R - min, max and mean of off-diagonal elements in a matrix - r

I have like a matrix in R and I want to get:
Max off - diagonal elements
Min off – diagonal elements
Mean off –diagonal elements
With diagonal I used max(diag(A)) , min(diag(A)) , mean(diag(A)) and worked just fine
But for off-diagonal I tried
dataD <- subset(A, V1!=V2)
Error in subset.matrix(A, V1 != V2) : object 'V1' not found
to use:
colMeans(dataD) # get the mean for columns
but I cannot get dataD b/c it says object 'V1' not found
Thanks!

Here the row() and col() helper functions are useful. Using #James A, we can get the upper off-diagonal using this little trick:
> A[row(A) == (col(A) - 1)]
[1] 5 10 15
and the lower off diagonal via this:
> A[row(A) == (col(A) + 1)]
[1] 2 7 12
These can be generalised to give whatever diagonals you want:
> A[row(A) == (col(A) - 2)]
[1] 9 14
and don't require any subsetting.
Then it is a simple matter of calling whatever function you want on these values. E.g.:
> mean(A[row(A) == (col(A) - 1)])
[1] 10
If as per my comment you mean everything but the diagonal, then use
> diag(A) <- NA
> mean(A, na.rm = TRUE)
[1] 8.5
> max(A, na.rm = TRUE)
[1] 15
> # etc. using sum(A, na.rm = TRUE), min(A, na.rm = TRUE), etc..
So this doesn't get lost, Ben Bolker suggests (in the comments) that the above code block can be done more neatly using the row() and col() functions I mentioned above:
mean(A[row(A)!=col(A)])
min(A[row(A)!=col(A)])
max(A[row(A)!=col(A)])
sum(A[row(A)!=col(A)])
which is a nicer solution all round.

In one simple line of code:
For a matrix A if you wish to find the Minimum, 1st Quartile, Median, Mean, 3rd Quartile and Maximum of the upper and lower off diagonals:
summary(c(A[upper.tri(A)],A[lower.tri(A)])).

The diag of a suitably subsetted matrix will give you the off-diagonals. For example:
A <- matrix(1:16,4)
#upper off-diagonal
diag(A[-4,-1])
[1] 5 10 15
#lower off-diagonal
diag(A[-1,-4])
[1] 2 7 12

To get a vector holding the max of the off-diagonal elements of each col or row of a matrix requires a few more steps. I was directed here when searching for help on that. Perhaps others will do the same, so I offer this solution, which I found using what I learned here.
The trick is to create a matrix of only the off-diagonal elements. Consider:
> A <- matrix(c(10,2,3, 4,10,6, 7,8,10), ncol=3)
> A
[,1] [,2] [,3]
[1,] 10 4 7
[2,] 2 10 8
[3,] 3 6 10
> apply(A, 2, max)
[1] 10 10 10
Subsetting using the suggested indexing, A[row(A)!=col(A)] produces a vector of off-diagonal elements, in column-order:
> v <- A[row(A)!=col(A)]
> v
[1] 2 3 4 6 7 8
Returning this to a matrix allows the use of apply() to apply a function of choice to a margin of only off-diagonal elements. Using the max function as an example:
> A.off <- matrix(v, ncol=3)
> A.off
[,1] [,2] [,3]
[1,] 2 4 7
[2,] 3 6 8
> v <- apply(A.off, 2, max)
> v
[1] 3 6 8
The whole operation can be compactly—and rather cryptically—coded in one line:
> v <- apply(matrix(A[row(A)!=col(A)], ncol=ncol(A)), 2, max)
> v
[1] 3 6 8

Just multiply matrix A by 1-diag (nofelements)
for example if A is a 4x4 matrix, then
mean(A*(1-diag(4)) or A*(1-diag(nrow(A)))
This is faster when you need to run the same line of code multiple times

In addition to James' answer, I want to add that you can use the diag function to directly exclude all diagonal elements of a matrix by use of A[-diag(A)]. For example, consider:
summary(A[-diag(A)])

Related

Can someone explain to me the problem with my sum in R

for a given matrix F I want to calculate the sum of the 2-norm of its rows, so I use the function sum() but it doesn't work as I expect it to do here an example
# The matrix F
> F <- matrix(c(9,1,1,1,4,1),nrow=3)
# index of the sum i
> i=1:NROW(F)
#And here is the result
> sum(norm(F[i,], type = "2")^4)
[1] 7376.60160040254
# and if i calculate each element of the sum i get
> norm(F[1,], type = "2")^4
[1] 6724
> norm(F[2,], type = "2")^4
[1] 289
> norm(F[3,], type = "2")^4
[1] 4
I think you're looking for the apply function. It applies a function along the dimensions of a matrix.
sum(apply(F,MARGIN = 1,function(x){norm(x,type = "2")^4}))
#[1] 7017
The reason yours doesn't work is because you assigned c(1,2,3) to i. Then, when you subset F, you just get the whole matrix.
i=1:NROW(F)
i
#[1] 1 2 3
norm(F,type="2")^4
#[1] 7376.602
norm(F[1:3,],type="2")^4
#[1] 7376.602
norm(F[i,],type="2")^4
#[1] 7376.602
Disclaimer: I have not assessed the mathematical validity of this approach, only programmatically recreated the OP's desired behavior.

Sum and product over interval in R

I am trying to implement the following simple formulas in R:
Formula 1:
I have no idea how to implement in R the product operator when the limits of the interval are very large (e.g. value of the upper limit = 10,000 instead of 5)
Formula 2
Example input for second formula (in reality, the dimension of the interval S is much much bigger)
S = list(c(1,0,0), c(0,1,0), c(0,0,1))
X = c(1,2,3)
Any help would be appreciated!
For the first, take the log:
i *log(1+x)
For the second formula: (not clear what is the expected output)
ss<-matrix(unlist(S), ncol = 3, byrow = TRUE)
X<-as.matrix(X)
crossprod(crossprod(X,ss),t(X))
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
Maybe more compactly:
First formula:
function(n, x) exp(sum(seq_len(n)*log(1+x)))
Second formula:
function(X, S) rowSums(sapply(S, function(y) sum(X*y)*X ))
For the first formula it has been mentioned that it is better to do this on the log scale, if your true values of x are near 0 then the log1p function may be of help.
In general for these types of problems you can use lapply or sapply to compute the pieces that need to be multiplied or summed (or whatever), then use sum or prod to sum, multiply. If you want to collapse/combine the values with an operator that does not have a nice function like sum or prod then use the Reduce function.
S = list c((1,0,0), c(0,1,0), c(0,0,1))
X = c(1,2,3)
lapply( lapply(S, function(x) X %*% x %*% t(X) ) , sum)
[[1]]
[1] 6
[[2]]
[1] 12
[[3]]
[1] 18

multiply two vectors - I want a scalar but I get a vector?

This is my code:
a <-c(1,2,3)
b <-t(a)
print(a*b)
I would expect the result to be 14, since a column vector multiplied with a row vector with fitting dimensions should be a skalar.
However, I get:
print (a*t(a))
[,1] [,2] [,3]
[1,] 1 4 9
Hence the partial sums instead of the whole sum. How can I fix this?
Two problems, multiplication in the wrong order, and the wrong multiply function.
> print(t(a)%*%a)
[,1]
[1,] 14
Equivalently:
> a=matrix(c(1,2,3),ncol=3)
> print (a %*% t(a))
[,1]
[1,] 14
Here a is a matrix of 1 row, three columns.
See ?"%*%" and ?"*"
If what you essentially want is the sum of the products, then all you need is sum(a*a)
You can simply do this,
> a <-c(1,2,3)
> b <-t(a)
> b %*% a
Here, %*% acts as a matrix product.
simply do this
a <-c(1,2,3)
> b<-t(a)
> b
> t(b)
then
sum(a*t(b))
[1] 14

Replacing every row in a matrix

I've got a matrix (mat1), say 100 rows and 100 columns; I want to create another matrix where every row is the same as the 1st row in mat1 (except that I want to keep the 1st col as the original values)
I've managed to do this using a loop:
mat2 <- mat1
for(i in 1:nrow(mat1))
{
mat2[i,2:ncol(mat2)] <- mat1[1,2:ncol(mat1)]
}
this works and produces the result I expect; however, I'd have thought there should be a way to do it without a loop; I've tried:
mat2 <- mat1
mat2[c(2:100),2:ncol(mat2)] <- mat1[1,2:ncol(mat1)]
Can someone point out my error?!
Thanks,
Chris
The problem is the way R fills matrices, by columns. Here is a simple example that illustrates this:
mat1 <- matrix(1:9, ncol = 3)
mat2 <- matrix(1:9, ncol = 3)
mat2[-1, -1] <- mat1[1, -1]
mat2
> mat2
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 4 4
[3,] 3 7 7
mat1[1, -1] is the vector 4,7, which you can see that R has used to fill the bit of mat2 column-wise. You wanted a row-wise operation.
One solution is to replicate the replacement vector as many times as is required:
> mat2[-1, -1] <- rep(mat1[1, -1], each = nrow(mat1)-1)
> mat2
[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 4 7
[3,] 3 4 7
This works because the rep() call replicates each value in the vector when we use the "each" argument, instead of replicating (repeating) the vector:
> rep(mat1[1, -1], each = nrow(mat1)-1)
[1] 4 4 7 7
The default behaviour would also give the wrong answer:
> rep(mat1[1, -1], nrow(mat1)-1)
[1] 4 7 4 7
In part, the problem you are seeing is also the way R extends arguments to the appropriate length for the replacement. R actually, and silently, extended the replacement vector exactly in the way rep(mat1[1, -1], nrow(mat1)-1) does, which when coupled with the fill-by-column principle gave the behaviour you saw.
Try
mat2[c(2:nrow(mat2)), 2:ncol(mat2)] <- mat1[rep.int(1,nrow(mat1)-1),2:ncol(mat1)]
Another option...
n = 5
mat1 = matrix(sample(n^2, n^2), n, n)
# use matrix with byrow to copy 1st row n times
mat2 = matrix(rep(mat1[1, ], n), n, n, byrow = TRUE)
# copy 1st column
mat2[ , 1] = mat1[ , 1]
mat1
mat2

R: how to store a vector of vectors

I'm trying to write a function to determine the euclidean distance between x (one point) and y (a set of n points).
How should I pass y to the function? Until now, I used a matrix like that:
[,1] [,2] [,3]
[1,] 0 2 1
[2,] 1 1 1
Which would pass the points (0,2,1) and (1,1,1) to that function.
However, when I pass x as a normal (column) vector, the two variables don't match in the function.
I either have to transpose x or y, or save a vector of vectors an other way.
My question: What is the standard way to save more than one vector in R? (my matrix y)
Is it just my y transposed or maybe a list or dataframe?
There is no standard way, so you should just pick the most effective one, what on the other hand depends on how this vector of vectors looks just after creation (it is better to avoid any conversion which is not necessary) and on the speed of the function itself.
I believe that a data.frame with columns x, y and z should be pretty good choice; the distance function will be quite simple and fast then:
d<-function(x,y) sqrt((y$x-x[1])^2+(y$y-x[2])^2+(y$z-x[3])^2)
The apply function with the margin argument = 1 seems the most obvious:
> x
[,1] [,2] [,3]
[1,] 0 2 1
[2,] 1 1 1
> apply(x , 1, function(z) crossprod(z, 1:length(z) ) )
[1] 7 6
> 2*2+1*3
[1] 7
> 1*1+2*1+3*1
[1] 6
So if you wanted distances then square-root of the crossproduct of the differences to a chose point seems to work:
> apply(x , 1, function(z) sqrt(sum(crossprod(z -c(0,2,2), z-c(0,2,2) ) ) ) )
[1] 1.000000 1.732051

Resources