Big O of Recursive Methods - recursion

I'm having difficulty determining the big O of simple recursive methods. I can't wrap my head around what happens when a method is called multiple times. I would be more specific about my areas of confusion, but at the moment I'm trying to answer some hw questions, and in lieu of not wanting to cheat, I ask that anyone responding to this post come up with a simple recursive method and provide a simple explanation of the big O of said method. (Preferably in Java... a language I'm learning.)
Thank you.

You can define the order recursively as well. For instance, let's say you have a function f. To calculate f(n) takes k steps. Now you want to calculate f(n+1). Lets say f(n+1) calls f(n) once, then f(n+1) takes k + some constant steps. Each invocation will take some constant steps extra, so this method is O(n).
Now look at another example. Lets say you implement fibonacci naively by adding the two previous results:
fib(n) = { return fib(n-1) + fib(n-2) }
Now lets say you can calculate fib(n-2) and fib(n-1) both in about k steps. To calculate fib(n) you need k+k = 2*k steps. Now lets say you want to calculate fib(n+1). So you need twice as much steps as for fib(n-1). So this seems to be O(2^N)
Admittedly, this is not very formal, but hopefully this way you can get a bit of a feel.

You might want to refer to the master theorem for finding the big O of recursive methods. Here is the wikipedia article: http://en.wikipedia.org/wiki/Master_theorem
You want to think of a recursive problem like a tree. Then, consider each level of the tree and the amount of work required. Problems will generally fall into 3 categories, root heavy (first iteration >> rest of tree), balanced (each level has equal amounts of work), leaf heavy (last iteration >> rest of tree).
Taking merge sort as an example:
define mergeSort(list toSort):
if(length of toSort <= 1):
return toSort
list left = toSort from [0, length of toSort/2)
list right = toSort from [length of toSort/2, length of toSort)
merge(mergeSort(left), mergeSort(right))
You can see that each call of mergeSort in turn calls 2 more mergeSorts of 1/2 the original length. We know that the merge procedure will take time proportional to the number of values being merged.
The recurrence relationship is then T(n) = 2*T(n/2)+O(n). The two comes from the 2 calls and the n/2 is from each call having only half the number of elements. However, at each level there are the same number of elements n which need to be merged, so the constant work at each level is O(n).
We know the work is evenly distributed (O(n) each depth) and the tree is log_2(n) deep, so the big O of the recursive function is O(n*log(n)).

Related

In Big-O terms if O(n-1) is the same thing as O(n) then why in the master theorem is T(n-1) not equal T(n)?

Ok So I'm pretty new to CS and was recently learning about Big-O, Theta, and Omega as well as the master theorem and in lecture I saw that this was not the case for some reason and was wondering why is that?
Although both O(n) and T(n) use capital letters on the outside and lower-case n in the middle, they represent fundamentally different concepts.
If you’re analyzing an algorithm using a recurrence relation, it’s common to let T(n) denote the amount of time it takes for the algorithm to complete on an input of size n. As a result, we wouldn’t expect T(n) to be the same as T(n-1), since, in most cases, algorithms take longer to run when you give them larger inputs.
More generally, for any function f, if you wanted to claim that f(n) = f(n-1), you’d need to explain why you could assume this because this generally isn’t the case.
The tricky bit here is that when we write O(n), it looks like we’re writing a function named O and passing in the argument n, but the notation means something totally different. The notation O(n) is a placeholder for “some function that, when the inputs gets really big, is bounded from above by a multiple of n.” Similarly, O(n-1) means “some function that, when the inputs get really big, is bounded from above by a multiple of n-1.” And it happens to be the case that any function that’s bounded above by a multiple of n is also bounded from above by a multiple of n-1, which is why O(n) and O(n-1) denote the same thing.
Hope this helps!

Runtime and space complexity of the recursive determinant algorithm for a n x n matrix

I am trying to figure out the runtime and space complexity of the algorithm below.
Some say that the runtime complexity of this is O(n!) and I am guessing it is because there are n! recursive calls for a recursive algorithm that solves for a n*n matrix. But I am not sure if I am right.
Also, is the space complexity also n!?
It might help to write out an explicit recurrence relation that governs the runtime of a straightforward implementation of the recursive algorithm. Notice that, in working on an n × n matrix, evaluating the sum requires making n recursive calls on matrices of size (n - 1) × (n - 1). Each recursive call requires about (n - 1)2 additional time to set up, since we need to extract a submatrix of that size from the original matrix, so the total per-call overhead of the algorithm would be Θ(n3) because we’re doing quadratic work linearly many times. That means that our work done is roughly
T(n) = nT(n - 1) + n3.
Completely ignoring the cubic term here, notice that expanding out the recursion will have the following effect:
T(n) = nT(n - 1) + ...
= n(n-1)T(n-2) + ...
= n(n-1)(n-2)T(n-3) + ...
and eventually we’ll get an n! term showing up, plus a bunch of extra terms from the cubic. So the work done here is at least Ω(n!), and probably a lot more once we factor in the cubic term.
As for the space complexity - when working with the space complexity, remember that once one branch of the recursion terminates we can reuse the space that branch was using. This means that we only really need to look at any one branch to see how much space is needed.
With a naive implementation of this summation where we explicitly compute the submatrices for the recursive calls, we’ll need space to store one matrix of size n × n, one of size (n-1) × (n-1), one of size (n-2) × (n-2), etc. That space usage sums up to Θ(n3).
There are a bunch of other algorithms you can use to compute determinants in much less time and space. Some are based on Gaussian elimination and run in time O(n3), for example.

Recursion Time Complexity Definition Confusion

The time complexity of a recursive algorithm is said to be
Given a recursion algorithm, its time complexity O(T) is typically
the product of the number of recursion invocations (denoted as R)
and the time complexity of calculation (denoted as O(s))
that incurs along with each recursion
O(T) = R * O(s)
Looking at a recursive function:
void algo(n){
if (n == 0) return; // base case just to not have stack overflow
for(i = 0; i < n; i++);// to do O(n) work
algo(n/2);
}
According to the definition above I may say that, the time complexity is, R is logn times and O(s) is n. So the result should be n logn where as with mathmetical induction it is proved that the result in o(n).
Please do not prove the induction method. I am asking why the given definition does not work with my approach.
Great question! This hits at two different ways of accounting for the amount of work that's done in a recursive call chain.
The original strategy that you described for computing the amount of work done in a recursive call - multiply the work done per call by the number of calls - has an implicit assumption buried within it. Namely, this assumes that every recursive call does the same amount of work. If that is indeed the case, then you can determine the total work done as the product of the number of calls and the work per call.
However, this strategy doesn't usually work if the amount of work done per call varies as a function of the arguments to the call. After all, we can't talk about multiplying "the" amount of work done by a call by the number of calls if there isn't a single value representing how much work is done!
A more general strategy for determining how much work is done by a recursive call chain is to add up the amount of work done by each individual recursive call. In the case of the function that you've outlined above, the work done by the first call is n. The second call does n/2 work, because the amount of work it does is linear in its argument. The third call does n/4 work, the fourth n/8 work, etc. This means that the total work done is bounded by
n + n/2 + n/4 + n/8 + n/16 + ...
= n(1 + 1/2 + 1/4 + 1/8 + 1/16 + ...)
≤ 2n,
which is where the tighter O(n) bound comes from.
As a note, the idea of "add up all the work done by all the calls" is completely equivalent to "multiply the amount of work done per call by the number of calls" in the specific case where the amount of work done by each call is the same. Do you see why?
Alternatively, if you're okay getting a conservative upper bound on the amount of work done by a recursive call chain, you can multiply the number of calls by the maximum work done by any one call. That will never underestimate the total, but it won't always give you the right bound. That's what's happening here in the example you've listed - each call does at most n work, and there are O(log n) calls, so the total work is indeed O(n log n). That just doesn't happen to be a tight bound.
A quick note - I don't think it would be appropriate to call the strategy of multiplying the total work done by the number of calls the "definition" of the amount of work done by a recursive call chain. As mentioned above, that's more of a "strategy for determining the work done" than a formal definition. If anything, I'd argue that the correct formal definition would be "the sum of the amounts of work done by each individual recursive calls," since that more accurately accounts for how much total time will be spent.
Hope this helps!
I think you are trying to find information about master theorem which is what is used to prove the time complexity of recursive algorithms.
https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)
Also, you usually can't determine an algorithms runtime just from looking at it, especially recursive ones. That's why your quick analysis is different than the proof by induction.

Big-O running time for functions

Find the big-O running time for each of these functions:
T(n) = T(n - 2) + n²
Our Answers: n², n³
T(n) = 3T(n/2) + n
Our Answers: O(n log n), O(nlog₂3)
T(n) = 2T(n/3) + n
Our Answers: O(n log base 3 of n), O(n)
T(n) = 2T(n/2) + n^3
Our Answers: O(n³ log₂n), O(n³)
So we're having trouble deciding on the right answers for each of the questions.
We all got different results and would like an outside opinion on what the running time would be.
Thanks in advance.
A bit of clarification:
The functions in the questions appear to be running time functions as hinted by their T() name and their n parameter. A more subtle hint is the fact that they are all recursive and recursive functions are, alas, a common occurrence when one produces a function to describe the running time of an algorithm (even when the algorithm itself isn't formally using recursion). Indeed, recursive formulas are a rather inconvenient form and that is why we use the Big O notation to better summarize the behavior of an algorithm.
A running time function is a parametrized mathematical expression which allows computing a [sometimes approximate] relative value for the running time of an algorithm, given specific value(s) for the parameter(s). As is the case here, running time functions typically have a single parameter, often named n, and corresponding to the total number of items the algorithm is expected to work on/with (for e.g. with a search algorithm it could be the total number of records in a database, with a sort algorithm it could be the number of entries in the unsorted list and for a path finding algorithm, the number of nodes in the graph....). In some cases a running time function may have multiple arguments, for example, the performance of an algorithm performing some transformation on a graph may be bound to both the total number of nodes and the total number of vertices or the average number of connections between two nodes, etc.
The task at hand (for what appears to be homework, hence my partial answer), is therefore to find a Big O expression that qualifies the upper bound limit of each of running time functions, whatever the underlying algorithm they may correspond to. The task is not that of finding and qualifying an algorithm to produce the results of the functions (this second possibility is also a very common type of exercise in Algorithm classes of a CS cursus but is apparently not what is required here.)
The problem is therefore more one of mathematics than of Computer Science per se. Basically one needs to find the limit (or an approximation thereof) of each of these functions as n approaches infinity.
This note from Prof. Jeff Erikson at University of Illinois Urbana Champaign provides a good intro to solving recurrences.
Although there are a few shortcuts to solving recurrences, particularly if one has with a good command of calculus, a generic approach is to guess the answer and then to prove it by induction. Tools like Excel, a few snippets in a programming languages such as Python or also MATLAB or Sage can be useful to produce tables of the first few hundred values (or beyond) along with values such as n^2, n^3, n! as well as ratios of the terms of the function; these tables often provide enough insight into the function to find the closed form of the function.
A few hints regarding the answers listed in the question:
Function a)
O(n^2) is for sure wrong:
a quick inspection of the first few values in the sequence show that n^2 is increasingly much smaller than T(n)
O(n^3) on the other hand appears to be systematically bigger than T(n) as n grows towards big numbers. A closer look shows that O(n^3) is effectively the order of the Big O notation for this function, but that O(n^3 / 6) is a more precise notation which systematically exceed the value of T(n) [for bigger values of n, and/or as n tends towards infinity] but only by a minute fraction compared with the coarser n^3 estimate.
One can confirm that O(n^3 / 6) is it, by induction:
T(n) = T(n-2) + n^2 // (1) by definition
T(n) = n^3 / 6 // (2) our "guess"
T(n) = ((n - 2)^3 / 6) + n^2 // by substitution of T(n-2) by the (2) expression
= (n^3 - 2n^2 -4n^2 -8n + 4n - 8) / 6 + 6n^2 / 6
= (n^3 - 4n -8) / 6
= n^3/6 - 2n/3 - 4/3
~= n^3/6 // as n grows towards infinity, the 2n/3 and 4/3 factors
// become relatively insignificant, leaving us with the
// (n^3 / 6) limit expression, QED

What is recursion and when should I use it?

Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
One of the topics that seems to come up regularly on mailing lists and online discussions is the merits (or lack thereof) of doing a Computer Science Degree. An argument that seems to come up time and again for the negative party is that they have been coding for some number of years and they have never used recursion.
So the question is:
What is recursion?
When would I use recursion?
Why don't people use recursion?
There are a number of good explanations of recursion in this thread, this answer is about why you shouldn't use it in most languages.* In the majority of major imperative language implementations (i.e. every major implementation of C, C++, Basic, Python, Ruby,Java, and C#) iteration is vastly preferable to recursion.
To see why, walk through the steps that the above languages use to call a function:
space is carved out on the stack for the function's arguments and local variables
the function's arguments are copied into this new space
control jumps to the function
the function's code runs
the function's result is copied into a return value
the stack is rewound to its previous position
control jumps back to where the function was called
Doing all of these steps takes time, usually a little bit more than it takes to iterate through a loop. However, the real problem is in step #1. When many programs start, they allocate a single chunk of memory for their stack, and when they run out of that memory (often, but not always due to recursion), the program crashes due to a stack overflow.
So in these languages recursion is slower and it makes you vulnerable to crashing. There are still some arguments for using it though. In general, code written recursively is shorter and a bit more elegant, once you know how to read it.
There is a technique that language implementers can use called tail call optimization which can eliminate some classes of stack overflow. Put succinctly: if a function's return expression is simply the result of a function call, then you don't need to add a new level onto the stack, you can reuse the current one for the function being called. Regrettably, few imperative language-implementations have tail-call optimization built in.
* I love recursion. My favorite static language doesn't use loops at all, recursion is the only way to do something repeatedly. I just don't think that recursion is generally a good idea in languages that aren't tuned for it.
** By the way Mario, the typical name for your ArrangeString function is "join", and I'd be surprised if your language of choice doesn't already have an implementation of it.
Simple english example of recursion.
A child couldn't sleep, so her mother told her a story about a little frog,
who couldn't sleep, so the frog's mother told her a story about a little bear,
who couldn't sleep, so the bear's mother told her a story about a little weasel...
who fell asleep.
...and the little bear fell asleep;
...and the little frog fell asleep;
...and the child fell asleep.
In the most basic computer science sense, recursion is a function that calls itself. Say you have a linked list structure:
struct Node {
Node* next;
};
And you want to find out how long a linked list is you can do this with recursion:
int length(const Node* list) {
if (!list->next) {
return 1;
} else {
return 1 + length(list->next);
}
}
(This could of course be done with a for loop as well, but is useful as an illustration of the concept)
Whenever a function calls itself, creating a loop, then that's recursion. As with anything there are good uses and bad uses for recursion.
The most simple example is tail recursion where the very last line of the function is a call to itself:
int FloorByTen(int num)
{
if (num % 10 == 0)
return num;
else
return FloorByTen(num-1);
}
However, this is a lame, almost pointless example because it can easily be replaced by more efficient iteration. After all, recursion suffers from function call overhead, which in the example above could be substantial compared to the operation inside the function itself.
So the whole reason to do recursion rather than iteration should be to take advantage of the call stack to do some clever stuff. For example, if you call a function multiple times with different parameters inside the same loop then that's a way to accomplish branching. A classic example is the Sierpinski triangle.
You can draw one of those very simply with recursion, where the call stack branches in 3 directions:
private void BuildVertices(double x, double y, double len)
{
if (len > 0.002)
{
mesh.Positions.Add(new Point3D(x, y + len, -len));
mesh.Positions.Add(new Point3D(x - len, y - len, -len));
mesh.Positions.Add(new Point3D(x + len, y - len, -len));
len *= 0.5;
BuildVertices(x, y + len, len);
BuildVertices(x - len, y - len, len);
BuildVertices(x + len, y - len, len);
}
}
If you attempt to do the same thing with iteration I think you'll find it takes a lot more code to accomplish.
Other common use cases might include traversing hierarchies, e.g. website crawlers, directory comparisons, etc.
Conclusion
In practical terms, recursion makes the most sense whenever you need iterative branching.
Recursion is a method of solving problems based on the divide and conquer mentality.
The basic idea is that you take the original problem and divide it into smaller (more easily solved) instances of itself, solve those smaller instances (usually by using the same algorithm again) and then reassemble them into the final solution.
The canonical example is a routine to generate the Factorial of n. The Factorial of n is calculated by multiplying all of the numbers between 1 and n. An iterative solution in C# looks like this:
public int Fact(int n)
{
int fact = 1;
for( int i = 2; i <= n; i++)
{
fact = fact * i;
}
return fact;
}
There's nothing surprising about the iterative solution and it should make sense to anyone familiar with C#.
The recursive solution is found by recognising that the nth Factorial is n * Fact(n-1). Or to put it another way, if you know what a particular Factorial number is you can calculate the next one. Here is the recursive solution in C#:
public int FactRec(int n)
{
if( n < 2 )
{
return 1;
}
return n * FactRec( n - 1 );
}
The first part of this function is known as a Base Case (or sometimes Guard Clause) and is what prevents the algorithm from running forever. It just returns the value 1 whenever the function is called with a value of 1 or less. The second part is more interesting and is known as the Recursive Step. Here we call the same method with a slightly modified parameter (we decrement it by 1) and then multiply the result with our copy of n.
When first encountered this can be kind of confusing so it's instructive to examine how it works when run. Imagine that we call FactRec(5). We enter the routine, are not picked up by the base case and so we end up like this:
// In FactRec(5)
return 5 * FactRec( 5 - 1 );
// which is
return 5 * FactRec(4);
If we re-enter the method with the parameter 4 we are again not stopped by the guard clause and so we end up at:
// In FactRec(4)
return 4 * FactRec(3);
If we substitute this return value into the return value above we get
// In FactRec(5)
return 5 * (4 * FactRec(3));
This should give you a clue as to how the final solution is arrived at so we'll fast track and show each step on the way down:
return 5 * (4 * FactRec(3));
return 5 * (4 * (3 * FactRec(2)));
return 5 * (4 * (3 * (2 * FactRec(1))));
return 5 * (4 * (3 * (2 * (1))));
That final substitution happens when the base case is triggered. At this point we have a simple algrebraic formula to solve which equates directly to the definition of Factorials in the first place.
It's instructive to note that every call into the method results in either a base case being triggered or a call to the same method where the parameters are closer to a base case (often called a recursive call). If this is not the case then the method will run forever.
Recursion is solving a problem with a function that calls itself. A good example of this is a factorial function. Factorial is a math problem where factorial of 5, for example, is 5 * 4 * 3 * 2 * 1. This function solves this in C# for positive integers (not tested - there may be a bug).
public int Factorial(int n)
{
if (n <= 1)
return 1;
return n * Factorial(n - 1);
}
Recursion refers to a method which solves a problem by solving a smaller version of the problem and then using that result plus some other computation to formulate the answer to the original problem. Often times, in the process of solving the smaller version, the method will solve a yet smaller version of the problem, and so on, until it reaches a "base case" which is trivial to solve.
For instance, to calculate a factorial for the number X, one can represent it as X times the factorial of X-1. Thus, the method "recurses" to find the factorial of X-1, and then multiplies whatever it got by X to give a final answer. Of course, to find the factorial of X-1, it'll first calculate the factorial of X-2, and so on. The base case would be when X is 0 or 1, in which case it knows to return 1 since 0! = 1! = 1.
Consider an old, well known problem:
In mathematics, the greatest common divisor (gcd) … of two or more non-zero integers, is the largest positive integer that divides the numbers without a remainder.
The definition of gcd is surprisingly simple:
where mod is the modulo operator (that is, the remainder after integer division).
In English, this definition says the greatest common divisor of any number and zero is that number, and the greatest common divisor of two numbers m and n is the greatest common divisor of n and the remainder after dividing m by n.
If you'd like to know why this works, see the Wikipedia article on the Euclidean algorithm.
Let's compute gcd(10, 8) as an example. Each step is equal to the one just before it:
gcd(10, 8)
gcd(10, 10 mod 8)
gcd(8, 2)
gcd(8, 8 mod 2)
gcd(2, 0)
2
In the first step, 8 does not equal zero, so the second part of the definition applies. 10 mod 8 = 2 because 8 goes into 10 once with a remainder of 2. At step 3, the second part applies again, but this time 8 mod 2 = 0 because 2 divides 8 with no remainder. At step 5, the second argument is 0, so the answer is 2.
Did you notice that gcd appears on both the left and right sides of the equals sign? A mathematician would say this definition is recursive because the expression you're defining recurs inside its definition.
Recursive definitions tend to be elegant. For example, a recursive definition for the sum of a list is
sum l =
if empty(l)
return 0
else
return head(l) + sum(tail(l))
where head is the first element in a list and tail is the rest of the list. Note that sum recurs inside its definition at the end.
Maybe you'd prefer the maximum value in a list instead:
max l =
if empty(l)
error
elsif length(l) = 1
return head(l)
else
tailmax = max(tail(l))
if head(l) > tailmax
return head(l)
else
return tailmax
You might define multiplication of non-negative integers recursively to turn it into a series of additions:
a * b =
if b = 0
return 0
else
return a + (a * (b - 1))
If that bit about transforming multiplication into a series of additions doesn't make sense, try expanding a few simple examples to see how it works.
Merge sort has a lovely recursive definition:
sort(l) =
if empty(l) or length(l) = 1
return l
else
(left,right) = split l
return merge(sort(left), sort(right))
Recursive definitions are all around if you know what to look for. Notice how all of these definitions have very simple base cases, e.g., gcd(m, 0) = m. The recursive cases whittle away at the problem to get down to the easy answers.
With this understanding, you can now appreciate the other algorithms in Wikipedia's article on recursion!
A function that calls itself
When a function can be (easily) decomposed into a simple operation plus the same function on some smaller portion of the problem. I should say, rather, that this makes it a good candidate for recursion.
They do!
The canonical example is the factorial which looks like:
int fact(int a)
{
if(a==1)
return 1;
return a*fact(a-1);
}
In general, recursion isn't necessarily fast (function call overhead tends to be high because recursive functions tend to be small, see above) and can suffer from some problems (stack overflow anyone?). Some say they tend to be hard to get 'right' in non-trivial cases but I don't really buy into that. In some situations, recursion makes the most sense and is the most elegant and clear way to write a particular function. It should be noted that some languages favor recursive solutions and optimize them much more (LISP comes to mind).
A recursive function is one which calls itself. The most common reason I've found to use it is traversing a tree structure. For example, if I have a TreeView with checkboxes (think installation of a new program, "choose features to install" page), I might want a "check all" button which would be something like this (pseudocode):
function cmdCheckAllClick {
checkRecursively(TreeView1.RootNode);
}
function checkRecursively(Node n) {
n.Checked = True;
foreach ( n.Children as child ) {
checkRecursively(child);
}
}
So you can see that the checkRecursively first checks the node which it is passed, then calls itself for each of that node's children.
You do need to be a bit careful with recursion. If you get into an infinite recursive loop, you will get a Stack Overflow exception :)
I can't think of a reason why people shouldn't use it, when appropriate. It is useful in some circumstances, and not in others.
I think that because it's an interesting technique, some coders perhaps end up using it more often than they should, without real justification. This has given recursion a bad name in some circles.
Recursion is an expression directly or indirectly referencing itself.
Consider recursive acronyms as a simple example:
GNU stands for GNU's Not Unix
PHP stands for PHP: Hypertext Preprocessor
YAML stands for YAML Ain't Markup Language
WINE stands for Wine Is Not an Emulator
VISA stands for Visa International Service Association
More examples on Wikipedia
Recursion works best with what I like to call "fractal problems", where you're dealing with a big thing that's made of smaller versions of that big thing, each of which is an even smaller version of the big thing, and so on. If you ever have to traverse or search through something like a tree or nested identical structures, you've got a problem that might be a good candidate for recursion.
People avoid recursion for a number of reasons:
Most people (myself included) cut their programming teeth on procedural or object-oriented programming as opposed to functional programming. To such people, the iterative approach (typically using loops) feels more natural.
Those of us who cut our programming teeth on procedural or object-oriented programming have often been told to avoid recursion because it's error prone.
We're often told that recursion is slow. Calling and returning from a routine repeatedly involves a lot of stack pushing and popping, which is slower than looping. I think some languages handle this better than others, and those languages are most likely not those where the dominant paradigm is procedural or object-oriented.
For at least a couple of programming languages I've used, I remember hearing recommendations not to use recursion if it gets beyond a certain depth because its stack isn't that deep.
A recursive statement is one in which you define the process of what to do next as a combination of the inputs and what you have already done.
For example, take factorial:
factorial(6) = 6*5*4*3*2*1
But it's easy to see factorial(6) also is:
6 * factorial(5) = 6*(5*4*3*2*1).
So generally:
factorial(n) = n*factorial(n-1)
Of course, the tricky thing about recursion is that if you want to define things in terms of what you have already done, there needs to be some place to start.
In this example, we just make a special case by defining factorial(1) = 1.
Now we see it from the bottom up:
factorial(6) = 6*factorial(5)
= 6*5*factorial(4)
= 6*5*4*factorial(3) = 6*5*4*3*factorial(2) = 6*5*4*3*2*factorial(1) = 6*5*4*3*2*1
Since we defined factorial(1) = 1, we reach the "bottom".
Generally speaking, recursive procedures have two parts:
1) The recursive part, which defines some procedure in terms of new inputs combined with what you've "already done" via the same procedure. (i.e. factorial(n) = n*factorial(n-1))
2) A base part, which makes sure that the process doesn't repeat forever by giving it some place to start (i.e. factorial(1) = 1)
It can be a bit confusing to get your head around at first, but just look at a bunch of examples and it should all come together. If you want a much deeper understanding of the concept, study mathematical induction. Also, be aware that some languages optimize for recursive calls while others do not. It's pretty easy to make insanely slow recursive functions if you're not careful, but there are also techniques to make them performant in most cases.
Hope this helps...
I like this definition:
In recursion, a routine solves a small part of a problem itself, divides the problem into smaller pieces, and then calls itself to solve each of the smaller pieces.
I also like Steve McConnells discussion of recursion in Code Complete where he criticises the examples used in Computer Science books on Recursion.
Don't use recursion for factorials or Fibonacci numbers
One problem with
computer-science textbooks is that
they present silly examples of
recursion. The typical examples are
computing a factorial or computing a
Fibonacci sequence. Recursion is a
powerful tool, and it's really dumb to
use it in either of those cases. If a
programmer who worked for me used
recursion to compute a factorial, I'd
hire someone else.
I thought this was a very interesting point to raise and may be a reason why recursion is often misunderstood.
EDIT:
This was not a dig at Dav's answer - I had not seen that reply when I posted this
1.)
A method is recursive if it can call itself; either directly:
void f() {
... f() ...
}
or indirectly:
void f() {
... g() ...
}
void g() {
... f() ...
}
2.) When to use recursion
Q: Does using recursion usually make your code faster?
A: No.
Q: Does using recursion usually use less memory?
A: No.
Q: Then why use recursion?
A: It sometimes makes your code much simpler!
3.) People use recursion only when it is very complex to write iterative code. For example, tree traversal techniques like preorder, postorder can be made both iterative and recursive. But usually we use recursive because of its simplicity.
Here's a simple example: how many elements in a set. (there are better ways to count things, but this is a nice simple recursive example.)
First, we need two rules:
if the set is empty, the count of items in the set is zero (duh!).
if the set is not empty, the count is one plus the number of items in the set after one item is removed.
Suppose you have a set like this: [x x x]. let's count how many items there are.
the set is [x x x] which is not empty, so we apply rule 2. the number of items is one plus the number of items in [x x] (i.e. we removed an item).
the set is [x x], so we apply rule 2 again: one + number of items in [x].
the set is [x], which still matches rule 2: one + number of items in [].
Now the set is [], which matches rule 1: the count is zero!
Now that we know the answer in step 4 (0), we can solve step 3 (1 + 0)
Likewise, now that we know the answer in step 3 (1), we can solve step 2 (1 + 1)
And finally now that we know the answer in step 2 (2), we can solve step 1 (1 + 2) and get the count of items in [x x x], which is 3. Hooray!
We can represent this as:
count of [x x x] = 1 + count of [x x]
= 1 + (1 + count of [x])
= 1 + (1 + (1 + count of []))
= 1 + (1 + (1 + 0)))
= 1 + (1 + (1))
= 1 + (2)
= 3
When applying a recursive solution, you usually have at least 2 rules:
the basis, the simple case which states what happens when you have "used up" all of your data. This is usually some variation of "if you are out of data to process, your answer is X"
the recursive rule, which states what happens if you still have data. This is usually some kind of rule that says "do something to make your data set smaller, and reapply your rules to the smaller data set."
If we translate the above to pseudocode, we get:
numberOfItems(set)
if set is empty
return 0
else
remove 1 item from set
return 1 + numberOfItems(set)
There's a lot more useful examples (traversing a tree, for example) which I'm sure other people will cover.
Well, that's a pretty decent definition you have. And wikipedia has a good definition too. So I'll add another (probably worse) definition for you.
When people refer to "recursion", they're usually talking about a function they've written which calls itself repeatedly until it is done with its work. Recursion can be helpful when traversing hierarchies in data structures.
An example: A recursive definition of a staircase is:
A staircase consists of:
- a single step and a staircase (recursion)
- or only a single step (termination)
To recurse on a solved problem: do nothing, you're done.
To recurse on an open problem: do the next step, then recurse on the rest.
In plain English:
Assume you can do 3 things:
Take one apple
Write down tally marks
Count tally marks
You have a lot of apples in front of you on a table and you want to know how many apples there are.
start
Is the table empty?
yes: Count the tally marks and cheer like it's your birthday!
no: Take 1 apple and put it aside
Write down a tally mark
goto start
The process of repeating the same thing till you are done is called recursion.
I hope this is the "plain english" answer you are looking for!
A recursive function is a function that contains a call to itself. A recursive struct is a struct that contains an instance of itself. You can combine the two as a recursive class. The key part of a recursive item is that it contains an instance/call of itself.
Consider two mirrors facing each other. We've seen the neat infinity effect they make. Each reflection is an instance of a mirror, which is contained within another instance of a mirror, etc. The mirror containing a reflection of itself is recursion.
A binary search tree is a good programming example of recursion. The structure is recursive with each Node containing 2 instances of a Node. Functions to work on a binary search tree are also recursive.
This is an old question, but I want to add an answer from logistical point of view (i.e not from algorithm correctness point of view or performance point of view).
I use Java for work, and Java doesn't support nested function. As such, if I want to do recursion, I might have to define an external function (which exists only because my code bumps against Java's bureaucratic rule), or I might have to refactor the code altogether (which I really hate to do).
Thus, I often avoid recursion, and use stack operation instead, because recursion itself is essentially a stack operation.
You want to use it anytime you have a tree structure. It is very useful in reading XML.
Recursion as it applies to programming is basically calling a function from inside its own definition (inside itself), with different parameters so as to accomplish a task.
"If I have a hammer, make everything look like a nail."
Recursion is a problem-solving strategy for huge problems, where at every step just, "turn 2 small things into one bigger thing," each time with the same hammer.
Example
Suppose your desk is covered with a disorganized mess of 1024 papers. How do you make one neat, clean stack of papers from the mess, using recursion?
Divide: Spread all the sheets out, so you have just one sheet in each "stack".
Conquer:
Go around, putting each sheet on top of one other sheet. You now have stacks of 2.
Go around, putting each 2-stack on top of another 2-stack. You now have stacks of 4.
Go around, putting each 4-stack on top of another 4-stack. You now have stacks of 8.
... on and on ...
You now have one huge stack of 1024 sheets!
Notice that this is pretty intuitive, aside from counting everything (which isn't strictly necessary). You might not go all the way down to 1-sheet stacks, in reality, but you could and it would still work. The important part is the hammer: With your arms, you can always put one stack on top of the other to make a bigger stack, and it doesn't matter (within reason) how big either stack is.
Recursion is the process where a method call iself to be able to perform a certain task. It reduces redundency of code. Most recurssive functions or methods must have a condifiton to break the recussive call i.e. stop it from calling itself if a condition is met - this prevents the creating of an infinite loop. Not all functions are suited to be used recursively.
hey, sorry if my opinion agrees with someone, I'm just trying to explain recursion in plain english.
suppose you have three managers - Jack, John and Morgan.
Jack manages 2 programmers, John - 3, and Morgan - 5.
you are going to give every manager 300$ and want to know what would it cost.
The answer is obvious - but what if 2 of Morgan-s employees are also managers?
HERE comes the recursion.
you start from the top of the hierarchy. the summery cost is 0$.
you start with Jack,
Then check if he has any managers as employees. if you find any of them are, check if they have any managers as employees and so on. Add 300$ to the summery cost every time you find a manager.
when you are finished with Jack, go to John, his employees and then to Morgan.
You'll never know, how much cycles will you go before getting an answer, though you know how many managers you have and how many Budget can you spend.
Recursion is a tree, with branches and leaves, called parents and children respectively.
When you use a recursion algorithm, you more or less consciously are building a tree from the data.
In plain English, recursion means to repeat someting again and again.
In programming one example is of calling the function within itself .
Look on the following example of calculating factorial of a number:
public int fact(int n)
{
if (n==0) return 1;
else return n*fact(n-1)
}
Any algorithm exhibits structural recursion on a datatype if basically consists of a switch-statement with a case for each case of the datatype.
for example, when you are working on a type
tree = null
| leaf(value:integer)
| node(left: tree, right:tree)
a structural recursive algorithm would have the form
function computeSomething(x : tree) =
if x is null: base case
if x is leaf: do something with x.value
if x is node: do something with x.left,
do something with x.right,
combine the results
this is really the most obvious way to write any algorith that works on a data structure.
now, when you look at the integers (well, the natural numbers) as defined using the Peano axioms
integer = 0 | succ(integer)
you see that a structural recursive algorithm on integers looks like this
function computeSomething(x : integer) =
if x is 0 : base case
if x is succ(prev) : do something with prev
the too-well-known factorial function is about the most trivial example of
this form.
function call itself or use its own definition.

Resources