I want to minimize a simple linear function Y = x1 + x2 + x3 + x4 + x5 using ordinary least squares with the constraint that the sum of all coefficients have to equal 5. How can I accomplish this in R? All of the packages I've seen seem to allow for constraints on individual coefficients, but I can't figure out how to set a single constraint affecting coefficients. I'm not tied to OLS; if this requires an iterative approach, that's fine as well.
The basic math is as follows: we start with
mu = a0 + a1*x1 + a2*x2 + a3*x3 + a4*x4
and we want to find a0-a4 to minimize the SSQ between mu and our response variable y.
if we replace the last parameter (say a4) with (say) C-a1-a2-a3 to honour the constraint, we end up with a new set of linear equations
mu = a0 + a1*x1 + a2*x2 + a3*x3 + (C-a1-a2-a3)*x4
= a0 + a1*(x1-x4) + a2*(x2-x4) + a3*(x3-x4) + C*x4
(note that a4 has disappeared ...)
Something like this (untested!) implements it in R.
Original data frame:
d <- data.frame(y=runif(20),
x1=runif(20),
x2=runif(20),
x3=runif(20),
x4=runif(20))
Create a transformed version where all but the last column have the last column "swept out", e.g. x1 -> x1-x4; x2 -> x2-x4; ...
dtrans <- data.frame(y=d$y,
sweep(d[,2:4],
1,
d[,5],
"-"),
x4=d$x4)
Rename to tx1, tx2, ... to minimize confusion:
names(dtrans)[2:4] <- paste("t",names(dtrans[2:4]),sep="")
Sum-of-coefficients constraint:
constr <- 5
Now fit the model with an offset:
lm(y~tx1+tx2+tx3,offset=constr*x4,data=dtrans)
It wouldn't be too hard to make this more general.
This requires a little more thought and manipulation than simply specifying a constraint to a canned optimization program. On the other hand, (1) it could easily be wrapped in a convenience function; (2) it's much more efficient than calling a general-purpose optimizer, since the problem is still linear (and in fact one dimension smaller than the one you started with). It could even be done with big data (e.g. biglm). (Actually, it occurs to me that if this is a linear model, you don't even need the offset, although using the offset means you don't have to compute a0=intercept-C*x4 after you finish.)
Since you said you are open to other approaches, this can also be solved in terms of a quadratic programming (QP):
Minimize a quadratic objective: the sum of the squared errors,
subject to a linear constraint: your weights must sum to 5.
Assuming X is your n-by-5 matrix and Y is a vector of length(n), this would solve for your optimal weights:
library(limSolve)
lsei(A = X,
B = Y,
E = matrix(1, nrow = 1, ncol = 5),
F = 5)
Related
I would like to solve a differential equation in R (with deSolve?) for which I do not have the initial condition, but only the final condition of the state variable. How can this be done?
The typical code is: ode(times, y, parameters, function ...) where y is the initial condition and function defines the differential equation.
Are your equations time reversible, that is, can you change your differential equations so they run backward in time? Most typically this will just mean reversing the sign of the gradient. For example, for a simple exponential growth model with rate r (gradient of x = r*x) then flipping the sign makes the gradient -r*x and generates exponential decay rather than exponential growth.
If so, all you have to do is use your final condition(s) as your initial condition(s), change the signs of the gradients, and you're done.
As suggested by #LutzLehmann, there's an even easier answer: ode can handle negative time steps, so just enter your time vector as (t_end, 0). Here's an example, using f'(x) = r*x (i.e. exponential growth). If f(1) = 3, r=1, and we want the value at t=0, analytically we would say:
x(T) = x(0) * exp(r*T)
x(0) = x(T) * exp(-r*T)
= 3 * exp(-1*1)
= 1.103638
Now let's try it in R:
library(deSolve)
g <- function(t, y, parms) { list(parms*y) }
res <- ode(3, times = c(1, 0), func = g, parms = 1)
print(res)
## time 1
## 1 1 3.000000
## 2 0 1.103639
I initially misread your question as stating that you knew both the initial and final conditions. This type of problem is called a boundary value problem and requires a separate class of numerical algorithms from standard (more elementary) initial-value problems.
library(sos)
findFn("{boundary value problem}")
tells us that there are several R packages on CRAN (bvpSolve looks the most promising) for solving these kinds of problems.
Given a differential equation
y'(t) = F(t,y(t))
over the interval [t0,tf] where y(tf)=yf is given as initial condition, one can transform this into the standard form by considering
x(s) = y(tf - s)
==> x'(s) = - y'(tf-s) = - F( tf-s, y(tf-s) )
x'(s) = - F( tf-s, x(s) )
now with
x(0) = x0 = yf.
This should be easy to code using wrapper functions and in the end some list reversal to get from x to y.
Some ODE solvers also allow negative step sizes, so that one can simply give the times for the construction of y in the descending order tf to t0 without using some intermediary x.
Can someone tell me what is the best way to simulate a dataset with a binary target?
I understand the way in which a dataset can be simulated but what I'm looking for is to determine 'a-priori' the proportion of each class. What I thought was to change the intercept to achieve it but I couldn't do it and I don't know why. I guess because the average is playing a trick on me.
set.seed(666)
x1 = rnorm(1000)
x2 = rnorm(1000)
p=0.25 # <<< I'm looking for a 25%/75%
mean_z=log(p/(1-p))
b0 = mean( mean_z - (4*x1 + 3*x2)) # = mean_z - mean( 2*x1 + 3*x2)
z = b0 + 4*x1 + 3*x2 # = mean_z - (4*x1 + 3*x2) + (4*x1 + 3*x2) = rep(mean_z,1000)
mean( b0 + 4*x1 + 3*x2 ) == mean_z # TRUE!!
pr = 1/(1+exp(-z))
y = rbinom(1000,1,pr)
mean(pr) # ~ 40% << not achieved
table(y)/1000
What I'm looking for is to simulate the typical "logistic" problem in which the binary target can be modeled as a linear combination of features.
These 'logistic' models assume that the log-odd ratio of the binary variable behaves linearly. That means:
log (p / (1-p)) = z = b0 + b1 * x1 + b2 * x2 where p = prob (y = 1)
Going back to my sample code, we could do, for example: z = 1.3 + 4 * x1 + 2 * x2 , but the probability of the class would be a result. Or instead we could choose coefficient b0 such that the probability is (statistically) similar to the one sought :
log (0.25 / 0.75) = b0 + 4 * x1 + 2 * x2
This is my approach, but there may be betters
I gather that you are considering a logistic regression model, right? If so, one way to generate a data set is to create two Gaussian bumps and say that one is class 1 and the other is class 0. Then generate 25 items from class 1 and 75 items from class 0. Then each generated item plus its label is a datum or record or whatever you want to call it.
Obviously you can choose any proportions of 1's and 0's. It is also interesting to make the problem "easy" by making the Gaussian bumps farther apart (i.e. variances smaller in comparison to difference of means) or "hard" by making the bumps overlapping (i.e. variances larger compared to difference of means).
EDIT: In order to make sample data which correspond exactly to a logistic regression model, just make the variances of the two Gaussian bumps the same. When the variances (by this I mean specifically the covariance matrix) are the same, the surfaces of equal posterior class probability are planes; when the covariances are different, the surfaces of equal probability are quadratics. This is a standard result which will appear in many textbooks. I also have some notes online about this, which I can locate if it will help.
Aside from generating the two classes separately and then merging the results into one set, you can also sample from a single distribution over x, plug x into a logistic regression model with some weights (which you choose by any means you wish), and then use the resulting output as a probability for a coin toss. This method isn't guaranteed to output proportions that correspond exactly to prior class probabilities.
I'm trying to fit a nonlinear model with nearly 50 variables (since there are year fixed effects). The problem is I have so many variables that I cannot write the complete formula down like
nl_exp = as.formula(y ~ t1*year.matrix[,1] + t2*year.matrix[,2]
+... +t45*year.matirx[,45] + g*(x^d))
nl_model = gnls(nl_exp, start=list(t=0.5, g=0.01, d=0.1))
where y is the binary response variable, year.matirx is a matrix of 45 columns (indicating 45 different years) and x is the independent variable. The parameters need to be estimated are t1, t2, ..., t45, g, d.
I have good starting values for t1, ..., t45, g, d. But I don't want to write a long formula for this nonlinear regression.
I know that if the model is linear, the expression can be simplified using
l_model = lm(y ~ factor(year) + ...)
I tried factor(year) in gnls function but it does not work.
Besides, I also tried
nl_exp2 = as.formula(y ~ t*year.matrix + g*(x^d))
nl_model2 = gnls(nl_exp2, start=list(t=rep(0.2, 45), g=0.01, d=0.1))
It also returns me error message.
So, is there any easy way to write down the nonlinear formula and the starting values in R?
Since you have not provided any example data, I wrote my own - it is completely meaningless and the model actually doesn't work because it has bad data coverage but it gets the point across:
y <- 1:100
x <- 1:100
year.matrix <- matrix(runif(4500, 1, 10), ncol = 45)
start.values <- c(rep(0.5, 45), 0.01, 0.1) #you could also use setNames here and do this all in one row but that gets really messy
names(start.values) <- c(paste0("t", 1:45), "g", "d")
start.values <- as.list(start.values)
nl_exp2 <- as.formula(paste0("y ~ ", paste(paste0("t", 1:45, "*year.matrix[,", 1:45, "]"), collapse = " + "), " + g*(x^d)"))
gnls(nl_exp2, start=start.values)
This may not be the most efficient way to do it, but since you can pass a string to as.formula it's pretty easy to use paste commands to construct what you are trying to do.
I would like to solve a differential equation in R (with deSolve?) for which I do not have the initial condition, but only the final condition of the state variable. How can this be done?
The typical code is: ode(times, y, parameters, function ...) where y is the initial condition and function defines the differential equation.
Are your equations time reversible, that is, can you change your differential equations so they run backward in time? Most typically this will just mean reversing the sign of the gradient. For example, for a simple exponential growth model with rate r (gradient of x = r*x) then flipping the sign makes the gradient -r*x and generates exponential decay rather than exponential growth.
If so, all you have to do is use your final condition(s) as your initial condition(s), change the signs of the gradients, and you're done.
As suggested by #LutzLehmann, there's an even easier answer: ode can handle negative time steps, so just enter your time vector as (t_end, 0). Here's an example, using f'(x) = r*x (i.e. exponential growth). If f(1) = 3, r=1, and we want the value at t=0, analytically we would say:
x(T) = x(0) * exp(r*T)
x(0) = x(T) * exp(-r*T)
= 3 * exp(-1*1)
= 1.103638
Now let's try it in R:
library(deSolve)
g <- function(t, y, parms) { list(parms*y) }
res <- ode(3, times = c(1, 0), func = g, parms = 1)
print(res)
## time 1
## 1 1 3.000000
## 2 0 1.103639
I initially misread your question as stating that you knew both the initial and final conditions. This type of problem is called a boundary value problem and requires a separate class of numerical algorithms from standard (more elementary) initial-value problems.
library(sos)
findFn("{boundary value problem}")
tells us that there are several R packages on CRAN (bvpSolve looks the most promising) for solving these kinds of problems.
Given a differential equation
y'(t) = F(t,y(t))
over the interval [t0,tf] where y(tf)=yf is given as initial condition, one can transform this into the standard form by considering
x(s) = y(tf - s)
==> x'(s) = - y'(tf-s) = - F( tf-s, y(tf-s) )
x'(s) = - F( tf-s, x(s) )
now with
x(0) = x0 = yf.
This should be easy to code using wrapper functions and in the end some list reversal to get from x to y.
Some ODE solvers also allow negative step sizes, so that one can simply give the times for the construction of y in the descending order tf to t0 without using some intermediary x.
I am looking for the best fit for some data containing three variables: x, y, m, by using R.
For that I use the function "polym" like:
fit <- lm(y~polym(x, m, degree = 2, raw=TRUE))
I do the same with degree 3, and then I compare with an ANOVA test to see which is better.
However, for a given degree, the polynom created has all possible combinations. For example, if I put degree=2 the polynom created will be:
y = C0 + C1*x + *C2*x^2 + C3*x*m + C4*m^2
when actually, a 2-degree polynom could also be:
y = C0 + C1*x + *C2*x^2 + C3*x*m
or
y = C0 + C1*x + C2*x*m + C3*m^2
(without the term x^2 or m^2)
I don't think the function "polym" is considering those cases, since I've generated 110 regressions (by changing the values on x and y), and all relations at 2 degree have all possible coefficients (the same for other degrees).
How can "polym" (or a better function if you know...) produce polynomials as the last two I wrote?
Firstly, your second equation is just the first equation with the (original) c3= 0. Unless you have theoretical reasons to omit the mixed term, lm will decide for you whether the coefficient for the mixed term should be zero or not. If you insist, the output of poly by column are the various degrees. Inspection shows that the 4th column of poly is the mixed term you don't want to consider, so fit <- lm(y~polym(x, m, degree = 2, raw=TRUE)[,-4]) would force the regression to consider all terms except the mixed term.