I am working in glsl with tessellation-shaders and I am trying to do displacement mapping. It's working, but I want to move the matrix-transformation-code from the tessellation evaluation shader to the vertex shader. Why I want to have this in the vertex-shader is because I do not want to do this calculation
for every sub triangles vertices, and I want the vertices to be in screenspace in the vertex shader so I can decide how much every triangle should be subdivided in the tessellation control shader.
The version that do not work, is "almost" working, there is some issues when the triangles are rendered.
I would really appreciate even the smallest hint of what may be wrong.
This (bad) version works (position and normal are transformed in tessellation evaluation shader)
// vertex shader
void main_(void)
{
gl_Position = VertexPosition;
VertexTexCoord1 = VertexTexCoord;
VertexNormal1 = VertexNormal;
}
// tessellation evaluation shader
void main_()
{
VertexTexCoord3 = interpolate(VertexTexCoord2);
vec3 normal = interpolate(VertexNormal2);
vec4 pos = interpolate(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_in[2].gl_Position);
vec4 movement = vec4(normal * (texture2D(heigthMap,VertexTexCoord3).r), 0.0);
gl_Position = mvpMatrix * (pos + movement);
}
This version does not work (position and normal are transformed in vertex shader)
// vertex shader
void main(void)
{
gl_Position = mvpMatrix * VertexPosition;
VertexTexCoord1 = VertexTexCoord;
VertexNormal1 = mat3(mvpMatrix) * VertexNormal;
}
// tessellation evaluation shader
void main()
{
VertexTexCoord3 = interpolate(VertexTexCoord2);
vec3 normal = interpolate(VertexNormal2);
vec4 pos = interpolate(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_in[2].gl_Position);
vec4 movement = vec4(normal * (texture2D(heigthMap,VertexTexCoord3).r), 0.0);
gl_Position = (pos + movement);
}
In the "non-working" version the last line in tesselation shader seems to be incorrect. You're forgetting that in the source variant you had 'movement' multiplied by the mvpMatrix.
I would have tried to use this:
// tessellation evaluation shader
void main()
{
VertexTexCoord3 = interpolate(VertexTexCoord2);
vec3 normal = interpolate(VertexNormal2);
vec4 pos = interpolate(gl_in[0].gl_Position, gl_in[1].gl_Position, gl_in[2].gl_Position);
vec4 movement = vec4(normal * (texture2D(heigthMap,VertexTexCoord3).r), 0.0);
/// This multiplication by mvpMatrix is inevitable
gl_Position = (pos + mvpMatrix * movement);
}
Sorry if I mixed the order of the stages, but the code above (two versions) is definitely non-equivalent.
Related
I'm trying to rasterize a conic (rational quadratic) bezier, and came across this snippet: https://www.shadertoy.com/view/MlKcDD The idea is to calculate the distance from each fragment to the bezier and use that information to calculate translucency to achieve anti-aliasing. The problem is that it needs to work for rational beziers and the example is beyond my math skills to modify to do so.
I meant this snippet in particular:
// This method provides just an approximation, and is only usable in
// the very close neighborhood of the curve. Taken and adapted from
// http://research.microsoft.com/en-us/um/people/hoppe/ravg.pdf
float sdBezier( vec2 p, vec2 v0, vec2 v1, vec2 v2 )
{
vec2 i = v0 - v2;
vec2 j = v2 - v1;
vec2 k = v1 - v0;
vec2 w = j-k;
v0-= p; v1-= p; v2-= p;
float x = cro(v0, v2);
float y = cro(v1, v0);
float z = cro(v2, v1);
vec2 s = 2.0*(y*j+z*k)-x*i;
float r = (y*z-x*x*0.25)/dot2(s);
float t = clamp( (0.5*x+y+r*dot(s,w))/(x+y+z),0.0,1.0);
return length( v0+t*(k+k+t*w) );
}
I am trying to add support for geometry shaders for a Vulkan project, so I am just starting with something simple for now.
The goal is, given a list of vertices, generate a perfect rectangle encompassing that line.
For that effect I made this geometry shader:
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(lines) in;
layout(triangle_strip, max_vertices = 6) out;
layout(location = 0) in vec2 fragCoord[];
layout(location = 0) out vec2 fragTexCoord;
void main() {
vec2 p1 = gl_in[0].gl_Position.xy;
vec2 p2 = gl_in[1].gl_Position.xy;
vec2 tangent = normalize(p2 - p1);
vec2 normal = vec2(tangent.y, -tangent.x) * 0.05;
vec2 quad[4] = vec2[](p1 + normal, p1 - normal, p2 + normal, p2 - normal);
// Create first triangle
gl_Position = vec4(quad[0], 0, 1);
EmitVertex();
gl_Position = vec4(quad[1], 0, 1);
EmitVertex();
gl_Position = vec4(quad[2], 0, 1);
EmitVertex();
EndPrimitive();
// Create second triangle
gl_Position = vec4(quad[1], 0, 1);
EmitVertex();
gl_Position = vec4(quad[2], 0, 1);
EmitVertex();
gl_Position = vec4(quad[3], 0, 1);
EmitVertex();
EndPrimitive();
}
Which outputs:
The vertex shader is:
#version 450
#extension GL_ARB_separate_shader_objects : enable
layout(location = 0) in vec3 inPosition;
layout(location = 1) in vec2 inTexCoord;
layout(location = 0) out vec2 fragTexCoord;
void main() {
gl_Position = vec4(inPosition, 1.0);
fragTexCoord = inTexCoord;
}
I am not sure why the lines are parallelograms instead of rectangles. Adding the normal to the line (the orthogonal direction) to both vertices in the line should make a rectangle, by definition.
Edit:
Even hard coding the vertices in the vertex shader seems to produce the same result:
vec4 verts[2] = vec4[](vec4(-0.5,-0.5,0,1), vec4(0.5,0.5,0,1));
void main() {
gl_Position = verts[gl_VertexID];//vec4(inPosition, 1.0);
fragTexCoord = inTexCoord;
}
I made a silly mistake, since coordinates are calculated on the NORMALIZED GL space, but the window is not a square, my space is stretched, defroming the topology. This is the result in a perfectly squared image:
To correct this error I must pass the aspect ratio information to the shader and correct the vertex positions accordingly.
Update
See rationale at the end of my question below
Using WebGL2 I can access a texel by its denormalized coordinates (sorry don't the right lingo for this). That means I don't have to scale them down to 0-1 like I do in texture2D().
However the input to the fragment shader is still the vec2/3 in normalized values.
Is there a way to declare in/out variables in the Vertex and Frag shaders so that I don't have to scale the coordinates?
somewhere in vertex shader:
...
out vec2 TextureCoordinates;
somewhere in frag shader:
...
in vec2 TextureCoordinates;
I would like for TextureCoordinates to be ivec2 and already scaled.
This question and all my other questions on webgl related to general computing using WebGL. We are trying to do tensor (multi-D matrix) operations using WebGL.
We map our data in a few ways to a Texture. The simplest approach we follow is -- assuming we can access our data as a flat array -- to lay it out along the texture's width and go up the texture's height until we're done.
Since our thinking, logic, and calculations are all based on tensor/matrix indices -- inside the fragment shader -- we'd have to map back to/from the X-Y texture coordinates to indices. The intermediate step here is to calculate an offset for a given position of a texel. Then from that offset we can calculate the matrix indices from its strides.
Calculating an offset in webgl 1 for very large textures seems to be taking much longer than webgl2 using the integer coordinates. See below:
WebGL 1 offset calculation
int coordsToOffset(vec2 coords, int width, int height) {
float s = coords.s * float(width);
float t = coords.t * float(height);
int offset = int(t) * width + int(s);
return offset;
}
vec2 offsetToCoords(int offset, int width, int height) {
int t = offset / width;
int s = offset - t*width;
vec2 coords = (vec2(s,t) + vec2(0.5,0.5)) / vec2(width, height);
return coords;
}
WebGL 2 offset calculation in the presence of int coords
int coordsToOffset(ivec2 coords, int width) {
return coords.t * width + coords.s;
}
ivec2 offsetToCoords(int offset, int width) {
int t = offset / width;
int s = offset - t*width;
return ivec2(s,t);
}
It should be clear that for a series of large texture operations we're saving hundreds of thousands of operations just on the offset/coords calculation.
It's not clear why you want do what you're trying to do. It would be better to ask something like "I'm trying to draw an image/implement post processing glow/do ray tracing/... and to do that I want to use un-normalized texture coordinates because " and then we can tell you if your solution is going to work and how to solve it.
In any case, passing int or unsigned int or ivec2/3/4 or uvec2/3/4 as a varying is supported but not interpolation. You have to declare them as flat.
Still, you can pass un-normalized values as float or vec2/3/4 and the convert to int, ivec2/3/4 in the fragment shader.
The other issue is you'll get no sampling using texelFetch, the function that takes texel coordinates instead of normalized texture coordinates. It just returns the exact value of a single pixel. It does not support filtering like the normal texture function.
Example:
function main() {
const gl = document.querySelector('canvas').getContext('webgl2');
if (!gl) {
return alert("need webgl2");
}
const vs = `
#version 300 es
in vec4 position;
in ivec2 texelcoord;
out vec2 v_texcoord;
void main() {
v_texcoord = vec2(texelcoord);
gl_Position = position;
}
`;
const fs = `
#version 300 es
precision mediump float;
in vec2 v_texcoord;
out vec4 outColor;
uniform sampler2D tex;
void main() {
outColor = texelFetch(tex, ivec2(v_texcoord), 0);
}
`;
// compile shaders, link program, look up locations
const programInfo = twgl.createProgramInfo(gl, [vs, fs]);
// create buffers via gl.createBuffer, gl.bindBuffer, gl.bufferData)
const bufferInfo = twgl.createBufferInfoFromArrays(gl, {
position: {
numComponents: 2,
data: [
-.5, -.5,
.5, -.5,
0, .5,
],
},
texelcoord: {
numComponents: 2,
data: new Int32Array([
0, 0,
15, 0,
8, 15,
]),
}
});
// make a 16x16 texture
const ctx = document.createElement('canvas').getContext('2d');
ctx.canvas.width = 16;
ctx.canvas.height = 16;
for (let i = 23; i > 0; --i) {
ctx.fillStyle = `hsl(${i / 23 * 360 | 0}, 100%, ${i % 2 ? 25 : 75}%)`;
ctx.beginPath();
ctx.arc(8, 15, i, 0, Math.PI * 2, false);
ctx.fill();
}
const tex = twgl.createTexture(gl, { src: ctx.canvas });
gl.useProgram(programInfo.program);
twgl.setBuffersAndAttributes(gl, programInfo, bufferInfo);
// no need to set uniforms since they default to 0
// and only one texture which is already on texture unit 0
gl.drawArrays(gl.TRIANGLES, 0, 3);
}
main();
<canvas></canvas>
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
So in response to your updated question it's still not clear what you want to do. Why do you want to pass varyings to the fragment shader? Can't you just do whatever math you want in the fragment shader itself?
Example:
uniform sampler2D tex;
out float result;
// some all the values in the texture
vec4 sum4 = vec4(0);
ivec2 texDim = textureSize(tex, 0);
for (int y = 0; y < texDim.y; ++y) {
for (int x = 0; x < texDim.x; ++x) {
sum4 += texelFetch(tex, ivec2(x, y), 0);
}
}
result = sum4.x + sum4.y + sum4.z + sum4.w;
Example2
uniform isampler2D indices;
uniform sampler2D data;
out float result;
// some only values in data pointed to by indices
vec4 sum4 = vec4(0);
ivec2 texDim = textureSize(indices, 0);
for (int y = 0; y < texDim.y; ++y) {
for (int x = 0; x < texDim.x; ++x) {
ivec2 index = texelFetch(indices, ivec2(x, y), 0).xy;
sum4 += texelFetch(tex, index, 0);
}
}
result = sum4.x + sum4.y + sum4.z + sum4.w;
Note that I'm also not an expert in GPGPU but I have an hunch the code above is not the fastest way because I believe parallelization happens based on output. The code above has only 1 output so no parallelization? It would be easy to change so that it takes a block ID, tile ID, area ID as input and computes just the sum for that area. Then you'd write out a larger texture with the sum of each block and finally sum the block sums.
Also, dependant and non-uniform texture reads are a known perf issue. The first example reads the texture in order. That's cache friendly. The second example reads the texture in a random order (specified by indices), that's not cache friendly.
I am trying to implement the reflection mapping in OpenGL ES 2.0 for 'sphere'.
I have done the skybox.
For sphere rendering, the reflection shaders i have used are:
Environment mapping (Sphere) vertex shader::
precision highp float;
uniform mat4 u_mvMatrix; // ModelView Matrix
uniform mat4 u_mvpMatrix; // ModelViewProjection Matrix
attribute vec4 a_position;
attribute vec3 a_envmapNormal;
varying vec3 v_eyecoordEyeReflection;
vec3 v_eyecoordPosition;
vec3 v_eyecoordNormal;
void main()
{
// position and normal in model coordinates
vec4 modelCoordPosition = a_position;
vec3 modelCoordNormal = a_envmapNormal;
// Calculate position in eye space
v_eyecoordPosition = vec3(u_mvMatrix * modelCoordPosition);
// Calculate and normalize eye space normal
vec3 eyecoordNormal = vec3(u_mvMatrix * vec4(modelCoordNormal, 0.0));
v_eyecoordNormal = normalize(eyecoordNormal);
// Calculate reflection vector
v_eyecoordEyeReflection = reflect(v_eyecoordPosition, v_eyecoordNormal);
gl_Position = u_mvpMatrix * a_position;
}
Environment mapping (Sphere) Fragment shader
precision highp float;
uniform lowp samplerCube baseCubeMapTexture;
varying vec3 v_eyecoordEyeReflection;
void main()
{
gl_FragColor = textureCube(baseCubeMapTexture, v_eyecoordEyeReflection);
}
But i am not getting correct output.
When the sphere is rotated, the texture is not changing.
what is the error in the shader?
Thanks Andon...
I used your shader code.
But i am getting white sphere.
Sphere Normals are calculated using:
#define ANGLE_STEP ((2.0f * OGLES_PI) / ((float) NUM_OF_SLICES))
for ( iCnti = 0; iCnti < NUM_OF_PARALLELS + 1; iCnti++ ) {
for ( iCntj = 0; iCntj < NUM_OF_SLICES + 1; iCntj++ ) {
pSphereNormals[iNormalIndex + 0] = sin(ANGLE_STEP * (FLOAT) iCnti )* sin (ANGLE_STEP *(FLOAT)iCntj);
pSphereNormals[iNormalIndex + 1] = cos(ANGLE_STEP * (FLOAT) iCnti );
pSphereNormals[iNormalIndex + 2] = sin(ANGLE_STEP * (FLOAT) iCnti )* cos (ANGLE_STEP *(FLOAT)iCntj);
iNormalIndex += 3;
}
}
My View Matrix "matViewMatrix" is derived from (http://www.learnopengles.com/tag/linmath-h/ mat4x4_look_at())
MyCameraLookAt(matViewMatrix, 0.0f , 0.0f, -2.0f, 0.0f , 0.0f, -1.0f, 0.0f , 1.0f, 0.0f);
The Inverse matrix InvViewMat is // inverse() function is taken from http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
InvViewMat[0][0] = -1.000000 InvViewMat[1][0] = -0.000000 InvViewMat[2][0] = 0.000000 InvViewMat[3][0] = -0.000000
InvViewMat[0][1] = -0.000000 InvViewMat[1][1] = 1.000000 InvViewMat[2][1] = -0.000000 InvViewMat[3][1] = -0.000000
InvViewMat[0][2] = 0.000000 InvViewMat[1][2] = -0.000000 InvViewMat[2][2] = -1.000000 InvViewMat[3][2] = -2.000000
InvViewMat[0][3] = -0.000000 InvViewMat[1][3] = 0.000000 InvViewMat[2][3] = 0.000000 InvViewMat[3][3] = 1.000000
Is there any problem with my matrix values or any of my calculations?
If you have a sphere centered at the camera's origin (eye-space), then no matter how you rotate it the position and normals in eye-space are always going to be the same at any location on screen. That is the definition of a sphere - every vertex is the same distance (radius) from the center.
You actually need to do this in world-space (that position will vary as you rotate the sphere).
Now, this brings up an issue - you only have a ModelView matrix (which transforms from object-space to eye-space). You are going to need to split your Model and View matrices to do this and for convenience you should pass the inverse of the View matrix to GLSL.
Below is a modified Vertex Shader that does what you want:
precision highp float;
uniform mat4 u_vInvMatrix; // Inverse View Matrix -- NEW
uniform mat4 u_mvMatrix; // ModelView Matrix
uniform mat4 u_mvpMatrix; // ModelViewProjection Matrix
attribute vec4 a_position;
attribute vec3 a_envmapNormal;
//varying vec3 v_eyecoordEyeReflection; // YOU DO NOT WANT EYE-SPACE
varying vec3 v_worldReflection; // Use world-space instead -- MODIFIED
vec3 v_eyecoordPosition;
vec3 v_eyecoordNormal;
void main()
{
// position and normal in model coordinates
vec4 modelCoordPosition = a_position;
vec3 modelCoordNormal = a_envmapNormal;
// Calculate position in eye space
v_eyecoordPosition = vec3(u_mvMatrix * modelCoordPosition);
// Calculate and normalize eye space normal
vec3 eyecoordNormal = vec3(u_mvMatrix * vec4(modelCoordNormal, 0.0));
v_eyecoordNormal = normalize(eyecoordNormal);
// Calculate reflection vector (eye-space)
vec3 eyeReflection = reflect(v_eyecoordPosition, v_eyecoordNormal);
// Transform the reflection into world-space -- NEW
v_worldReflection = vec3 (u_vInvMatrix * vec4 (eyeReflection, 0.0f));
gl_Position = u_mvpMatrix * a_position;
}
I'm trying to get some experience in openGL, but now I'm facing "1.5" problems ;).
The first problem / question is how can I get a rotation in two directions "simultaneously"?
I want to draw a coordinate system which is movable on the x- and y-axis. But I'm only able to move on the x-axis or y-axis. I can't figure it out how to do both at the same time.
My other half problem is not really a problem but as you can see I'm binding my shaders all the time new when I move my mouse. Is there a better way how it could been done?
void GLWidget::mouseMoveEvent(QMouseEvent *event)
{
differencePostition.setX(event->x() - lastPosition.x());
differencePostition.setY(event->y() - lastPosition.y());
shaderProgram.removeAllShaders();
shaderProgram.addShaderFromSourceFile(QGLShader::Vertex, "../Vector/yRotation.vert");
shaderProgram.addShaderFromSourceFile(QGLShader::Fragment, "../Vector/CoordinateSystemLines.frag");
shaderProgram.link();
shaderProgram.bind();
shaderProgram.setAttributeValue("angle", differencePostition.x());
//shaderProgram.release();
//shaderProgram.addShaderFromSourceFile(QGLShader::Vertex, "../Vector/xRotation.vert");
//shaderProgram.addShaderFromSourceFile(QGLShader::Fragment, "../Vector/CoordinateSystemLines.frag");
//shaderProgram.link();
//shaderProgram.bind();
//shaderProgram.setAttributeValue("angle", differencePostition.y());
updateGL();
}
void GLWidget::mousePressEvent(QMouseEvent *event)
{
lastPosition = event->posF();
}
xRotation.vert
#version 330
in float angle;
const float PI = 3.14159265358979323846264;
void main(void)
{
float rad_angle = angle * PI / 180.0;
vec4 oldPosition = gl_Vertex;
vec4 newPosition = oldPosition;
newPosition.y = oldPosition.y * cos(rad_angle) - oldPosition.z * sin(rad_angle);
newPosition.z = oldPosition.y * sin(rad_angle) + oldPosition.z * cos(rad_angle);
gl_Position = gl_ModelViewProjectionMatrix * newPosition;
}
yRotation.vert
#version 330
in float angle;
const float PI = 3.14159265358979323846264;
void main(void)
{
float rad_angle = angle * PI / 180.0;
vec4 oldPosition = gl_Vertex;
vec4 newPosition = oldPosition;
newPosition.x = oldPosition.x * cos(rad_angle) + oldPosition.z * sin(rad_angle);
newPosition.z = oldPosition.z * cos(rad_angle) - oldPosition.x * sin(rad_angle);
gl_Position = gl_ModelViewProjectionMatrix * newPosition;
}
Rotation in more than one direction at the same time requires a combination of matrices ( commonly called a general rotation matrix )
There are several sites that show how this matrix is generated if you are more interested.
As to your second problem, the shaders are usually initialized in the init section.
Example: http://doc-snapshot.qt-project.org/5.0/qtopengl/cube-mainwidget-cpp.html
You only need to call shaderProgram.bind(); every time before you want to draw an object with your shader. Loading and linking is usually only done once in the initialization of your programm. Only call shaderProgram.setAttributeValue your mouseMoveEvent method.
EDIT
A quick way to solve your rotation problem is to write a shader that does both rotations one after the other. Add a second in variable and set both using the setAttributeValue method.
#version 330
in float angleX;
in float angleY;
const float PI = 3.14159265358979323846264;
void main(void)
{
float rad_angle_x = angleX * PI / 180.0;
vec4 oldPosition = gl_Vertex;
vec4 newPositionX = oldPosition;
newPositionX.y = oldPosition.y * cos(rad_angle_x) - oldPosition.z * sin(rad_angle_x);
newPositionX.z = oldPosition.y * sin(rad_angle_x) + oldPosition.z * cos(rad_angle_x);
float rad_angle_y = angleY * PI / 180.0;
vec4 newPositionXY = newPositionX;
newPositionXY.x = newPositionX.x * cos(rad_angle_y) + newPositionX.z * sin(rad_angle_y);
newPositionXY.z = newPositionX.z * cos(rad_angle_y) - newPositionX.x * sin(rad_angle_y);
gl_Position = gl_ModelViewProjectionMatrix * newPositionXY;
}
This way you don't need to know matrix multiplications.