Identifying duplicate columns in a dataframe - r

I'm an R newbie and am attempting to remove duplicate columns from a largish dataframe (50K rows, 215 columns). The frame has a mix of discrete continuous and categorical variables.
My approach has been to generate a table for each column in the frame into a list, then use the duplicated() function to find rows in the list that are duplicates, as follows:
age=18:29
height=c(76.1,77,78.1,78.2,78.8,79.7,79.9,81.1,81.2,81.8,82.8,83.5)
gender=c("M","F","M","M","F","F","M","M","F","M","F","M")
testframe = data.frame(age=age,height=height,height2=height,gender=gender,gender2=gender)
tables=apply(testframe,2,table)
dups=which(duplicated(tables))
testframe <- subset(testframe, select = -c(dups))
This isn't very efficient, especially for large continuous variables. However, I've gone down this route because I've been unable to get the same result using summary (note, the following assumes an original testframe containing duplicates):
summaries=apply(testframe,2,summary)
dups=which(duplicated(summaries))
testframe <- subset(testframe, select = -c(dups))
If you run that code you'll see it only removes the first duplicate found. I presume this is because I am doing something wrong. Can anyone point out where I am going wrong or, even better, point me in the direction of a better way to remove duplicate columns from a dataframe?

How about:
testframe[!duplicated(as.list(testframe))]

You can do with lapply:
testframe[!duplicated(lapply(testframe, summary))]
summary summarizes the distribution while ignoring the order.
Not 100% but I would use digest if the data is huge:
library(digest)
testframe[!duplicated(lapply(testframe, digest))]

A nice trick that you can use is to transpose your data frame and then check for duplicates.
duplicated(t(testframe))

unique(testframe, MARGIN=2)
does not work, though I think it should, so try
as.data.frame(unique(as.matrix(testframe), MARGIN=2))
or if you are worried about numbers turning into factors,
testframe[,colnames(unique(as.matrix(testframe), MARGIN=2))]
which produces
age height gender
1 18 76.1 M
2 19 77.0 F
3 20 78.1 M
4 21 78.2 M
5 22 78.8 F
6 23 79.7 F
7 24 79.9 M
8 25 81.1 M
9 26 81.2 F
10 27 81.8 M
11 28 82.8 F
12 29 83.5 M

It is probably best for you to first find the duplicate column names and treat them accordingly (for example summing the two, taking the mean, first, last, second, mode, etc... To find the duplicate columns:
names(df)[duplicated(names(df))]

What about just:
unique.matrix(testframe, MARGIN=2)

Actually you just would need to invert the duplicated-result in your code and could stick to using subset (which is more readable compared to bracket notation imho)
require(dplyr)
iris %>% subset(., select=which(!duplicated(names(.))))

Here is a simple command that would work if the duplicated columns of your data frame had the same names:
testframe[names(testframe)[!duplicated(names(testframe))]]

If the problem is that dataframes have been merged one time too many using, for example:
testframe2 <- merge(testframe, testframe, by = c('age'))
It is also good to remove the .x suffix from the column names. I applied it here on top of Mostafa Rezaei's great answer:
testframe2 <- testframe2[!duplicated(as.list(testframe2))]
names(testframe2) <- gsub('.x','',names(testframe2))

Since this Q&A is a popular Google search result but the answer is a bit slow for a large matrix I propose a new version using exponential search and data.table power.
This a function I implemented in dataPreparation package.
The function
dataPreparation::which_are_bijection
which_are_in_double(testframe)
Which return 3 and 4 the columns that are duplicated in your example
Build a data set with wanted dimensions for performance tests
age=18:29
height=c(76.1,77,78.1,78.2,78.8,79.7,79.9,81.1,81.2,81.8,82.8,83.5)
gender=c("M","F","M","M","F","F","M","M","F","M","F","M")
testframe = data.frame(age=age,height=height,height2=height,gender=gender,gender2=gender)
for (i in 1:12){
testframe = rbind(testframe,testframe)
}
# Result in 49152 rows
for (i in 1:5){
testframe = cbind(testframe,testframe)
}
# Result in 160 columns
The benchmark
To perform the benchmark, I use the library rbenchmark which will reproduce each computations 100 times
benchmark(
which_are_in_double(testframe, verbose=FALSE),
duplicated(lapply(testframe, summary)),
duplicated(lapply(testframe, digest))
)
test replications elapsed
3 duplicated(lapply(testframe, digest)) 100 39.505
2 duplicated(lapply(testframe, summary)) 100 20.412
1 which_are_in_double(testframe, verbose = FALSE) 100 13.581
So which are bijection 3 to 1.5 times faster than other proposed solutions.
NB 1: I excluded from the benchmark the solution testframe[,colnames(unique(as.matrix(testframe), MARGIN=2))] because it was already 10 times slower with 12k rows.
NB 2: Please note, the way this data set is constructed we have a lot of duplicated columns which reduce the advantage of exponential search. With just a few duplicated columns, one would have much better performance for which_are_bijection and similar performances for other methods.

Related

Aggregating functions which operate on non-data frame objects in R

I have a simple question. The aggregate() function in R operates on a dataframe based on the conditions specified.
aggregate(my.data.frame, list(desired column), function to be applied) is the default usage.
It is useful to compute simple functions like mean and median of a dataframe's column specific values. What I have, though, is a function which doesn't operate on dataframes, but I need to aggregate my dataframe after performing this function on a specific column. Let me show the dataset:
GPS Dataset
So I need to compute the centroid for the longitude and latitude points for EACH BSSID, I need to aggregate it that way. The functions I found online from various packages compute the centroid for a matrix of values and not a dataframe, whereas aggregate() doesn't work on non-dataframes.
Many thanks in advance :)
Aggregate works fine on matrices (and not just data frames).
Here's a reproducible example of your problem, using a matrix instead of a data frame:
my_matrix <- matrix(c(100,100,200,200,11,22,33,44,-1,-2,3,-4),
nrow=4,ncol=3,
dimnames=list(c(1,2,3,4),c('BSSID','lat','long')))
> my_matrix
BSSID lat long
1 100 11 -1
2 100 22 -2
3 200 33 -3
4 200 44 -4
> aggregate(cbind(lat,long)~BSSID,my_matrix,mean)
BSSID lat long
1 100 16.5 -1.5
2 200 38.5 -3.5
So that would be the mean (or the centroid) of the latitudes and longitudes for each BSSID. The cbind function (column-bind) lets you select multiple variables to be aggregated, similar to an Excel Pivot Table.
If still in doubt, you can always convert matrices to data-frames by using the as.data.frame() function and revert back to matrices using as.matrix() if needed.
I like dplyr for this - the syntax looks nice to me.
my.data.frame %>%
group_by(bssid) %>%
summarise(centroidlon = myfunction(lon, lat)[1],
centroidlat = myfunction(lon, lat)[2])
If myfunction is fast, then this will work, but if it is slow, you probably want to rework it so that you only call the function once per bssid.
Edit to show alternative method without %>% operator
grouped.data.frame = group_by(my.data.frame, bssid)
summarised.data.frame = summarise(grouped.data.frame,
centroidlon = myfunction(lon, lat)[1],
centroidlat = myfunction(lon, lat)[2])
The %>% operator takes the left hand side, and passes it as the first argument to the right hand side. It's useful for chaining your statements together without getting confused by hundreds of nested brackets. It makes things easier to read, in my opinion.

For loop inside a for loop? in R

I am new to R and am trying create a new dataframe of bootstrapped resamples of groups of different sizes. My dataframe has 6 variables and a group designation, and there are 128 groups of different Ns. Here is an example of my data:
head(PhenoM2)
ID Name PhenoNames Group HML RML FML TML FHD BIB
1 378607 PaleoAleut PaleoAleut 1 323.5 248.75 434.50 355.75 46.84 NA
2 378664 PaleoAleut PaleoAleut 1 NA 238.50 441.50 353.00 45.83 277.0
3 378377 PaleoAleut PaleoAleut 1 309.5 227.75 419.00 332.25 46.39 284.0
4 378463 PaleoAleut PaleoAleut 1 283.5 228.75 397.75 331.00 44.37 255.5
5 378602 PaleoAleut PaleoAleut 1 279.5 230.00 393.00 329.50 45.93 265.0
6 378610 PaleoAleut PaleoAleut 1 307.5 234.25 419.50 338.50 43.98 271.5
Pulling from this question - bootstrap resampling for hierarchical/multilevel data - and taking some advice from others (thanks!) I wrote the code:
resample.M <- NULL
for(i in 1000){
groups <- unique(PhenoM2$"Group")
for(ii in 1:128)
data.i.ii <- PhenoM2[PhenoM2$"Group"==groups[ii],]
resample.M[i] <- data.i.ii[sample(1:nrow(data.i.ii),replace=T),]
}
Unfortunately, this gives me the warning:
In resample.M[i] <- data.i.ii[sample(1:nrow(data.i.ii), replace = T),:
number of items to replace is not a multiple of replacement length
Which I understand, since each of the 128 groups has a different N and none of it is a multiple of 1000. I put in resample.M[i] to try and accumulate all of the 1000x resamples of the 128 groups into a single database, and I'm pretty sure the problem is here.
Nearly all of the examples of for loops I've read create a vector database - numeric(1000) - then plug in the information, but since I'm wanting all of the data (which include factors, integers, and numerics) this doesn't work. I tried making a matrix to put the info in (there are 2187 unique individuals in the dataframe):
resample.M <- matrix(ncol=2187000,nrow=10)
But it's giving me the same warning.
So, since I'm sure I'm missing something basic here, I have three questions:
How can I get this code to resample all of the groups (with replacement and based on their individual Ns)?
How can I get this code to repeat this resampling 1000x?
How can I get the resamples of every group into the same database?
Thank you so much for your insight and expertise!
I think you may have wanted to use double square bracket, to store the results in a list, i.e. resample.M[[i]] <- .... Apart from that it makes more sense to write PhenoM2$Group than PhenoM2$"Group" and also groups <- unique(PhenoM2$Group) can go outside of your for loop since you only need to compute it once. Also replace 1:128 by 1:length(groups) or seq_along(groups), so that you don't need to hard code the length of the vector.
Because you will often need to operate on data frames grouped by some variable, I suggest you familiarise yourself with a package designed to do that, rather than using for loops, which can be very slow. The best one for a beginner in R may be plyr, which has an easy syntax (although there are many possibilities, including the slightly more "advanced" packages like dplyr and data.table).
So for a subset d <- subset(PhenoM2, Group == 1), you already have the function you need to perform on it: function(d) d[sample(1:nrow(d), replace = TRUE),].
Now to go over all such subsets, perform this operation and then arrange the results in a new data frame named samples you do
samples <- ddply(PhenoM2, .(Group),
function(d) d[sample(1:nrow(d), replace = TRUE),])
So what remains is to iterate this 1000 or however many times you want. You can use a for loop for this, storing the results in a list. Note that you need to use double square bracket [[ to set elements of the list.
n <- 1000 # number of iterations
samples <- vector("list", n) # list of length n to store results
for (i in seq_along(samples))
samples[[i]] <- ddply(PhenoM2, .(Group),
function(d) d[sample(1:nrow(d), replace = TRUE),])
An alternative way would be to use the function replicate, that performs the same task many times.
Once you have done this, all resamples will be stored in a list. I am not sure what you mean by "How can I get the resamples of every group into the same database". If you want to group them in a single data frame, you do all.samples <- do.call(rbind, samples). In general, you can format your list of samples using do.call and lapply together with a function.

Create and process several columns with loop in R

I'm quite new to R and I would like to learn how to write a Loop to create and process several columns.
I imported a table into R that cointains data with 23 variables. For all of these variables I want to calculate the per capita valuem multiply this with 1000 and either write the data into a new table or in the same table as the old data.
So to this for only one column my operation looked like this:
<i>agriculture<-cbind(agriculture,"Total_value_per_capita"=agriculture$Total/agriculture$Total.Population*1000)</i>
Now I'm asking how to do this in a Loop for the 23 variables so that I won't have to write 23 similar lines of code.
I think the solution might look quite similar to the code pasted in this thread:
loop to create several matrix in R (maybe using paste)
but I dind't got it working on my code.
So any suggestion would be very helpful.
I would always favor an appropriate *ply function over loops in R. In this case sapply could be your friend:
df <- data.frame( a=sample(10), b=sample(10), c=sample(10) )
df.per.capita <– as.data.frame(
sapply(
df[ colnames(df) != "c" ], function(x){ x/df$c *1000 }
)
)
For more complicated cases, you should definitely have a look at the plyr package.
This can be done using sweep function. Using Beasterfield's data generation but setting the seed you can obtain the same results
set.seed(001)
df <- data.frame( a=sample(10), b=sample(10), c=sample(10) )
per.capita <- sweep(df[,colnames(df) != "c"], 1, STATS=df$c, FUN='/')*1000
per.capita
a b
1 300.0000 300.0000
2 2000.0000 1000.0000
3 833.3333 1000.0000
4 7000.0000 10000.0000
5 222.2222 555.5556
6 1000.0000 875.0000
7 1285.7143 1142.8571
8 1200.0000 800.0000
9 3333.3333 333.3333
10 250.0000 2250.0000
Comparing with Beasterfield's results:
all.equal(df.per.capita, per.capita)
[1] TRUE

Apply multiple functions to column using tapply

Could someone please point to how we can apply multiple functions to the same column using tapply (or any other method, plyr, etc) so that the result can be obtained in distinct columns). For eg., if I have a dataframe with
User MoneySpent
Joe 20
Ron 10
Joe 30
...
I want to get the result as sum of MoneySpent + number of Occurences.
I used a function like --
f <- function(x) c(sum(x), length(x))
tapply(df$MoneySpent, df$Uer, f)
But this does not split it into columns, gives something like say,
Joe Joe 100, 5 # The sum=100, number of occurrences = 5, but it gets juxtaposed
Thanks in advance,
Raj
You can certainly do stuff like this using ddply from the plyr package:
dat <- data.frame(x = rep(letters[1:3],3),y = 1:9)
ddply(dat,.(x),summarise,total = NROW(piece), count = sum(y))
x total count
1 a 3 12
2 b 3 15
3 c 3 18
You can keep listing more summary functions, beyond just two, if you like. Note I'm being a little tricky here in calling NROW on an internal variable in ddply called piece. You could have just done something like length(y) instead. (And probably should; referencing the internal variable piece isn't guaranteed to work in future versions, I think. Do as I say, not as I do and just use length().)
ddply() is conceptually the clearest, but sometimes it is useful to use tapply instead for speed reasons, in which case the following works:
do.call( rbind, tapply(df$MoneySpent, df$User, f) )

count of entries in data frame in R

I'm looking to get a count for the following data frame:
> Santa
Believe Age Gender Presents Behaviour
1 FALSE 9 male 25 naughty
2 TRUE 5 male 20 nice
3 TRUE 4 female 30 nice
4 TRUE 4 male 34 naughty
of the number of children who believe. What command would I use to get this?
(The actual data frame is much bigger. I've just given you the first four rows...)
Thanks!
You could use table:
R> x <- read.table(textConnection('
Believe Age Gender Presents Behaviour
1 FALSE 9 male 25 naughty
2 TRUE 5 male 20 nice
3 TRUE 4 female 30 nice
4 TRUE 4 male 34 naughty'
), header=TRUE)
R> table(x$Believe)
FALSE TRUE
1 3
I think of this as a two-step process:
subset the original data frame according to the filter supplied
(Believe==FALSE); then
get the row count of this subset
For the first step, the subset function is a good way to do this (just an alternative to ordinary index or bracket notation).
For the second step, i would use dim or nrow
One advantage of using subset: you don't have to parse the result it returns to get the result you need--just call nrow on it directly.
so in your case:
v = nrow(subset(Santa, Believe==FALSE)) # 'subset' returns a data.frame
or wrapped in an anonymous function:
>> fnx = function(fac, lev){nrow(subset(Santa, fac==lev))}
>> fnx(Believe, TRUE)
3
Aside from nrow, dim will also do the job. This function returns the dimensions of a data frame (rows, cols) so you just need to supply the appropriate index to access the number of rows:
v = dim(subset(Santa, Believe==FALSE))[1]
An answer to the OP posted before this one shows the use of a contingency table. I don't like that approach for the general problem as recited in the OP. Here's the reason. Granted, the general problem of how many rows in this data frame have value x in column C? can be answered using a contingency table as well as using a "filtering" scheme (as in my answer here). If you want row counts for all values for a given factor variable (column) then a contingency table (via calling table and passing in the column(s) of interest) is the most sensible solution; however, the OP asks for the count of a particular value in a factor variable, not counts across all values. Aside from the performance hit (might be big, might be trivial, just depends on the size of the data frame and the processing pipeline context in which this function resides). And of course once the result from the call to table is returned, you still have to parse from that result just the count that you want.
So that's why, to me, this is a filtering rather than a cross-tab problem.
sum(Santa$Believe)
You can do summary(santa$Believe) and you will get the count for TRUE and FALSE
DPLYR makes this really easy.
x<-santa%>%
count(Believe)
If you wanted to count by a group; for instance, how many males v females believe, just add a group_by:
x<-santa%>%
group_by(Gender)%>%
count(Believe)
A one-line solution with data.table could be
library(data.table)
setDT(x)[,.N,by=Believe]
Believe N
1: FALSE 1
2: TRUE 3
using sqldf fits here:
library(sqldf)
sqldf("SELECT Believe, Count(1) as N FROM Santa
GROUP BY Believe")

Resources