Plot mean and sd of dataset per x value using ggplot2 - r

I have a dataset that looks a little like this:
a <- data.frame(x=rep(c(1,2,3,5,7,10,15,20), 5),
y=rnorm(40, sd=2) + rep(c(4,3.5,3,2.5,2,1.5,1,0.5), 5))
ggplot(a, aes(x=x,y=y)) + geom_point() +geom_smooth()
I want the same output as that plot, but instead of smooth curve, I just want to take line segments between the mean/sd values for each set of x values. The graph should look similar to the above graph, but jagged, instead of curved.
I tried this, but it fails, even though the x values aren't unique:
ggplot(a, aes(x=x,y=y)) + geom_point() +stat_smooth(aes(group=x, y=y, x=x))
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?

?stat_summary is what you should look at.
Here is an example
# functions to calculate the upper and lower CI bounds
uci <- function(y,.alpha){mean(y) + qnorm(abs(.alpha)/2) * sd(y)}
lci <- function(y,.alpha){mean(y) - qnorm(abs(.alpha)/2) * sd(y)}
ggplot(a, aes(x=x,y=y)) + stat_summary(fun.y = mean, geom = 'line', colour = 'blue') +
stat_summary(fun.y = mean, geom = 'ribbon',fun.ymax = uci, fun.ymin = lci, .alpha = 0.05, alpha = 0.5)

You can use one of the built-in summary functions mean_sdl. The code is shown below
ggplot(a, aes(x=x,y=y)) +
stat_summary(fun.y = 'mean', colour = 'blue', geom = 'line')
stat_summary(fun.data = 'mean_sdl', geom = 'ribbon', alpha = 0.2)

Using ggplot2 0.9.3.1, the following did the trick for me:
ggplot(a, aes(x=x,y=y)) + geom_point() +
stat_summary(fun.data = 'mean_sdl', mult = 1, geom = 'smooth')
The 'mean_sdl' is an implementation of the Hmisc package's function 'smean.sdl' and the mult-variable gives how many standard deviations (above and below the mean) are displayed.
For detailed info on the original function:
library('Hmisc')
?smean.sdl

You could try writing a summary function as suggested by Hadley Wickham on the website for ggplot2: http://had.co.nz/ggplot2/stat_summary.html. Applying his suggestion to your code:
p <- qplot(x, y, data=a)
stat_sum_df <- function(fun, geom="crossbar", ...) {
stat_summary(fun.data=fun, colour="blue", geom=geom, width=0.2, ...)
}
p + stat_sum_df("mean_cl_normal", geom = "smooth")
This results in this graphic:

Related

ggplot: plotting more than one function on one plot

I have a task to plot histogram using my data (here) named NoPodsWeight, its density and normal distribution for this segment (min(NoPodsWeight) and max(NoPodsWeight)).
I am trying this:
myframe <- read.csv(filepath, fileEncoding = "UTF-8", stringsAsFactors = FALSE)
myframe <- myframe[rowSums(is.na(myframe)) <= 0,]
nopodsweight <- myframe$NoPodsWeight
height <- myframe$Height
ggplot(myframe, aes(x = NoPodsWeight, y = ..density..)) +
geom_histogram(color="black", fill="white") +
geom_density(color = "blue") +
stat_function(fun = dnorm, args = list(mean = mean(myframe$NoPodsWeight), sd = sd(myframe$NoPodsWeight)))
Using this code I get an error:
Error: Aesthetics must be valid computed stats. Problematic aesthetic(s): y =
..density...
Did you map your stat in the wrong layer?
I don't understand how to plot two or more functions on one plot. For example I can solve my problem using standard plot (but without density):
hist(x = nopodsweight, freq = F, ylim = c(0, 0.45), breaks = 37)
n_norm<-seq(min(nopodsweight)-1, max(nopodsweight)+1, 0.0001)
lines(n_norm, dnorm(n_norm), col = "red")
Is there any function in ggplot to plot (normal) distribution (or maybe using another function) like in lines?
You need to take ..density.. out of the ggplot() layer and put it specifically in the geom_histogram layer. I didn't download and import your data, but here's an example on mtcars:
ggplot(mtcars, aes(x = mpg)) +
geom_histogram(aes(y = ..density..)) +
geom_density(color = "blue") +
stat_function(fun = dnorm, args = list(mean = mean(mtcars$mpg), sd = sd(mtcars$mpg)))
The error message says "did you map your stat in the wrong layer?"; that's a hint. Moving aes(y=..density..) to apply specifically to geom_histogram() seems to make everything OK ...
ggplot(myframe, aes(x = NoPodsWeight)) +
geom_histogram(color="black", fill="white",
aes(y = ..density..)) +
## [... everything else ...]

ggsave with arrangeGrob fails for large plots (+1 million observations) [duplicate]

I am trying to plot two variables where N=700K. The problem is that there is too much overlap, so that the plot becomes mostly a solid block of black. Is there any way of having a grayscale "cloud" where the darkness of the plot is a function of the number of points in an region? In other words, instead of showing individual points, I want the plot to be a "cloud", with the more the number of points in a region, the darker that region.
One way to deal with this is with alpha blending, which makes each point slightly transparent. So regions appear darker that have more point plotted on them.
This is easy to do in ggplot2:
df <- data.frame(x = rnorm(5000),y=rnorm(5000))
ggplot(df,aes(x=x,y=y)) + geom_point(alpha = 0.3)
Another convenient way to deal with this is (and probably more appropriate for the number of points you have) is hexagonal binning:
ggplot(df,aes(x=x,y=y)) + stat_binhex()
And there is also regular old rectangular binning (image omitted), which is more like your traditional heatmap:
ggplot(df,aes(x=x,y=y)) + geom_bin2d()
An overview of several good options in ggplot2:
library(ggplot2)
x <- rnorm(n = 10000)
y <- rnorm(n = 10000, sd=2) + x
df <- data.frame(x, y)
Option A: transparent points
o1 <- ggplot(df, aes(x, y)) +
geom_point(alpha = 0.05)
Option B: add density contours
o2 <- ggplot(df, aes(x, y)) +
geom_point(alpha = 0.05) +
geom_density_2d()
Option C: add filled density contours
(Note that the points distort the perception of the colors underneath, may be better without points.)
o3 <- ggplot(df, aes(x, y)) +
stat_density_2d(aes(fill = stat(level)), geom = 'polygon') +
scale_fill_viridis_c(name = "density") +
geom_point(shape = '.')
Option D: density heatmap
(Same note as C.)
o4 <- ggplot(df, aes(x, y)) +
stat_density_2d(aes(fill = stat(density)), geom = 'raster', contour = FALSE) +
scale_fill_viridis_c() +
coord_cartesian(expand = FALSE) +
geom_point(shape = '.', col = 'white')
Option E: hexbins
(Same note as C.)
o5 <- ggplot(df, aes(x, y)) +
geom_hex() +
scale_fill_viridis_c() +
geom_point(shape = '.', col = 'white')
Option F: rugs
Possibly my favorite option. Not quite as flashy, but visually simple and simple to understand. Very effective in many cases.
o6 <- ggplot(df, aes(x, y)) +
geom_point(alpha = 0.1) +
geom_rug(alpha = 0.01)
Combine in one figure:
cowplot::plot_grid(
o1, o2, o3, o4, o5, o6,
ncol = 2, labels = 'AUTO', align = 'v', axis = 'lr'
)
You can also have a look at the ggsubplot package. This package implements features which were presented by Hadley Wickham back in 2011 (http://blog.revolutionanalytics.com/2011/10/ggplot2-for-big-data.html).
(In the following, I include the "points"-layer for illustration purposes.)
library(ggplot2)
library(ggsubplot)
# Make up some data
set.seed(955)
dat <- data.frame(cond = rep(c("A", "B"), each=5000),
xvar = c(rep(1:20,250) + rnorm(5000,sd=5),rep(16:35,250) + rnorm(5000,sd=5)),
yvar = c(rep(1:20,250) + rnorm(5000,sd=5),rep(16:35,250) + rnorm(5000,sd=5)))
# Scatterplot with subplots (simple)
ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) +
geom_subplot2d(aes(xvar, yvar,
subplot = geom_bar(aes(rep("dummy", length(xvar)), ..count..))), bins = c(15,15), ref = NULL, width = rel(0.8), ply.aes = FALSE)
However, this features rocks if you have a third variable to control for.
# Scatterplot with subplots (including a third variable)
ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1, aes(color = factor(cond))) +
geom_subplot2d(aes(xvar, yvar,
subplot = geom_bar(aes(cond, ..count.., fill = cond))),
bins = c(15,15), ref = NULL, width = rel(0.8), ply.aes = FALSE)
Or another approach would be to use smoothScatter():
smoothScatter(dat[2:3])
Alpha blending is easy to do with base graphics as well.
df <- data.frame(x = rnorm(5000),y=rnorm(5000))
with(df, plot(x, y, col="#00000033"))
The first six numbers after the # are the color in RGB hex and the last two are the opacity, again in hex, so 33 ~ 3/16th opaque.
You can also use density contour lines (ggplot2):
df <- data.frame(x = rnorm(15000),y=rnorm(15000))
ggplot(df,aes(x=x,y=y)) + geom_point() + geom_density2d()
Or combine density contours with alpha blending:
ggplot(df,aes(x=x,y=y)) +
geom_point(colour="blue", alpha=0.2) +
geom_density2d(colour="black")
You may find useful the hexbin package. From the help page of hexbinplot:
library(hexbin)
mixdata <- data.frame(x = c(rnorm(5000),rnorm(5000,4,1.5)),
y = c(rnorm(5000),rnorm(5000,2,3)),
a = gl(2, 5000))
hexbinplot(y ~ x | a, mixdata)
geom_pointdenisty from the ggpointdensity package (recently developed by Lukas Kremer and Simon Anders (2019)) allows you visualize density and individual data points at the same time:
library(ggplot2)
# install.packages("ggpointdensity")
library(ggpointdensity)
df <- data.frame(x = rnorm(5000), y = rnorm(5000))
ggplot(df, aes(x=x, y=y)) + geom_pointdensity() + scale_color_viridis_c()
My favorite method for plotting this type of data is the one described in this question - a scatter-density plot. The idea is to do a scatter-plot but to colour the points by their density (roughly speaking, the amount of overlap in that area).
It simultaneously:
clearly shows the location of outliers, and
reveals any structure in the dense area of the plot.
Here is the result from the top answer to the linked question:

R - How to overlay the average of a set of iid RVs

In the code below I build a 40x1000 data frame where in each column I have the cumulative means for successive random draws from an exponential distribution with parameter lambda = 0.2.
I add an additional column to host the specific number of the "draw".
I also calculate the rowmeans as df_means.
How do I add df_means (as a black line) on top of all my simulated RVs? I don't understand ggplot well enough to do this.
df <- data.frame(replicate(1000,cumsum(rexp(40,lambda))/(1:40)))
df$draw <- seq(1,40)
df_means <- rowMeans(df)
Molten <- melt(df, id.vars="draw")
ggplot(Molten, aes(x = draw, y = value, colour = variable)) + geom_line() + theme(legend.position = "none") + geom_line(df_means)
How would I add plot(df_means, type="l") to my ggplot, below?
Thank you,
You can make another data.frame with the means and ids and use that to draw the line,
df_means <- rowMeans(df)
means <- data.frame(id=1:40, mu=df_means)
ggplot(Molten, aes(x=draw, y=value, colour=variable)) +
geom_line() +
theme(legend.position = "none") +
geom_line(data=means, aes(x=id, y=mu), color="black")
As described here
stat_sum_df <- function(fun, geom="crossbar", ...) {
stat_summary(fun.data=fun, colour="red", geom=geom, width=0.2, ...)
}
k<-ggplot(Molten, aes(x = draw, y = value, colour = variable)) + geom_line() + theme(legend.position = "none")
k+stat_sum_single(mean) #gives you the required plot

ggplot2: set (nonlinear) values for alpha

I'd like to plot a mirrored 95% density curve and map alpha to the density:
foo <- function(mw, sd, lower, upper) {
x <- seq(lower, upper, length=500)
dens <- dnorm(x, mean=mw, sd=sd, log=TRUE)
dens0 <- dens -min(dens)
return(data.frame(dens0, x))
}
df.rain <- foo(0,1,-1,1)
library(ggplot2)
drf <- ggplot(df.rain, aes(x=x, y=dens0))+
geom_line(aes(alpha=..y..))+
geom_line(aes(x=x, y=-dens0, alpha=-..y..))+
stat_identity(geom="segment", aes(xend=x, yend=0, alpha=..y..))+
stat_identity(geom="segment", aes(x=x, y=-dens0, xend=x, yend=0, alpha=-..y..))
drf
This works fine, but I'd like to make the contrast between the edges and the middle more prominent, i.e., I want the edges to be nearly white and only the middle part to be black. I've been tampering with scale_alpha() but without luck. Any ideas?
Edit: Ultimately, I'd like to plot several raindrops, i.e., the individual drops will be small but the shading should still be clearly visible.
Instead of mapping dens0 to the alpha, I'd map it to color:
drf <- ggplot(df.rain, aes(x=x, y=dens0))+
geom_line(aes(color=..y..))+
geom_line(aes(x=x, y=-dens0, color=-..y..))+
stat_identity(geom="segment", aes(xend=x, yend=0, color=..y..))+
stat_identity(geom="segment", aes(x=x, y=-dens0, xend=x, yend=0, color=-..y..))
Now we still have the contrast in color is mainly present in the tails. Using two colors helps a bit (note that the switch in color is at 0.25):
drf + scale_color_gradient2(midpoint = 0.25)
Finally, to include the distribution of the dens0 values, I base the midpoint of the color scale on the median value in the data:
drf + scale_color_gradient2(midpoint = median(df.rain$dens0))
Note!: But however the way you tweak your data, most contrast in your data is in the more extreme values in your dataset. Trying to mask this by messing with a non-linear scale, or by tweaking a color scale like I did, could present a false picture of the real data.
Here is a solution using geom_ribbon() instead of geom_line()
df.rain$group <- seq_along(df.rain$x)
tmp <- tail(df.rain, -1)
tmp$group <- tmp$group - 1
tmp$dens0 <- head(df.rain$dens0, -1)
dataset <- rbind(head(df.rain, -1), tmp)
ggplot(dataset, aes(x = x, ymin = -dens0, ymax = dens0, group = group,
alpha = dens0)) + geom_ribbon() + scale_alpha(range = c(0, 1))
ggplot(dataset, aes(x = x, ymin = -dens0, ymax = dens0, group = group,
fill = dens0)) + geom_ribbon() +
scale_fill_gradient(low = "white", high = "black")
See Paul's answer for changing the colours.
dataset9 <- merge(dataset, data.frame(study = 1:9))
ggplot(dataset9, aes(x = x, ymin = -dens0, ymax = dens0, group = group,
alpha = dens0)) + geom_ribbon() + scale_alpha(range = c(0, 0.5)) +
facet_wrap(~study)
While pondering both your answers I actually found exactly what I was looking for. The easiest way is to simply use scale_colour_gradientn with a vector of greys.
library(RColorBrewer)
grey <- brewer.pal(9,"Greys")
drf <- ggplot(df.rain, aes(x=x, y=dens0, col=dens0))+
stat_identity(geom="segment", aes(xend=x, yend=0))+
stat_identity(geom="segment", aes(x=x, y=-dens0, xend=x, yend=0))+
scale_colour_gradientn(colours=grey)
drf

Scatterplot with too many points

I am trying to plot two variables where N=700K. The problem is that there is too much overlap, so that the plot becomes mostly a solid block of black. Is there any way of having a grayscale "cloud" where the darkness of the plot is a function of the number of points in an region? In other words, instead of showing individual points, I want the plot to be a "cloud", with the more the number of points in a region, the darker that region.
One way to deal with this is with alpha blending, which makes each point slightly transparent. So regions appear darker that have more point plotted on them.
This is easy to do in ggplot2:
df <- data.frame(x = rnorm(5000),y=rnorm(5000))
ggplot(df,aes(x=x,y=y)) + geom_point(alpha = 0.3)
Another convenient way to deal with this is (and probably more appropriate for the number of points you have) is hexagonal binning:
ggplot(df,aes(x=x,y=y)) + stat_binhex()
And there is also regular old rectangular binning (image omitted), which is more like your traditional heatmap:
ggplot(df,aes(x=x,y=y)) + geom_bin2d()
An overview of several good options in ggplot2:
library(ggplot2)
x <- rnorm(n = 10000)
y <- rnorm(n = 10000, sd=2) + x
df <- data.frame(x, y)
Option A: transparent points
o1 <- ggplot(df, aes(x, y)) +
geom_point(alpha = 0.05)
Option B: add density contours
o2 <- ggplot(df, aes(x, y)) +
geom_point(alpha = 0.05) +
geom_density_2d()
Option C: add filled density contours
(Note that the points distort the perception of the colors underneath, may be better without points.)
o3 <- ggplot(df, aes(x, y)) +
stat_density_2d(aes(fill = stat(level)), geom = 'polygon') +
scale_fill_viridis_c(name = "density") +
geom_point(shape = '.')
Option D: density heatmap
(Same note as C.)
o4 <- ggplot(df, aes(x, y)) +
stat_density_2d(aes(fill = stat(density)), geom = 'raster', contour = FALSE) +
scale_fill_viridis_c() +
coord_cartesian(expand = FALSE) +
geom_point(shape = '.', col = 'white')
Option E: hexbins
(Same note as C.)
o5 <- ggplot(df, aes(x, y)) +
geom_hex() +
scale_fill_viridis_c() +
geom_point(shape = '.', col = 'white')
Option F: rugs
Possibly my favorite option. Not quite as flashy, but visually simple and simple to understand. Very effective in many cases.
o6 <- ggplot(df, aes(x, y)) +
geom_point(alpha = 0.1) +
geom_rug(alpha = 0.01)
Combine in one figure:
cowplot::plot_grid(
o1, o2, o3, o4, o5, o6,
ncol = 2, labels = 'AUTO', align = 'v', axis = 'lr'
)
You can also have a look at the ggsubplot package. This package implements features which were presented by Hadley Wickham back in 2011 (http://blog.revolutionanalytics.com/2011/10/ggplot2-for-big-data.html).
(In the following, I include the "points"-layer for illustration purposes.)
library(ggplot2)
library(ggsubplot)
# Make up some data
set.seed(955)
dat <- data.frame(cond = rep(c("A", "B"), each=5000),
xvar = c(rep(1:20,250) + rnorm(5000,sd=5),rep(16:35,250) + rnorm(5000,sd=5)),
yvar = c(rep(1:20,250) + rnorm(5000,sd=5),rep(16:35,250) + rnorm(5000,sd=5)))
# Scatterplot with subplots (simple)
ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1) +
geom_subplot2d(aes(xvar, yvar,
subplot = geom_bar(aes(rep("dummy", length(xvar)), ..count..))), bins = c(15,15), ref = NULL, width = rel(0.8), ply.aes = FALSE)
However, this features rocks if you have a third variable to control for.
# Scatterplot with subplots (including a third variable)
ggplot(dat, aes(x=xvar, y=yvar)) +
geom_point(shape=1, aes(color = factor(cond))) +
geom_subplot2d(aes(xvar, yvar,
subplot = geom_bar(aes(cond, ..count.., fill = cond))),
bins = c(15,15), ref = NULL, width = rel(0.8), ply.aes = FALSE)
Or another approach would be to use smoothScatter():
smoothScatter(dat[2:3])
Alpha blending is easy to do with base graphics as well.
df <- data.frame(x = rnorm(5000),y=rnorm(5000))
with(df, plot(x, y, col="#00000033"))
The first six numbers after the # are the color in RGB hex and the last two are the opacity, again in hex, so 33 ~ 3/16th opaque.
You can also use density contour lines (ggplot2):
df <- data.frame(x = rnorm(15000),y=rnorm(15000))
ggplot(df,aes(x=x,y=y)) + geom_point() + geom_density2d()
Or combine density contours with alpha blending:
ggplot(df,aes(x=x,y=y)) +
geom_point(colour="blue", alpha=0.2) +
geom_density2d(colour="black")
You may find useful the hexbin package. From the help page of hexbinplot:
library(hexbin)
mixdata <- data.frame(x = c(rnorm(5000),rnorm(5000,4,1.5)),
y = c(rnorm(5000),rnorm(5000,2,3)),
a = gl(2, 5000))
hexbinplot(y ~ x | a, mixdata)
geom_pointdenisty from the ggpointdensity package (recently developed by Lukas Kremer and Simon Anders (2019)) allows you visualize density and individual data points at the same time:
library(ggplot2)
# install.packages("ggpointdensity")
library(ggpointdensity)
df <- data.frame(x = rnorm(5000), y = rnorm(5000))
ggplot(df, aes(x=x, y=y)) + geom_pointdensity() + scale_color_viridis_c()
My favorite method for plotting this type of data is the one described in this question - a scatter-density plot. The idea is to do a scatter-plot but to colour the points by their density (roughly speaking, the amount of overlap in that area).
It simultaneously:
clearly shows the location of outliers, and
reveals any structure in the dense area of the plot.
Here is the result from the top answer to the linked question:

Resources