I've been playing around with Amazon DynamoDB and looking through their examples but I think I'm still slightly confused by the example. I've created the example data on a local dynamodb instance to get used to querying data etc. The sample data sets up 3 tables of 'Forum'->'Thread'->'Reply'
Now if I'm in a specific forum, the thread table has a ForumName key I can query against to return relevant threads, but would the very top level (displaying the forums) always have to be a scan operation?
From what I can gather the only way to "select *" in dynamodb is to use a scan and I assume in this instance - where forum is very high level and might have a relatively small number of rows - that it wouldn't be that expensive or are you actually better creating a hash and range key and using that to query this table? I'm not sure what the range key would be in this instance, maybe just a number and then specify in the query that the value has to be > 0? Or perhaps a date it was created and the query always uses a constant date in the past?
I did try a sample query on the 'Forum' table example data using a ComparisonOperator of 'GE' (Greater than or equal) with an attribute value list of 'S'=>'a' but this states that any conditions on the hash key must be of type EQ which implies I couldn't do the above as I would always need to know my 'Name' values upfront
Maybe I'm still struggling having come from an RDBS background especially seen as there are many forum examples out there.
thanks
I think using Scan to get all the forums is fine. I think it is very efficient because it will not return you anything that you don't need (all of the work that scan does is necessary). Also since Scan operation is so simple it is easier to implement and more likely to be efficient
Here's my problem.
I want to ingest lots and lots of data .... right now millions and later billions of rows.
I have been using MySQL and I am playing around with PostgreSQL for now.
Inserting is easy, but before I insert I want to check if that particular records exists or not, if it does I don't want to insert. As the DB grows this operation (obviously) takes longer and longer.
If my data was in a Hashmap the look up would be o(1) so I thought I'd create a Hash index to help with lookups. But then I realised that if I have to compute the Hash again every time I will slow the process down massively (and if I don't compute the index I don't have o(1) lookup).
So I am in a quandry, is there a simple solution? Or a complex one? I am happy to try other datastores, however I need to be able to do reasonably complex queries e.g. something to similar to SELECT statements with WHERE clauses, so I am not sure if no-sql solutions are applicable.
I am very much a novice, so I wouldn't be surprised if there is a trivial solution.
Nosql Stores are good for handling huge inserts and updates
MongoDB has really good feature for update/Insert (called as upsert) based on whether the document is existing.
Check out this page from mongo doc
http://www.mongodb.org/display/DOCS/Updating#Updating-UpsertswithModifiers
Also you can checkout the safe mode in mongo connection. Which you can set it as false to get more efficiency in inserts.
http://www.mongodb.org/display/DOCS/Connections
You could use CouchDB. Its no SQL so you can't do queries per se, but you can create design documents that allow you to run map/reduce functions on your data.
I have a typical scenario that I'm struggling with from a performance standpoint. The user selects a value from a dropdown and clicks a button. A stored procedure takes that value as an input parameter, executes, and returns the results to a grid. For just one of the values ('All'), the query runs for roughly 2.5 minutes. For the rest of the values the query runs less than 1ms.
Obviously, having the user wait for 2.5 minutes just isn't going to fly. So, what are some typical strategies to handle this?
Some of my own thoughts:
New table that stores the information for the 'All' value and is generated nightly
Cache the data on the caching server
Any help is appreciated.
Thanks!
Update
A little bit more info:
sp returns two result sets. The first is a group by rollup summary and the second is the first result set, disaggregated (roughly 80,000 rows).
I would first look at if your have the proper indexes in place. Using the Query Analyzer and the Database Tuning Assistant is a simple and often effective way of seeing what indexes might help.
If you still have performance problems after creating the appropriate indexes you might then look at adding tables/views to speed things up. If your query does a lot of joins you might consider creating an indexed view that allows you to do a select with no joins on the denormalized data. Since indexed views are persisted you can see big gains from their use.
You can read up on indexed views here:
http://msdn.microsoft.com/en-us/library/dd171921%28v=sql.100%29.aspx
and read about the database tuning adviser here:
http://msdn.microsoft.com/en-us/library/ms166575.aspx
Also, how many records does "All" return? I have seen people get hung up on the "All" scenario before, but if it returns 1 million records or something then the data is not usable to a person anyways...
Caching data is a good thing, but.... if the SP is inherently flawed, then you might want to actually fix it instead of trying to bandage it with caching.
You might also want to (since you didn't mention here) look at the number of rows "All" returns compared to the other selections and think about your indexes.
Also in your SP does the "All" cause it to run a different sets of tsql as in maybe a case or an if... or is it running the same code just with a different "WHERE"?
It might simply be that "ALL" just returns A LOT of records. You may want to implement paging and partial dataset return using ajax... (kinda like return the first 1000 records early so that it can be displayed and also show a throbber on the screen while the rest of the dataset is returned)
These are all options... if the number of records really isnt that different between ALL and the others... then it probably has something to do with the query/index/program flow.
We have a web service method which accepts some data and puts it in Lucene index. We use it to index new and updated entries from our asp.net web app.
These entries are stored in a large SQL Server table (20M rows and growing), and I need a way to be able to reindex the whole table in case if current index gets deleted or corrupted. I'm not sure what's the optimal way to retrieve chunks of data from a large table. Currently, we use the fact that the table has PK which is autoincrement, so we get chunks of 1000 rows until it starts to return nothing. Kind of like (in pseudo language):
i = 0
while (true)
{
SELECT col1, col2, col3 FROM mytable WHERE pk between i and i + 1000
.... if result is empty 20 times in a row, break ....
.... otherwise send result to web service to reindex ....
i = i + 1000
}
This way, we don't need to SELECT COUNT(*) which would be a big performance killer, and we just move up the pk values until we stop getting any results. This has it's con: if we have a hole greater than 20,000 values somewhere in the table, it will stop indexing assuming it reached the end, but that's a tradeoff we have to live for now.
Can anyone suggest a more efficient way of getting data from a table to index? I would assume we are not the first ones facing this problem - search engines are widely used nowadays :)
For what we do with Lucene, we rarely need to reindex everything. I can't remember coming across any case when all index would be corrupted (Lucene is actually quite safe/good at this), but it has been many times when individual items needed to be reindexed because of one reason or another. I'd say the most frequent reindexing patterns would be:
reindex items by given id (or set of ids)
reindex items by given period of time
The latter, of course, requires separate db index on the relevant date field(s) which should be a bit costly for 20M+ records but we decided to go for it (our biggest deployment had up to 10M records) as disk space is cheap these days anyway.
EDIT: added few explanations as per question author's comment.
If the source data structure changes, requiring reindexing of all records, our approach is to roll out new code which ensures all new data is correct (basically forms correct Lucene Document from this moment). Then after we can reindex things in batches (either manually or by hand), by providing relevant period ranges. This, to certain extent, also applies to Lucene version changes, too.
Why is a COUNT(*) a performance killer? What about MAX(id)? I'm thinking that a index would provide the information needed for those queries. You do have an index on your primary key, right?
I actually just figured it out - I can use IDENT_CURRENT(table_name) to get the last generated id, and use that instead of MAX() or Count() - this method should blow the other two away :)
Is it quicker to make one trip to the database and bring back 3000+ plus rows, then manipulate them in .net & LINQ or quicker to make 6 calls bringing back a couple of 100 rows at a time?
It will entirely depend on the speed of the database, the network bandwidth and latency, the speed of the .NET machine, the actual queries etc.
In other words, we can't give you a truthful general answer. I know which sounds easier to code :)
Unfortunately this is the kind of thing which you can't easily test usefully without having an exact replica of the production environment - most test environments are somewhat different to the production environment, which could seriously change the results.
Is this for one user, or will many users be querying the data? The single database call will scale better under load.
Speed is only one consideration among many.
How flexible is your code? How easy is it to revise and extend when the requirements change? How easy is it for another person to read and maintain your code? How portable is your code? what if you change to a diferent DBMS, or a different progamming language? Are any of these considerations important in your case?
Having said that, go for the single round trip if all other things are equal or unimportant.
You mentioned that the single round trip might result in reading data you don't need. If all the data you need can be described in a single result table, then it should be possible to devise a query that will get that result. That result table might deliver some result data in more than one row, if the query denormalizes the data. In that case, you might gain some speed by obtaining the data in several result tables, and composing the result yourself.
You haven't given enough information to know how much programming effort it will be to compose a single query or to compose the data returned by 6 queries.
As others have said, it depends.
If you know which 6 SQL statements you're going to execute beforehand, you can bundle them into one call to the database, and return multiple result sets using ADO or ADO.NET.
http://support.microsoft.com/kb/311274
the problem I have here is that I need it all, i just need it displayed separately...
The answer to your question is 1 query for 3000 rows is better than 6 queries for 500 rows. (given that you are bringing all 3000 rows back regardless)
However, there's no way you're going (to want) to display 3000 rows at a time, is there? In all likelihood, irrespective of using Linq, you're going to want to run aggregating queries and get the database to do the work for you. You should hopefully be able to construct the SQL (or Linq query) to perform all required logic in one shot.
Without knowing what you're doing, it's hard to be more specific.
* If you absolutely, positively need to bring back all the rows, then investigate the ToLookup() method for your linq IQueryable< T >. It's very handy for grouping results in non-standard ways.
Oh, and I highly recommend LINQPad (free) for trying out queries with Linq. It has loads of examples, and it also shows you the sql and lambda forms so you can familiarize yourself with Linq<->lambda form<->Sql.
Well, the answer is always "it depends". Do you want to optimize on the database load or on the application load?
My general answer in this case would be to use as specific queries as possible at the database level, therefore using 6 calls.
Thx
I was kind of thinking "ball park", but it sounds as though its a choice thing...the difference is likely small.
I was thinking that getting all the data and manipulating in .net would be the best - I have nothing concrete to base this on (hence the question), I just tend to feel that calls to the DB are expensive and if I know i need all the data...get it in one hit?!?
Part of the problem is that you have not provided sufficient information to give you a precise answer. Obviously, available resources need to be considered.
If you pull 3000 rows infrequently, it might work for you in the short term. However, if there are say 10,000 people that execute the same query (ignoring cache effects), this could become a problem for both the app and db.
Now in the case of something like pagination, it makes sense to pull in just what you need. But that would be a general rule to try to only pull what is necessary. It's much more elegant to use a scalpel instead of a broadsword. =)
If you are talking about a query that has already been run by SQL (so optimized by SQL Server), working with LINQ or a SqlDataReader might actually have the same performance.
The only difference will be "how hard will it be to maintain your code?"
LINQ doesn't query anything to the database until you ask for the result with ".ToList()" or ".ToArray()" or even ".Count()". LINQ is dynamically building your query so it is exactly the same as having a SqlDataReader but with runtime verification.
Rather than speculating, why don't you try both and measure the results?
It depends
1) if your connector implementation precaches a lot of objects AND you have big rows (for example blobs, contry polygons etc.) you have a problem, you have to download a LOT of data. I've optimalized once a code that had this problem and it was just downloading some megs of garbage all the time via localhost, and my software runs now 10 times faster because i removed the precaching by an option
2) If your rows are small and you have a good chance that you need to read through all the 3000, you're better going on a big resultset
3) If you don't use prepared statements, all queries have to be parsed! Big resultset might be better.
Hope it helped
I always stick to the rule of "bring in what I need" and nothing more...the problem I have here is that I need it all, I just need it displayed separately.
So say...
I have a table with userid and typeid. I want to display all records with a userid, and display on the page in grids say separated by typeid.
At the moment I call sproc that does "select field1, field2 from tab where userid=1",
then on the page set the datasource of a grid to from t in tab where typeid=2 select t;
Rather than calling a different sproc "select field1, field2 from tab where userid=1 and typeid=2" 6 times.
??