the different scans of DSC.
I have been stuck on this problems for 2 days , so I return to stackoverflow for help.
Thanks!
I am assuming that your question was right in the beginning where you got the following error,
dat$0.5min
Error: unexpected numeric constant in "dat$0.5"
As I could not find a question in the rest of the steps. They just seemed like a step by step procedure of an experiment.
To fix that error, the problem is the column name has a number in it so to use the column name in the way you want (to reference a column), you should use "`", accent mark, symbol.
>dataF <- data.frame("0.5min"=1:10,"T2"=11:20,check.names = F)
> dataF$`0.5min`
[1] 1 2 3 4 5 6 7 8 9 10
Based on comments adding more information,
You can add a constant to add to alternate columns in the following manner,
dataF <- data.frame(matrix(1:100,10,10))
const <- 237
> print(dataF)
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 1 11 21 31 41 51 61 71 81 91
2 2 12 22 32 42 52 62 72 82 92
3 3 13 23 33 43 53 63 73 83 93
4 4 14 24 34 44 54 64 74 84 94
5 5 15 25 35 45 55 65 75 85 95
6 6 16 26 36 46 56 66 76 86 96
7 7 17 27 37 47 57 67 77 87 97
8 8 18 28 38 48 58 68 78 88 98
9 9 19 29 39 49 59 69 79 89 99
10 10 20 30 40 50 60 70 80 90 100
dataF[,seq(1,ncol(dataF),by = 2)] <- dataF[,seq(1,ncol(dataF),by = 2)] + const
> print(dataF)
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
1 238 11 258 31 278 51 298 71 318 91
2 239 12 259 32 279 52 299 72 319 92
3 240 13 260 33 280 53 300 73 320 93
4 241 14 261 34 281 54 301 74 321 94
5 242 15 262 35 282 55 302 75 322 95
6 243 16 263 36 283 56 303 76 323 96
7 244 17 264 37 284 57 304 77 324 97
8 245 18 265 38 285 58 305 78 325 98
9 246 19 266 39 286 59 306 79 326 99
10 247 20 267 40 287 60 307 80 327 100
To generalize, we know that the columns of a dataframe can be referenced with a vector of numbers/column names. Most operations in R are vectorized. You can use column names or numbers based on the pattern you are looking for.
For example, I change the name of my first two columns and want to access just those I do this,
colnames(dataF)[c(1,2)] <- c("Y1","Y2")
#Reference all column names with "Y" in it. You can do any operation you want on this.
dataF[,grep("Y",colnames(dataF))]
Y1 Y2
1 238 11
2 239 12
3 240 13
4 241 14
5 242 15
6 243 16
7 244 17
8 245 18
9 246 19
10 247 20