This question already has an answer here:
Closed 10 years ago.
Possible Duplicate:
Create random number within an annulus
I would like to obtain a uniformly obtained random point within an annulus, that is, the area that lies inside a circle of radius R1, but outside a circle of radius R2, where R1 > R2 and both circles are centered at the same point. I would like to avoid using rejection sampling.
If possible, I would like the solution to be similar to this one —used for calculating random points within a circle— which I find it extremely elegant and intuitive. That is, I would also like to avoid using the square root.
Its very easy. Use polar coordinates, i.e. you generate one random value for the angular value theta, and one for the distance from the origin. As your circles are both at the same origin this gets very easy.
BUT ATTENTION: you can generate the theta value by a uniform random function, that is fine, but for the distance you cant do that, as then the points will cluster around the origin.
You have to take into consideration that the perimeter of a circle grows in ^2 (you have to use the inverse which is the square root).
Using a uniform distributed random function rnd (0..1) it would be like this:
theta = 360 * rnd();
dist = sqrt(rnd()*(R1^2-R2^2)+R2^2);
EDIT: For conversion into cartesion coordinates, you just compute:
x = dist * cos(theta);
y = dist * sin(theta);
EDIT: Please note that this solution might not be uniform. See comments by Mark Dickinson below.
Ok, I think I figured it out. Note that this solution is heavily inspired in this answer, and that r1 = R1/R1 and r2 = R2/R1.
Pseudo-code:
t = 2*pi*random()
u = random()+random()
r = if u>1 then 2-u else u
r = if r<r2 then r2+r*((R1-R2)/R2) else r
[r*cos(t), r*sin(t)]
Here it is in Mathematica.
f[] := Block[{u, t, r}, u = Random[] + Random[];
r1 = 1; r2 = 0.3;
t = Random[] 2 Pi;
r = If[u > 1, 2 - u, u];
r = If[r < r2, r2 + r*((R1 - R2)/R2), r];
{r Cos[t], r Sin[t]}]
ListPlot[Table[f[], {10000}], AspectRatio -> Automatic]
What it does is to remap all the numbers falling inside the inner circle into the annulus, spreading them evenly. If somebody finds a problem regarding the uniformity of this solution please comment.
Compare with this other solution found here:
The easiest way to do this is to use rejection sampling. Generate a large number of points uniformly in a square of side length 2*R2, then filter those samples to those inside the outer circle and not in the inner circle.
Not pretty or efficient, but in most cases, sufficient.
Related
This is a little tricky to explain, so bare with me. I'm attempting to design a 2D projection matrix that takes 2D pixel coordinates along with a custom world-space depth value, and converts to clip-space.
The idea is that it would allow drawing elements based on screen coordinates, but at specific depths, so that these elements would interact on the depth buffer with normal 3D elements. However, I want x and y coordinates to remain the same scale at every depth. I only want depth to influence the depth buffer, and not coordinates or scale.
After the vertex shader, the GPU sets depth_buffer=z/w. However, it also scales x/w and y/w, which creates the depth scaling I want to avoid. This means I must make sure my final clip-space w coordinate ends up being 1.0, to avoid those things. I think I could also adopt to scale x and y by w, to cancel out the divide, but I would rather do the former, if possible.
This is the process that my 3D projection matrix uses to convert depth into clip space (d = depth, n = near distance, f = far distance)
z = f/(f-n) * d + f/(f-n) * -n;
w = d;
This is how I would like to setup my 2D projection matrix. Compared to the 3D version, it would divide both attributes by the input depth. This would simulate having z/w encoded into just the z value.
z = ( f/(f-n) * d + f/(f-n) * -n ) / d;
w = d / d;
I think this turns into something like..
r = f/(f-n); // for less crazy math
z = r + ( r * -n ) / d;
w = 1.0;
However, I can't seem to wrap my math around the values that I would need to plug into my matrix to get this result. It looks like I would need to set my matrix up to perform a division by depth. Is that even possible? Can anyone help me figure out the values I need to plug into my matrix at m[2][2] and m[3][2] (m._33 and m._43) to make something like this happen?
Note my 3D projection matrix uses the following properties to generate the final z value:
m._33 = f / (f-n); // depth scale
m._43 = -(f / (f-n)) * n; // depth offset
Edit: After thinking about this a little more, I realized that the rate of change of the depth buffer is not linear, and I'm pretty sure a matrix can only perform linear change when its input is linear. If that is the case, then what I'm trying to do wouldn't be possible. However, I'm still open to any ideas that are in the same ball park, if anyone has one. I know that I can get what I want by simply doing pos.z /= pos.w; pos.w = 1; in the vertex shader, but I was really hoping to make it all happen in the projection matrix, if possible.
In case anyone is attempting to do this, it cannot be done. Without black magic, there is apparently no way to divide values with a matrix, unless of course the diviser is a constant or etc, where you can swap out a scaler with 1/x. I resorted to performing the operation in the shader in the end.
I'd like to implement image morphing, for which I need to be able to deform the image with given set of points and their destination positions (where they will be "dragged"). I am looking for a simple and easy solution that gets the job done, it doesn't have to look great or be extremely fast.
This is an example what I need:
Let's say I have an image and a set of only one deforming point [0.5,0.5] which will have its destination at [0.6,0.5] (or we can say its movement vector is [0.1,0.0]). This means I want to move the very center pixel of the image by 0.1 to the right. Neighboring pixels in some given radius r need to of course be "dragged along" a little with this pixel.
My idea was to do it like this:
I'll make a function mapping the source image positions to destination positions depending on the deformation point set provided.
I will then have to find the inverse function of this function, because I have to perform the transformation by going through destination pixels and seeing "where the point had to come from to come to this position".
My function from step 1 looked like this:
p2 = p1 + ( 1 / ( (distance(p1,p0) / r)^2 + 1 ) ) * s
where
p0 ([x,y] vector) is the deformation point position.
p1 ([x,y] vector) is any given point in the source image.
p2 ([x,y] vector) is the position, to where p1 will be moved.
s ([x,y] vector) is movement vector of deformation point and says in which direction and how far p0 will be dragged.
r (scalar) is the radius, just some number.
I have problem with step number 2. The calculation of the inverse function seems a little too complex to me and so I wonder:
If there is an easy solution for finding the inverse function, or
if there is a better function for which finding the inverse function is simple, or
if there is an entirely different way of doing all this that is simple?
Here's the solution in Python - I did what Yves Daoust recommended and simply tried to use the forward function as the inverse function (switching the source and destination). I also altered the function slightly, changing exponents and other values produces different results. Here's the code:
from PIL import Image
import math
def vector_length(vector):
return math.sqrt(vector[0] ** 2 + vector[1] ** 2)
def points_distance(point1, point2):
return vector_length((point1[0] - point2[0],point1[1] - point2[1]))
def clamp(value, minimum, maximum):
return max(min(value,maximum),minimum)
## Warps an image accoording to given points and shift vectors.
#
# #param image input image
# #param points list of (x, y, dx, dy) tuples
# #return warped image
def warp(image, points):
result = img = Image.new("RGB",image.size,"black")
image_pixels = image.load()
result_pixels = result.load()
for y in range(image.size[1]):
for x in range(image.size[0]):
offset = [0,0]
for point in points:
point_position = (point[0] + point[2],point[1] + point[3])
shift_vector = (point[2],point[3])
helper = 1.0 / (3 * (points_distance((x,y),point_position) / vector_length(shift_vector)) ** 4 + 1)
offset[0] -= helper * shift_vector[0]
offset[1] -= helper * shift_vector[1]
coords = (clamp(x + int(offset[0]),0,image.size[0] - 1),clamp(y + int(offset[1]),0,image.size[1] - 1))
result_pixels[x,y] = image_pixels[coords[0],coords[1]]
return result
image = Image.open("test.png")
image = warp(image,[(210,296,100,0), (101,97,-30,-10), (77,473,50,-100)])
image.save("output.png","PNG")
You don't need to construct the direct function and invert it. Directly compute the inverse function, by swapping the roles of the source and destination points.
You need some form of bivariate interpolation, have a look at radial basis function interpolation. It requires to solve a linear system of equations.
Inverse distance weighting (similar to your proposal) is the easiest to implement but I am afraid it will give disappointing results.
https://en.wikipedia.org/wiki/Multivariate_interpolation#Irregular_grid_.28scattered_data.29
If I have X amount of things (lets just randomly say 300)
Is there an algorithm that will arrange these things somewhat evenly around a central point? Like a 100 sided dice or a 3d mesh of a sphere?
Id rather have the things somewhat evenly spaced like this..
Rather than this polar way..
ps. For those interested, wondering why do I want to do this?
Well I'm doing these for fun, and after completing #7 I decided I'd like to represent the array of wires in 3d in Unity and watch them operate in a slowed down manner.
Here is a simple transformation that maps a uniform sample in the rectangle [0, 2 pi] x [-1, 1] onto a uniform sample on the sphere of radius r:
T(phi, z) = (r cos(phi) sqrt(1 - z^2), r sin(phi) sqrt(1 - zˆ2), r z)
The reason why this transformation produces uniform samples on the sphere is that the area of any region T(U) obtained by transforming the region U from the rectangle does not depend on U but on the area of U.
To prove this mathematically it is enough to verify that the norm of the vectorial product
| ∂T/∂phi x ∂T/∂z |
is constant (the area on the sphere is the integral of this vectorial product w.r.t. phi and z).
Summarizing
To produce a random sample uniformly distributed in the Sphere of radius r do the following:
Produce a random sample (phi_1, ..., phi_n) uniformly distributed in [0, 2 pi].
Produce a random sample (z_1, ..., z_n) uniformly distributed in [-1, 1].
For every pair (phi_j, z_k) calculate T(phi_j, z_k) using the formula above.
Here's a three-step approach. 1a) Make more points than you need. 1b) Remove some. 2) Adjust the rest.
1a) To make more points that you need, take any quasiregular polyhedron with sides that tessellate (triangles, squares, diamonds). Tesselate the spherical faces by subdivision, generating more vertices. For example, if you use the regular icosahedron you get geodesic domes. (Subdivide by 2, you get the dual to the C60 buckyball.) Working out exact formulas isn't hard. The number of new vertices per face is quadratic in the subdivision.
1b) Randomly remove enough points to get you down to your target number.
2) Use a force-directed layout algorithm to redistribute the vertices over the sphere. The underlying force graph is just that provided by the nearest neighbors in your underlying tesselation.
There are other ways to do step 1), such as just generating random points in any distribution. There is an advantage of starting with a quasiregular figure, though. Force-directed algorithms have a reputation for poor convergence in some cases. By starting with something that's already mostly optimal, you'll bypass most all of any convergence problems you might have.
One elegant solution I came across recently is a spherical fibonacci lattice (http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/)
The nice thing about it is that you can specify the exact number of points you want
// C# Code example
Vector3[] SphericalFibonacciLattice(int n) {
Vector3[] res = new Vector3[n];
float goldenRatio = (1.0f + MathF.Sqrt(5.0f)) * 0.5f;
for(int i = 0; i < n; i++)
{
float theta = 2.0f * MathF.PI * i / goldenRatio;
float phi = MathF.Acos(1.0f - 2.0f * (i + 0.5f) / n);
Vector3 p = new Vector3(MathF.Cos(theta) * MathF.Sin(phi),
MathF.Sin(theta) * MathF.Sin(phi),
MathF.Cos(phi));
res[i] = p;
}
return res;
}
The linked article extends on this to create an even more uniform distribution, but even this basic version creates very nice results.
I have some point on a 2D grid (x, y) and I need to find all points that are n distance away from that point. The way I'm measuring distance is by using the distance formula between the two points. Anyone know how to do this?
Edit: Just for reference, what I'm trying to do is to write some AI path finding that will maintain some distance away from a target in a system that uses grid based locations. Currently I'm using A* path finding, but I'm not sure if that matters or makes a difference since I'm kind of new to this stuff.
Here's what I would do:
First filter out all points that are further than D on either x or y. These are certainly outside the circle of radius D. This is a much simpler computation, and it can quickly eliminate a lot of work. This is a outer bounding-box optimization.
You can also use an inner bounding-box optimization. If the points are closer than D * sqrt(2)/2 on either x or y, then they're certainly within the circle of radius D. This is also cheaper than calculating the distance formula.
Then you have a smaller number of candidate points that may be within the circle of radius D. For these, use the distance formula. Remember that if D = sqrt(Δx2+Δy2), then D2 = Δx2+Δy2.
So you can skip the cost of calculating square root.
So in pseudocode, you could do the following:
for each point
begin
if test 1 indicates the point is outside the outer bounding box,
then skip this point
if test 2 indicates the point is inside the inner bounding box,
then keep this point
if test 3 indicates the point is inside the radius of the circle,
then keep this point
end
This problem is known as range query. The brute force solution is just as you described: computed the distance of all points from the reference point and return those whose distance is less than the desired range value.
The brute force algorithm is O(N^2). There are, however, more efficient algorithms that employ spatial indexes to reduce algorithm complexity and the number of distance calculations. For example, you can use a R-Tree to index your points.
Its called nearest neighbor search. More at http://en.wikipedia.org/wiki/Nearest_neighbor_search
There are open libraries for that. I have used one written for C and recommend it: http://www.cs.umd.edu/~mount/ANN/. ANN stands for Approximate Nearest Neighbor, however, you can turn the approximation off and find the exact nearest neighbors.
This wouldn't use the distance formula, but if you're looking for points exactly n distance away, perhaps you could use sin/cos?
In pseudocode:
for degrees in range(360):
x = cos(degrees) * n
y = sin(degrees) * n
print x, y
That would print every point n away in 360 degree increments.
Java implementation:
public static Set<Point> findNearbyPoints(Set<Point> pts, Point centerPt, double radius) {
Set<Point> nearbyPtsSet = new HashSet<Point>();
double innerBound = radius * (Math.sqrt(2.0) / 2.0);
double radiusSq = radius * radius;
for (Point pt : pts) {
double xDist = Math.abs(centerPt.x - pt.x);
double yDist = Math.abs(centerPt.y - pt.y);
if (xDist > radius || yDist > radius)
continue;
if (xDist > innerBound || yDist > innerBound)
continue;
if (distSq(centerPt, pt) < radiusSq)
nearbyPtsSet.add(pt);
}
return nearbyPtsSet;
}
Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 13 years ago.
Improve this question
I'd like to create a function that calculates the distance between two pairs of lat/longs using the pythag theorem instead of the haversine great-circle formula. Since this will be over relative short distances (3km), I think this version that assumes a flat earth should be OK. How can I do this? I asked the internet and didn't come up with anything useful. :)
Thanks.
EDIT:
Here's what I came up with (seems to be working):
def get_dist(lat0, lng0, lat1, lng1)
begin
d_ew = (lng1.to_f - lng0.to_f) * Math.cos(lat0.to_f)
d_ns = (lat1.to_f - lat0.to_f)
d_lu = Math.sqrt(d_ew.to_f * d_ew.to_f + d_ns.to_f * d_ns.to_f)
d_mi = ((2*Math::PI*3961.3)/360)*d_lu
return d_mi
rescue Exception => ex
logger.debug "[get_dist] An exception occurred: #{ex.message}"
return -1
end
end
You can use a simple pythagoras triangle if you expect the distances involved to be small compared with the size of the Earth.
Suppose you are at (lat0, long0) and you want to know the distance to a point (lat1, long1) in "latitude units".
Horizontal (EW) distance is roughly
d_ew = (long1 - long0) * cos(lat0)
This is multiplied by cos(lat0) to account for longitude lines getting closer together at high latitude.
Vertical (NS) distance is easier
d_ns = (lat1 - lat0)
So the distance between the two points is
d = sqrt(d_ew * d_ew + d_ns * d_ns)
You can refine this method for more exacting tasks, but this should be good enough for comparing distances.
In fact, for comparing distances, it will be fine to compare d squared, which means you can omit the sqrt operation.
Well, since your points are near each other, the surface of the sphere is almost flat, so just find the coordinates of the points in 3D space, so find (x,y,z) for each of the points, where
x = r*sin(lat)*cos(long)
y = r*sin(lat)*sin(long)
z = r*cos(lat)
where r is the radius of the sphere.
or something like that depending on how you define lat/long. Once you have the two xyz coords, just use sqrt((x1-x2)^2+(y1-y2)^2+(z1-z2)^2). You really can't just use a 2D Pythagorean theoreom since you would need to get reasonable 2D coordinates, which is hard.
You will commonly see this notation 'dy, dx' which stands for difference y and difference x. You simply work out the differences on both axises, the get the square root of both differences squared as per the theorum.(the sum of the hype is equal to the square of the other two sides).
var dx:Number = x1-x2;
var dy:Number = y1-y2;
var distance:Number = Math.sqrt(dx*dx + dy*dy);
Hope this is clear enough