I am trying to run some Monte Carlo simulations on animal position data. So far, I have sampled 100 X and Y coordinates, 100 times. This results in a list of 200. I then convert this list into a dataframe that is more condusive to eventual functions I want to run for each sample (kernel.area).
Now I have a data frame with 200 columns, and I would like to perform the kernel.area function using each successive pair of columns.
I can't reproduce my own data here very well, so I've tried to give a basic example just to show the structure of the data frame I'm working with. I've included the for loop I've tried so far, but I am still an R novice and would appreciate any suggestions.
# generate dataframe representing X and Y positions
df <- data.frame(x=seq(1:200),y=seq(1:200))
# 100 replications of sampling 100 "positions"
resamp <- replicate(100,df[sample(nrow(df),100),])
# convert to data frame (kernel.area needs an xy dataframe)
df2 <- do.call("rbind", resamp[1:2,])
# xy positions need to be in columns for kernel.area
df3 <- t(df2)
#edit: kernel.area requires you have an id field, but I am only dealing with one individual, so I'll construct a fake one of the same length as the positions
id=replicate(100,c("id"))
id=data.frame(id)
Here is the structure of the for loop I've tried (edited since first post):
for (j in seq(1,ncol(df3)-1,2)) {
kud <- kernel.area(df3[,j:(j+1)],id=id,kern="bivnorm",unin=c("m"),unout=c("km2"))
print(kud)
}
My end goal is to calculate kernel.area for each resampling event (ie rows 1:100 for every pair of columns up to 200), and be able to combine the results in a dataframe. However, after running the loop, I get this error message:
Error in df[, 1] : incorrect number of dimensions
Edit: I realised my id format was not the same as my data frame, so I change it and now have the error:
Error in kernelUD(xy, id, h, grid, same4all, hlim, kern, extent) :
id should have the same length as xy
First, a disclaimer: I have never worked with the package adehabitat, which has a function kernel.area, which I assume you are using. Perhaps you could confirm which package contains the function in question.
I think there are a couple suggestions I can make that are independent of knowledge of the specific package, though.
The first lies in the creation of df3. This should probably be
df3 <- t(df2), but this is most likely correct in your actual code
and just a typo in your post.
The second suggestion has to do with the way you subset df3 in the
loop. j:j+1 is just a single number, since the : has a higher
precedence than + (see ?Syntax for the order in which
mathematical operations are conducted in R). To get the desired two
columns, use j:(j+1) instead.
EDIT:
When loading adehabitat, I was warned to "Be careful" and use the related new packages, among which is adehabitatHR, which also contains a function kernel.area. This function has slightly different syntax and behavior, but perhaps it would be worthwhile examining. Using adehabitatHR (I had to install from source since the package is not available for R 2.15.0), I was able to do the following.
library(adehabitatHR)
for (j in seq(1,ncol(df3)-1,2)) {
kud <-kernelUD(SpatialPoints(df3[,j:(j+1)]),kern="bivnorm")
kernAr<-kernel.area(kud,unin=c("m"),unout=c("km2"))
print(kernAr)
}
detach(package:adehabitatHR, unload=TRUE)
This prints something, and as is mentioned in a comment below, kernelUD() is called before kernel.area().
Related
I would like to perform a HCPC on the columns of my dataset, after performing a CA. For some reason I also have to specify at the start, that all of my columns are of type 'factor', just to loop over them afterwards again and convert them to numeric. I don't know why exactly, because if I check the type of each column (without specifying them as factor) they appear to be numeric... When I don't load and convert the data like this, however, I get an error like the following:
Error in eigen(crossprod(t(X), t(X)), symmetric = TRUE) : infinite or
missing values in 'x'
Could this be due to the fact that there are columns in my dataset that only contain 0's? If so, how come that it works perfectly fine by reading everything in first as factor and then converting it to numeric before applying the CA, instead of just performing the CA directly?
The original issue with the HCPC, then, is the following:
# read in data; 40 x 267 data frame
data_for_ca <- read.csv("./data/data_clean_CA_complete.csv",row.names=1,colClasses = c(rep('factor',267)))
# loop over first 267 columns, converting them to numeric
for(i in 1:267)
data_for_ca[[i]] <- as.numeric(data_for_ca[[i]])
# perform CA
data.ca <- CA(data_for_ca,graph = F)
# perform HCPC for rows (i.e. individuals); up until here everything works just fine
data.hcpc <- HCPC(data.ca,graph = T)
# now I start having trouble
# perform HCPC for columns (i.e. variables); use their coordinates that are stocked in the CA-object that was created earlier
data.cols.hcpc <- HCPC(data.ca$col$coord,graph = T)
The code above shows me a dendrogram in the last case and even lets me cut it into clusters, but then I get the following error:
Error in catdes(data.clust, ncol(data.clust), proba = proba, row.w =
res.sauv$call$row.w.init) : object 'data.clust' not found
It's worth noting that when I perform MCA on my data and try to perform HCPC on my columns in that case, I get the exact same error. Would anyone have any clue as how to fix this or what I am doing wrong exactly? For completeness I insert a screenshot of the upper-left corner of my dataset to show what it looks like:
Thanks in advance for any possible help!
I know this is old, but because I've been troubleshooting this problem for a while today:
HCPC says that it accepts a data frame, but any time I try to simply pass it $col$coord or $colcoord from a standard ca object, it returns this error. My best guess is that there's some metadata it actually needs/is looking for that isn't in a data frame of coordinates, but I can't figure out what that is or how to pass it in.
The current version of FactoMineR will actually just allow you to give HCPC the whole CA object and tell it whether to cluster the rows or columns. So your last line of code should be:
data.cols.hcpc <- HCPC(data.ca, cluster.CA = "columns", graph = T)
I'm very new to R - but have been developing SAS-programs (and VBA) for some years. Well, the thing is that I have 4 lines of R-code (scripts?) that I would like to repeat 44 times. Two times for each of 22 different train stations, indicating whether the train is in- or out-going. The four lines of code are:
dataGL_FLIin <- subset( dataGL_all, select = c(Tidsinterval, Dag, M.ned, Ugenr.,Kode, Ugedag, FLIin))
names(dataGL_FLIin)[names(dataGL_FLIin)=='FLIin'] <- 'GL_Antal'
dataGL_FLIin$DIR<-"IN"
dataGL_FLIin$STATION<-"FLI
To avoid repeating the 4 lines 44 times I need 2 "macro variables" (yes, I'm aware, that this is a SAS-thing only, sorry). One "macro variable" indicating the train station and one indicating the direction. In the example above the train station is FLI and the direction is in. Below the same 4 lines are demonstrated for the train station FBE, this time in out-going direction.
dataGL_FBEout <- subset( dataGL_all, select = c(Tidsinterval, Dag, M.ned, Ugenr.,Kode, Ugedag, FBEout))
names(dataGL_FBEout)[names(dataGL_FBEout)=='FBEout'] <- 'GL_Antal'
dataGL_FBEout$DIR<-"OUT"
dataGL_FBEout$STATION<-"FBE"
I have looked many places and tried many combinations of R-functions and R-lists, but I can't make it work. Quite possible I'm getting it all wrong. I apologize in advance if the question is (too) stupid, but will however be very grateful for any help on the matter.
Pls. notice that I, in the end, want 44 different data-frames created:
1) dataGL_FLIin
2) dataGL_FBEout
3) Etc. ...
ADDED: 2 STATION 2 DIRECTIONS EXAMPLE OF MY PROBLEM
'The one data frame I have'
Date<-c("01-01-15 04:00","01-01-15 04:20","01-01-15 04:40")
FLIin<-c(96,39,72)
FLIout<-c(173,147,103)
FBEin<-c(96,116,166)
FBEout<-c(32,53,120)
dataGL_all<-data.frame(Date, FLIin, FLIout, FBEin, FBEout)
'The four data frames I would like'
GL_antal<-c(96,39,72)
Station<-("FLI")
Dir<-("IN")
dataGL_FLIin<-data.frame(Date, Station, Dir, GL_antal)
GL_antal<-c(173,147,103)
Station<-("FLI")
Dir<-("OUT")
dataGL_FLIout<-data.frame(Date, Station, Dir, GL_antal)
GL_antal<-c(96,116,166)
Station<-("FBE")
Dir<-("IN")
dataGL_FBEin<-data.frame(Date, Station, Dir, GL_antal)
GL_antal<-c(32,53,120)
Station<-("FBE")
Dir<-("OUT")
dataGL_FBEout<-data.frame(Date, Station, Dir, GL_antal)
Thanks,
lars
With your example, it is now clearer what you want and I give it a second try. I use dataGL_all as defined in your question and the define
stations <- rep(c("FLI","FBE"),each=2)
directions <- rep(c("in","out"),times=length(stations)/2)
You could also extract the stations and directions from your data frame. Using your example, the following would work
stations <- substr(names(dataGL_all)[-1],1,3)
directions <- substr(names(dataGL_all)[-1],4,6)
Then, I define the function that will work on the data:
dataGLfun <- function(station,direction) {
name <- paste0(station,direction)
dataGL <- dataGL_all[,c("Date", name)]
names(dataGL)[names(dataGL)==name] <- 'GL_Antal'
dataGL$DIR<-direction
dataGL$STATION<-station
dataGL
}
And now I apply this function to all stations with both directions:
dataGL <- mapply(dataGLfun,stations,directions,SIMPLIFY=FALSE)
names(dataGL) <- paste0(stations,directions)
Now, you can get the data frames for each combination of station and direction. For instance, the two examples in your question, you get with dataGL$FLIin and dataGL$FBEout. The reason that there is a $ instead of a _ is that I did not actually create a separate variable for each data frame. Instead, I created a list, where each element of the list is one of the data frames. This has the advantage that it will be easier to do something to all the data frames later. With your solution, you would have to type all the various variable names, but if the data frames are in a list, you can work with them using functions like lapply.
If you prefer to have many different variables, you could do the following
for (i in seq_along(stations)) {
assign(paste0("dataGL_",stations[i],directions[i]), dataGLfun(stations[i],directions[i]))
}
However, in my opinion, this is not how you should solve this problem in R.
I've been working on a project for a little bit for a homework assignment and I've been stuck on a logistical problem for a while now.
What I have at the moment is a list that returns 10000 values in the format:
[[10000]]
X-squared
0.1867083
(This is the 10000th value of the list)
What I really would like is to just have the chi-squared value alone so I can do things like create a histogram of the values.
Is there any way I can do this? I'm fine with repeating the test from the start if necessary.
My current code is:
nsims = 10000
for (i in 1:nsims) {cancer.cells <- c(rep("M",24),rep("B",13))
malig[i] <- sum(sample(cancer.cells,21)=="M")}
benign = 21 - malig
rbenign = 13 - benign
rmalig = 24 - malig
for (i in 1:nsims) {test = cbind(c(rbenign[i],benign[i]),c(rmalig[i],malig[i]))
cancerchi[i] = chisq.test(test,correct=FALSE) }
It gives me all I need, I just cannot perform follow-up analysis on it such as creating a histogram.
Thanks for taking the time to read this!
I'll provide an answer at the suggestion of #Dr. Mike.
hist requires a vector as input. The reason that hist(cancerchi) will not work is because cancerchi is a list, not a vector.
There a several ways to convert cancerchi, from a list into a format that hist can work with. Here are 3 ways:
hist(as.data.frame(unlist(cancerchi)))
Note that if you do not reassign cancerchi it will still be a list and cannot be passed directly to hist.
# i.e
class(cancerchi)
hist(cancerchi) # will still give you an error
If you reassign, it can be another type of object:
(class(cancerchi2 <- unlist(cancerchi)))
(class(cancerchi3 <- as.data.frame(unlist(cancerchi))))
# using the ldply function in the plyr package
library(plyr)
(class(cancerchi4 <- ldply(cancerchi)))
these new objects can be passed to hist directly
hist(cancerchi2)
hist(cancerchi3[,1]) # specify column because cancerchi3 is a data frame, not a vector
hist(cancerchi4[,1]) # specify column because cancerchi4 is a data frame, not a vector
A little extra information: other useful commands for looking at your objects include str and attributes.
I am confused by the behavior of is.na() in a for loop in R.
I am trying to make a function that will create a sequence of numbers, do something to a matrix, summarize the resulting matrix based on the sequence of numbers, then modify the sequence of numbers based on the summary and repeat. I made a simple version of my function because I think it still gets at my problem.
library(plyr)
test <- function(desired.iterations, max.iterations)
{
rich.seq <- 4:34 ##make a sequence of numbers
details.table <- matrix(nrow=length(rich.seq), ncol=1, dimnames=list(rich.seq))
##generate a table where the row names are those numbers
print(details.table) ##that's what it looks like
temp.results <- matrix(nrow=10, ncol=2, dimnames=list(1:10))
##generate some sample data to summarize and fill into details.table
temp.results[,1] <- rep(5:6, 5)
temp.results[,2] <- rnorm(10)
print(temp.results) ##that's what it looks like
details.table[,1][row.names(details.table) %in% count(temp.results[,1])$x] <-
count(temp.results[,1])$freq
##summarize, subset to the appropriate rows in details.table, and fill in the summary
print(details.table)
for (i in 1:max.iterations)
{
rich.seq <- rich.seq[details.table < desired.iterations | is.na(details.table)]
## the idea would be to keep cutting this sequence of numbers down with
## successive iterations until the desired number of iterations per row in
## details.table was reached. in other words, in the real code i'd do
## something to details.table in the next line
print(rich.seq)
}
}
##call the function
test(desired.iterations=4, max.iterations=2)
On the first run through the for loop the rich.seq looks like I'd expect it to, where 5 & 6 are no longer in the sequence because both ended up with more than 4 iterations. However, on the second run, it spits out something unexpected.
UPDATE
Thanks for your help and also my apologies. After re-reading my original post it is not only less than clear, but I hadn't realized count was part of the plyr package, which I call in my full function but wasn't calling here. I'll try and explain better.
What I have working at the moment is a function that takes a matrix, randomizes it (in any of a number of different ways), then calculates some statistics on it. These stats are temporarily stored in a table--temp.results--where temp.results[,1] is the sum of the non zero elements in each column, and temp.results[,2] is a different summary statistic for that column. I save these results to a csv file (and append them to the same file at subsequent iterations), because looping through it and rbinding hogs a lot of memory.
The problem is that certain column sums (temp.results[,1]) are sampled very infrequently. In order to sample those sufficiently requires many many iterations, and the resulting .csv files would stretch into the hundreds of gigabytes.
What I want to do is create and then update a table (details.table) at each iteration that keeps track of how many times each column sum actually got sampled. When a given element in the table reaches the desired.iterations, I want it to be excluded from the vector rich.seq, so that only columns that haven't received the desired.iterations are actually saved to the csv file. The max.iterations argument will be used in a break() statement in case things are taking too long.
So, what I was expecting in the example case is the exact same line for rich.seq for both iterations, since I didn't actually do anything to change it. I believe that flodel is definitely right that my problem lies in comparing a matrix (details.table) of length longer than rich.seq, leading to unexpected results. However, I don't want the dimensions of details.table to change. Perhaps I can solve the problem implementing %in% somehow when I redefine rich.seq in the for loop?
I agree you should improve your question. However, I think I can spot what is going wrong.
You compute details.table before the for loop. It is a matrix with same length as rich.seq when it was first initialized (length(4:34), i.e. 31).
Inside the for loop, details.table < desired.iterations | is.na(details.table) is then a logical vector of length 31. On the first loop iteration,
rich.seq <- rich.seq[details.table < desired.iterations | is.na(details.table)]
will result in reducing the length of rich.seq. But on the second loop iteration, unless details.table is redefined (not the case), you are trying to subset rich.seq by a logical vector of longer length than rich.seq. This will certainly lead to unexpected results.
You probably meant to redefine details.table as part of your for loop.
(Also I am surprised to see you never used temp.results[,2].)
Thanks to flodel for setting me off on the right track. It had nothing to do with is.na but rather the lengths of vectors I was comparing.
That said, I set the initial values of the details.table to zero to avoid the added complexity of the is.na statement.
This code works, and can be modified to do what I described above.
library(plyr)
test <- function(desired.iterations, max.iterations)
{
rich.seq <- 4:34 ##make a sequence of numbers
details.table <- matrix(nrow=length(rich.seq), ncol=1, dimnames=list(rich.seq)) ##generate a table where the row names are those numbers
details.table[,1] <- 0
print(details.table) ##that's what it looks like
temp.results <- matrix(nrow=10, ncol=2, dimnames=list(1:10)) ##generate some sample data to summarize and fill into details.table
temp.results[,1] <- rep(5:6, 5)
temp.results[,2] <- rnorm(10)
print(temp.results) ##that's what it looks like
details.table[,1][row.names(details.table) %in% count(temp.results[,1])$x] <- count(temp.results[,1])$freq ##summarize, subset to the appropriate rows in details.table, and fill in the summary
print(details.table)
for (i in 1:max.iterations)
{
rich.seq <- row.names(details.table)[details.table[,1] < desired.iterations]
print(rich.seq)
}
}
Rather than trying to cut down the rich.seq I just redefine it every iteration based on whatever happens with details.table during the previous iteration.
New to R and having problem with a very simple task! I have read a few columns of .csv data into R, the contents of which contains of variables that are in the natural numbers plus zero, and have missing values. After trying to use the non-parametric package, I have two problems: first, if I use the simple command bw=npregbw(ydat=y, xdat=x, na.omit), where x and y are column vectors, I get the error that "number of regression data and response data do not match". Why do I get this, as I have the same number of elements in each vector?
Second, I would like to call the data ordered and tell npregbw this, using the command bw=npregbw(ydat=y, xdat=ordered(x)). When I do that, I get the error that x must be atomic for sort.list. But how is x not atomic, it is just a vector with natural numbers and NA's?
Any clarifications would be greatly appreciated!
1) You probably have a different number of NA's in y and x.
2) Can't be sure about this, since there is no example. If it is of following type:
x <- c(3,4,NA,2)
Then ordered(x) should work fine. Please provide an example of your case.
EDIT: You of course tried bw=npregbw(ydat=y, xdat=x)? ordered() makes your vector an ordered factor (see ?ordered), which is not an atomic vector (see 2.1.1 link and ?factor)
EDIT2: So the problem was the way of subsetting data. Note the difference in various ways of subsetting. data$x and data[,i] (where i = column number of column x) give you vectors, while data[c("x")] and data[i] give a data frame. Functions expect vectors, unless they call for data = (your data). In that case they work with column names