Statistical inefficiency (block-averages) - r

I have a series of data, these are obtained through a molecular dynamics simulation, and therefore are sequential in time and correlated to some extent. I can calculate the mean as the average of the data, I want to estimate the the error associated to mean calculated in this way.
According to this book I need to calculate the "statistical inefficiency", or roughly the correlation time for the data in the series. For this I have to divide the series in blocks of varying length and, for each block length (t_b), the variance of the block averages (v_b). Then, if the variance of the whole series is v_a (that is, v_b when t_b=1), I have to obtain the limit, as t_b tends to infinity, of (t_b*v_b/v_a), and that is the inefficiency s.
Then the error in the mean is sqrt(v_a*s/N), where N is the total number of points. So, this means that only one every s points is uncorrelated.
I assume this can be done with R, and maybe there's some package that does it already, but I'm new to R. Can anyone tell me how to do it? I have already found out how to read the data series and calculate the mean and variance.
A data sample, as requested:
# t(ps) dH/dl(kJ/mol)
0.0000 582.228
0.0100 564.735
0.0200 569.055
0.0300 549.917
0.0400 546.697
0.0500 548.909
0.0600 567.297
0.0700 638.917
0.0800 707.283
0.0900 703.356
0.1000 685.474
0.1100 678.07
0.1200 687.718
0.1300 656.729
0.1400 628.763
0.1500 660.771
0.1600 663.446
0.1700 637.967
0.1800 615.503
0.1900 605.887
0.2000 618.627
0.2100 587.309
0.2200 458.355
0.2300 459.002
0.2400 577.784
0.2500 545.657
0.2600 478.857
0.2700 533.303
0.2800 576.064
0.2900 558.402
0.3000 548.072
... and this goes on until 500 ps. Of course, the data I need to analyze is the second column.

Suppose x is holding the sequence of data (e.g., data from your second column).
v = var(x)
m = mean(x)
n = length(x)
si = c()
for (t in seq(2, 1000)) {
nblocks = floor(n/t)
xg = split(x[1:(nblocks*t)], factor(rep(1:nblocks, rep(t, nblocks))))
v2 = sum((sapply(xg, mean) - m)**2)/nblocks
#v rather than v1
si = c(si, t*v2/v)
}
plot(si)
Below image is what I got from some of my time series data. You have your lower limit of t_b when the curve of si becomes approximately flat (slope = 0). See http://dx.doi.org/10.1063/1.1638996 as well.

There are a couple different ways to calculate the statistical inefficiency, or integrated autocorrelation time. The easiest, in R, is with the CODA package. They have a function, effectiveSize, which gives you the effective sample size, which is the total number of samples divided by the statistical inefficiency. The asymptotic estimator for the standard deviation in the mean is sd(x)/sqrt(effectiveSize(x)).
require('coda')
n_eff = effectiveSize(x)

Well it's never too late to contribute to a question, isn't it?
As I'm doing some molecular simulation myself, I did step uppon this problem but did not see this thread already. I found out that the method actually proposed by Allen & Tildesley seems a bit out dated compared to modern error analysis methods. The rest of the book is good enought to worth the look though.
While Sunhwan Jo's answer is correct concerning block averages method,concerning error analysis you can find other methods like the jacknife and bootstrap methods (closely related to one another) here: http://www.helsinki.fi/~rummukai/lectures/montecarlo_oulu/lectures/mc_notes5.pdf
In short, with the bootstrap method, you can make series of random artificial samples from your data and calculate the value you want on your new sample. I wrote a short piece of Python code to work some data out (don't forget to import numpy or the functions I used):
def Bootstrap(data):
B = 100 # arbitraty number of artificial samplings
es = 0.
means = numpy.zeros(B)
sizeB = data.shape[0]/4 # (assuming you pass a numpy array)
# arbitrary bin-size proportional to the one of your
# sampling.
for n in range(B):
for i in range(sizeB):
# if data is multi-column array you may have to add the one you use
# specifically in randint, else it will give you a one dimension array.
# Check the doc.
means[n] = means[n] + data[numpy.random.randint(0,high=data.shape[0])] # Assuming your desired value is the mean of the values
# Any calculation is ok.
means[n] = means[n]/sizeB
es = numpy.std(means,ddof = 1)
return es
I know it can be upgraded but it's a first shot. With your data, I get the following:
Mean = 594.84368
Std = 66.48475
Statistical error = 9.99105
I hope this helps anyone stumbling across this problem in statistical analysis of data. If I'm wrong or anything else (first post and I'm no mathematician), any correction is welcomed.

Related

Calculating 95% confidence intervals for a weighted median over grouped data in dplyr

I have a dataset with several groups, where I want to calculate a median value for each group using dplyr. The data are weighted, and the weights need to be taken into account in calculating the median. I found the weighted.median function from spatstat which seems to work fine. Consider the following simplified example:
require(spatstat, dplyr)
tst <- data.frame(group = rep(c(1:5), each = 100))
tst$val = runif(500) * tst$group
tst$wt = runif(500) * tst$val
tst %>%
group_by(group) %>%
summarise(weighted.median(val, wt))
# A tibble: 5 × 2
group `weighted.median(val, wt)`
<int> <dbl>
1 1 0.752
2 2 1.36
3 3 1.99
4 4 2.86
5 5 3.45
However, I would also like to add 95% confidence intervals to these values, and this has me stumped. Things I've considered:
Spatstat also has a weighted.var function but there's no documentation, and it's not even clear to me whether this is variance around the median or mean.
This rcompanion post suggests various methods for calculating CIs around medians, but as far as I can tell none of them handle weights.
This blog post suggests a function for calculating CIs and a median for weighted data, and is the closest I can find to what I need. However, it doesn't work with my dplyr groupings. I suppose I could write a loop to do this one group at a time and build the output data frame, but that seems cumbersome. I'm also not totally sure I understand the function in the post and slightly suspicious of its results- for instance, testing this out I get wider estimates for alpha=0.1 than for alpha=0.05, which seems backwards to me. Edit to add: upon further investigation, I think this function works as intended if I use alpha=0.95 for 95% CIs, rather than alpha = 0.05 (at least, this returns values that feel intuitively about right). I can also make it work with dplyr by editing to return just a single moe value rather than a pair of high/low estimates. So this may be a good option- but I'm also considering others.
Is there an existing function in some library somewhere that can do what I want, or an otherwise straightforward way to implement this?
There are several approaches.
You could use the asymptotic formula for standard error of the sample median. The sample median is asymptotically normal with standard error 1/sqrt(4 n f(m)) where n is the number of observations, m is the true median, and f(x) is the probability density of the (weighted) random variable. You could estimate the probability density using the base R function density.default with the weights argument. If x is the vector of observed values and w the corresponding vector of weights, then
med <- weighted.median(x, w)
f <- density(x, weights=w)
fmed <- approx(f$x, f$y, xout=med)$y
samplesize <- length(x)
se <- 1/sqrt(4 * samplesize * fmed)
ci <- med + c(-1,1) * 1.96 * se
This relies on several asymptotic approximations so it may be inaccurate. Also the sample size depends on the interpretation of the weights. In some cases the sample size could be equal to sum(w).
If there is very little data in each group, you could use the even simpler normal reference approximation,
med <- weighted.median(x, w)
v <- weighted.var(x, w)
sdm <- sqrt(pi/2) * sqrt(v)
samplesize <- length(x)
se <- sdm/sqrt(samplesize)
ci <- med + c(-1,1) * 1.96 * se
Alternatively you could use bootstrapping - generate random resamples of the input data (by choosing random resamples of the indices 1, 2, ..., n), extract the corresponding weighted observations (x_i, w_i), compute the weighted median of each resampled dataset, and construct the 95% confidence interval.
(This approach implicitly assumes the sample size is equal to n)

R: Find cutoffpoint for continous variable to assign observations to two groups

I have the following data
Species <- c(rep('A', 47), rep('B', 23))
Value<- c(3.8711, 3.6961, 3.9984, 3.8641, 4.0863, 4.0531, 3.9164, 3.8420, 3.7023, 3.9764, 4.0504, 4.2305,
4.1365, 4.1230, 3.9840, 3.9297, 3.9945, 4.0057, 4.2313, 3.7135, 4.3070, 3.6123, 4.0383, 3.9151,
4.0561, 4.0430, 3.9178, 4.0980, 3.8557, 4.0766, 4.3301, 3.9102, 4.2516, 4.3453, 4.3008, 4.0020,
3.9336, 3.5693, 4.0475, 3.8697, 4.1418, 4.0914, 4.2086, 4.1344, 4.2734, 3.6387, 2.4088, 3.8016,
3.7439, 3.8328, 4.0293, 3.9398, 3.9104, 3.9008, 3.7805, 3.8668, 3.9254, 3.7980, 3.7766, 3.7275,
3.8680, 3.6597, 3.7348, 3.7357, 3.9617, 3.8238, 3.8211, 3.4176, 3.7910, 4.0617)
D<-data.frame(Species,Value)
I have the two species A and B and want to find out which is the best cutoffpoint for value to determine the species.
I found the following question:
R: Determine the threshold that maximally separates two groups based on a continuous variable?
and followed the accepted answer to find the best value with the dose.p function from the MASS package. I have several similar values and it worked for them, but not for the one given above (which is also the reason why i needed to include all 70 observations here).
D$Species_b<-ifelse(D$Species=="A",0,1)
my.glm<-glm(Species_b~Value, data = D, family = binomial)
dose.p(my.glm,p=0.5)
gives me 3.633957 as threshold:
Dose SE
p = 0.5: 3.633957 0.1755291
this results in 45 correct assignments. however, if I look at the data, it is obvious that this is not the best value. By trial and error I found that 3.8 gives me 50 correct assignments, which is obviously better.
Why does the function work for other values, but not for this one? Am I missing an obvious mistake? Or is there maybe a different/ better approach to solving my problem? I have several values I need to do this for, so I really do not want to just randomly test values until I find the best one.
Any help would be greatly appreciated.
I would typically use a receiver operating characteristic curve (ROC) for this type of analysis. This allows a visual and numerical assessment of how the sensitivity and specificity of your cutoff changes as you adjust your threshold. This allows you to select the optimum threshold based on when the overall accuracy is optimum. For example, using pROC:
library(pROC)
species_roc <- roc(D$Species, D$Value)
We can get a measure of how good a discriminator Value is for predicting Species by examining the area under the curve:
auc(species_roc)
#> Area under the curve: 0.778
plot(species_roc)
and we can find out the optimum cut-off threshold like this:
coords(species_roc, x = "best")
#> threshold specificity sensitivity
#> 1 3.96905 0.6170213 0.9130435
We see that this threshold correctly identifies 50 cases:
table(Actual = D$Species, Predicted = c("A", "B")[1 + (D$Value < 3.96905)])
#> Predicted
#> Actual A B
#> A 29 18
#> B 2 21

Extracting coefficients from mcmc object

Extracting stuff from objects has always been one of the most confusing aspects of R to me. I've fitted a bayesian linear regression model using rjags and have the following mcmc object:
summary(m_csim)
Iterations = 1:150000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 150000
1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:
Mean SD Naive SE Time-series SE
BR2 0.995805 0.0007474 1.930e-06 3.527e-06
BR2adj 0.995680 0.0007697 1.987e-06 3.633e-06
b[1] -5.890842 0.1654755 4.273e-04 1.289e-02
b[2] 1.941420 0.0390239 1.008e-04 1.991e-03
b[3] 1.056599 0.0555885 1.435e-04 5.599e-03
sig2 0.004678 0.0008333 2.152e-06 3.933e-06
2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%
BR2 0.994108 0.995365 0.995888 0.996339 0.99702
BR2adj 0.993932 0.995227 0.995765 0.996229 0.99693
b[1] -6.210425 -6.000299 -5.894810 -5.784082 -5.55138
b[2] 1.867453 1.914485 1.940372 1.967466 2.02041
b[3] 0.942107 1.020846 1.057720 1.094442 1.16385
sig2 0.003321 0.004082 0.004585 0.005168 0.00657
In order to extract the coefficients' means I did b = colMeans(mod_csim)[3:5]. I want to calculate credible intervals so I need to extract the 0.025 and 0.975 quantiles too. How do I do that programmatically ?
You can probably extract the quantiles directly. As others have pointed out, you can call str(m_csim), and you can limit the output of the str call with str(m_csim, max.level=1), and keep adding one to the max.level= argument until you see something that looks like quantiles.
What I like to do is to convert the MCMC output to a data.frame so it's easier to work with. I use jagsUI rather than rjags, but I often do something like
mcmc_df <- as.data.frame(as.matrix(MY_MCMC_OBJECT$samples))
Note: it might be a little different with rjags, but I'm sure you can find it with a little digging.
The benefit: I can then access a single vector for each mcmc_df$PARAMETER, and create a matrix of quantiles with
mcmc_quants <- apply(mcmc_df, 2, quantile, p=c(0.025, 0.25, 0.5, 0.75, 0.975))
or whatever quantiles you want.
You probably are looking for
model_summary_object <- summary(m_csim)
model_summary_object$quantiles[,c('2.5%','97.5%')]
I hope I'm not overstepping my knowledge bounds, but I want to answer from the point of view of 'in general' rather than specifically for rjags. m_csim is an object and many methods can possibly be used on it. You've used the summary method to see something. As people have commented, probably there is a coef method. However as someone else has commented (while I was replying !), using str() to see what an object contains is the best way to see what information is in an object and how to address it. I'd be very surprised if using str() doesn't show how to find not only the coefficients but also enough information on the confidence intervals to allow you to find the desired CI.

Confidence Interval of Sample Means using R

My dataframe contains sampling means of 500 samples of size 100 each. Below is the snapshot. I need to calculate the confidence interval at 90/95/99 for mean.
head(Means_df)
Means
1 14997
2 11655
3 12471
4 12527
5 13810
6 13099
I am using the below code but only getting the confidence interval for one row only. Can anyone help me with the code?
tint <- matrix(NA, nrow = dim(Means_df)[2], ncol = 2)
for (i in 1:dim(Means_df)[2]) {
temp <- t.test(Means_df[, i], conf.level = 0.9)
tint[i, ] <- temp$conf.int
}
colnames(tint) <- c("lcl", "ucl")
For any single mean, e. g. 14997, you can not compute a 95%-CI without knowing the variance or the standard deviation of the data, the mean was computed from. If you have access to the standard deviation of each sample, you can than compute the standard error of the mean and with that, easily the 95%-CI. Apparently, you lack the Information needed for the task.
Means_df is a data frame with 500 rows and 1 column. Therefore
dim(Means_df)[2]
will give the value 1.
Which is why you only get one value.
Solve the problem by using dim(Means_df)[1] or even better nrow(Means_df) instead of dim(Means_df)[2].

Chi squared goodness of fit for a geometric distribution

As an assignment I had to develop and algorithm and generate a samples for a given geometric distribution with PMF
Using the inverse transform method, I came up with the following expression for generating the values:
Where U represents a value, or n values depending on the size of the sample, drawn from a Unif(0,1) distribution and p is 0.3 as stated in the PMF above.
I have the algorithm, the implementation in R and I already generated QQ Plots to visually assess the adjustment of the empirical values to the theoretical ones (generated with R), i.e., if the generated sample follows indeed the geometric distribution.
Now I wanted to submit the generated sample to a goodness of fit test, namely the Chi-square, yet I'm having trouble doing this in R.
[I think this was moved a little hastily, in spite of your response to whuber's question, since I think before solving the 'how do I write this algorithm in R' problem, it's probably more important to deal with the 'what you're doing is not the best approach to your problem' issue (which certainly belongs where you posted it). Since it's here, I will deal with the 'doing it in R' aspect, but I would urge to you go back an ask about the second question (as a new post).]
Firstly the chi-square test is a little different depending on whether you test
H0: the data come from a geometric distribution with parameter p
or
H0: the data come from a geometric distribution with parameter 0.3
If you want the second, it's quite straightforward. First, with the geometric, if you want to use the chi-square approximation to the distribution of the test statistic, you will need to group adjacent cells in the tail. The 'usual' rule - much too conservative - suggests that you need an expected count in every bin of at least 5.
I'll assume you have a nice large sample size. In that case, you'll have many bins with substantial expected counts and you don't need to worry so much about keeping it so high, but you will still need to choose how you will bin the tail (whether you just choose a single cut-off above which all values are grouped, for example).
I'll proceed as if n were say 1000 (though if you're testing your geometric random number generation, that's pretty low).
First, compute your expected counts:
dgeom(0:20,.3)*1000
[1] 300.0000000 210.0000000 147.0000000 102.9000000 72.0300000 50.4210000
[7] 35.2947000 24.7062900 17.2944030 12.1060821 8.4742575 5.9319802
[13] 4.1523862 2.9066703 2.0346692 1.4242685 0.9969879 0.6978915
[19] 0.4885241 0.3419669 0.2393768
Warning, dgeom and friends goes from x=0, not x=1; while you can shift the inputs and outputs to the R functions, it's much easier if you subtract 1 from all your geometric values and test that. I will proceed as if your sample has had 1 subtracted so that it goes from 0.
I'll cut that off at the 15th term (x=14), and group 15+ into its own group (a single group in this case). If you wanted to follow the 'greater than five' rule of thumb, you'd cut it off after the 12th term (x=11). In some cases (such as smaller p), you might want to split the tail across several bins rather than one.
> expec <- dgeom(0:14,.3)*1000
> expec <- c(expec, 1000-sum(expec))
> expec
[1] 300.000000 210.000000 147.000000 102.900000 72.030000 50.421000
[7] 35.294700 24.706290 17.294403 12.106082 8.474257 5.931980
[13] 4.152386 2.906670 2.034669 4.747562
The last cell is the "15+" category. We also need the probabilities.
Now we don't yet have a sample; I'll just generate one:
y <- rgeom(1000,0.3)
but now we want a table of observed counts:
(x <- table(factor(y,levels=0:14),exclude=NULL))
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 <NA>
292 203 150 96 79 59 47 25 16 10 6 7 0 2 5 3
Now you could compute the chi-square directly and then calculate the p-value:
> (chisqstat <- sum((x-expec)^2/expec))
[1] 17.76835
(pval <- pchisq(chisqstat,15,lower.tail=FALSE))
[1] 0.2750401
but you can also get R to do it:
> chisq.test(x,p=expec/1000)
Chi-squared test for given probabilities
data: x
X-squared = 17.7683, df = 15, p-value = 0.275
Warning message:
In chisq.test(x, p = expec/1000) :
Chi-squared approximation may be incorrect
Now the case for unspecified p is similar, but (to my knowledge) you can no longer get chisq.test to do it directly, you have to do it the first way, but you have to estimate the parameter from the data (by maximum likelihood or minimum chi-square), and then test as above but you have one fewer degree of freedom for estimating the parameter.
See the example of doing a chi-square for a Poisson with estimated parameter here; the geometric follows the much same approach as above, with the adjustments as at the link (dealing with the unknown parameter, including the loss of 1 degree of freedom).
Let us assume you've got your randomly-generated variates in a vector x. You can do the following:
x <- rgeom(1000,0.2)
x_tbl <- table(x)
x_val <- as.numeric(names(x_tbl))
x_df <- data.frame(count=as.numeric(x_tbl), value=x_val)
# Expand to fill in "gaps" in the values caused by 0 counts
all_x_val <- data.frame(value = 0:max(x_val))
x_df <- merge(all_x_val, x_df, by="value", all.x=TRUE)
x_df$count[is.na(x_df$count)] <- 0
# Get theoretical probabilities
x_df$eprob <- dgeom(x_df$val, 0.2)
# Chi-square test: once with asymptotic dist'n,
# once with bootstrap evaluation of chi-sq test statistic
chisq.test(x=x_df$count, p=x_df$eprob, rescale.p=TRUE)
chisq.test(x=x_df$count, p=x_df$eprob, rescale.p=TRUE,
simulate.p.value=TRUE, B=10000)
There's a "goodfit" function described as "Goodness-of-fit Tests for Discrete Data" in package "vcd".
G.fit <- goodfit(x, type = "nbinomial", par = list(size = 1))
I was going to use the code you had posted in an earlier question, but it now appears that you have deleted that code. I find that offensive. Are you using this forum to gather homework answers and then defacing it to remove the evidence? (Deleted questions can still be seen by those of us with sufficient rep, and the interface prevents deletion of question with upvoted answers so you should not be able to delete this one.)
Generate a QQ Plot for testing a geometrically distributed sample
--- question---
I have a sample of n elements generated in R with
sim.geometric <- function(nvals)
{
p <- 0.3
u <- runif(nvals)
ceiling(log(u)/log(1-p))
}
for which i want to test its distribution, specifically if it indeed follows a geometric distribution. I want to generate a QQ PLot but have no idea how to.
--------reposted answer----------
A QQ-plot should be a straight line when compared to a "true" sample drawn from a geometric distribution with the same probability parameter. One gives two vectors to the functions which essentially compares their inverse ECDF's at each quantile. (Your attempt is not particularly successful:)
sim.res <- sim.geometric(100)
sim.rgeom <- rgeom(100, 0.3)
qqplot(sim.res, sim.rgeom)
Here I follow the lead of the authors of qqplot's help page (which results in flipping that upper curve around the line of identity):
png("QQ.png")
qqplot(qgeom(ppoints(100),prob=0.3), sim.res,
main = expression("Q-Q plot for" ~~ {G}[n == 100]))
dev.off()
---image not included---
You can add a "line of good fit" by plotting a line through through the 25th and 75th percentile points for each distribution. (I added a jittering feature to this to get a better idea where the "probability mass" was located:)
sim.res <- sim.geometric(500)
qqplot(jitter(qgeom(ppoints(500),prob=0.3)), jitter(sim.res),
main = expression("Q-Q plot for" ~~ {G}[n == 100]), ylim=c(0,max( qgeom(ppoints(500),prob=0.3),sim.res )),
xlim=c(0,max( qgeom(ppoints(500),prob=0.3),sim.res )))
qqline(sim.res, distribution = function(p) qgeom(p, 0.3),
prob = c(0.25, 0.75), col = "red")

Resources