I have the following data
data<-c(1L, 4L, 5L, 10L, 13L, 8L, 3L, 5L, 13L, 9L, 5L, 10L, 9L, 4L,
4L, 13L, 10L, 10L, 7L, 7L, 3L, 1L, 11L, 4L, 5L, 9L, 10L, 3L,
2L, 7L, 8L, 4L, 5L, 6L, 3L, 4L, 13L, 7L, 8L, 6L, 5L, 3L, 10L,
4L, 8L, 8L, 2L, 9L, 5L, 2L, 8L, 7L, 6L, 6L, 6L, 4L, 3L, 9L, 11L,
6L, 7L, 7L, 3L, 4L, 18L, 14L, 8L, 9L, 5L, 3L, 7L, 3L, 8L, 3L,
9L, 3L, 4L, 7L, 7L, 5L, 8L, 7L, 10L, 9L, 9L, 11L, 8L, 3L, 9L,
10L, 11L, 9L, 12L, 13L, 9L, 15L, 11L, 13L, 3L, 24L, 11L, 13L,
14L, 14L, 5L, 10L, 6L, 10L, 8L, 9L, 13L, 5L, 8L, 8L, 6L, 17L,
11L, 11L, 8L, 2L, 14L, 6L, 1L, 7L, 5L, 3L, 12L, 6L, 10L, 7L,
15L, 9L, 7L, 3L, 9L, 11L, 3L, 5L, 14L, 7L, 3L, 20L, 17L, 14L,
7L, 11L, 11L, 2L, 4L, 9L, 5L, 10L, 7L, 10L, 13L, 7L, 18L, 13L,
18L, 20L, 16L, 9L, 5L, 13L, 16L, 11L, 9L, 7L, 12L, 13L, 21L,
9L, 7L, 13L, 4L, 7L, 5L, 13L, 19L, 17L, 8L, 7L, 4L, 18L, 14L,
8L, 8L, 16L, 13L, 9L, 14L, 8L, 20L, 7L, 12L, 14L, 8L, 16L, 10L,
9L, 20L, 5L, 7L, 8L, 16L, 11L, 10L, 12L, 20L, 5L, 2L, 21L, 16L,
18L, 0L, 16L, 4L, 6L, 16L, 6L, 15L, 15L, 10L, 8L, 13L, 22L, 14L,
5L, 8L, 11L, 14L, 7L, 9L, 7L, 7L, 8L, 5L, 12L, 6L, 20L, 10L,
17L, 9L, 7L, 13L, 9L, 13L, 15L, 18L, 10L, 8L, 10L, 12L, 16L,
16L, 11L, 13L, 8L, 8L, 20L, 16L, 11L, 14L, 18L, 10L, 8L, 17L,
24L, 8L, 15L, 16L, 9L, 10L, 22L, 15L, 16L, 16L, 20L, 16L, 7L,
12L, 10L, 16L, 16L, 17L, 16L, 13L, 4L, 14L, 14L, 18L, 11L, 4L,
3L, 10L, 19L, 9L, 9L, 10L, 4L, 9L, 9L, 5L, 6L, 13L, 7L, 4L, 2L,
7L, 13L, 6L, 4L, 3L, 6L, 5L, 2L, 9L, 6L, 10L, 9L, 3L, 2L, 7L,
12L, 14L, 12L, 12L, 2L, 4L, 7L, 5L, 7L, 9L, 5L, 6L, 6L, 9L, 10L,
6L, 11L, 4L, 6L, 3L, 5L, 3L, 5L, 4L, 10L, 7L, 4L, 6L, 9L, 11L,
6L, 10L, 3L, 1L, 9L, 9L, 11L, 8L, 3L, 5L, 7L, 6L, 8L, 8L, 9L,
4L, 2L, 5L, 7L, 13L, 6L, 12L, 3L, 9L, 7L, 4L, 6L, 8L, 11L, 9L,
4L, 5L, 10L, 11L, 17L, 15L, 3L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 2L, 1L, 2L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
3L, 16L, 17L, 6L, 6L, 9L, 6L, 12L, 6L, 13L, 6L, 5L, 9L, 6L, 14L,
2L, 17L, 4L, 10L, 6L, 1L, 15L, 8L, 8L, 5L, 7L, 7L, 8L, 12L, 2L,
3L, 7L, 11L, 6L, 9L, 10L, 11L, 11L, 4L, 12L, 1L, 7L, 6L, 3L,
8L, 11L, 7L, 6L, 5L, 5L, 11L, 7L, 7L, 6L, 7L, 5L, 7L, 10L, 5L,
4L, 7L, 5L, 9L, 7L, 14L, 10L, 4L, 9L, 5L, 10L, 12L, 14L, 6L,
5L, 12L, 5L, 3L, 8L, 8L, 4L, 9L, 9L, 12L, 2L, 8L, 5L, 4L, 5L,
1L, 4L, 4L, 7L, 6L, 8L, 10L, 13L, 9L, 4L, 8L, 8L, 9L, 12L, 4L,
7L, 6L, 5L, 5L, 7L, 2L, 5L, 10L, 0L, 4L, 6L, 5L, 3L, 8L, 2L,
1L, 1L, 6L, 6L, 1L, 2L, 5L, 9L, 10L, 7L, 10L, 3L, 12L, 7L, 4L,
1L, 5L, 6L, 6L, 5L, 4L, 1L, 5L, 0L, 8L, 6L, 4L, 1L, 7L, 5L, 3L,
8L, 3L, 0L, 3L, 2L, 0L, 6L, 10L, 0L, 8L, 3L, 0L, 1L, 1L, 5L,
7L, 0L, 1L, 0L, 3L, 1L, 9L, 2L, 8L, 1L, 0L, 0L, 5L, 1L, 0L, 2L,
1L, 0L, 7L, 1L, 2L, 0L, 0L, 4L, 4L, 10L, 0L, 6L, 4L, 3L, 0L,
4L, 1L, 3L, 1L, 0L, 0L, 0L, 5L, 0L, 6L, 6L, 3L, 5L, 0L, 4L, 0L,
2L, 3L, 5L, 2L, 4L, 3L, 1L, 1L, 0L, 2L, 0L, 3L, 0L, 3L, 4L, 4L,
7L, 0L, 0L, 1L, 9L, 0L, 3L, 0L, 4L, 0L, 3L, 4L, 5L, 0L, 0L, 4L,
3L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L,
0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 1L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 2L, 0L, 0L,
0L, 0L, 2L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 13L, 10L, 13L, 10L, 11L,
8L, 27L, 8L, 12L, 20L, 15L, 9L, 10L, 3L, 8L, 13L, 16L, 13L, 12L,
13L, 10L, 14L, 14L, 10L, 10L, 7L, 13L, 12L, 12L, 23L, 7L, 12L,
6L, 7L, 10L, 8L, 13L, 16L, 10L, 11L, 18L, 7L, 15L, 18L, 10L,
9L, 15L, 4L, 3L, 9L, 12L, 2L, 6L, 4L, 4L, 8L, 4L, 7L, 11L, 9L,
7L, 9L, 15L, 7L, 7L, 14L, 15L, 6L, 3L, 7L, 6L, 22L, 7L, 8L, 6L,
12L, 7L, 11L, 10L, 6L, 10L, 6L, 5L, 16L, 11L, 11L, 6L, 9L, 10L,
4L, 14L, 7L, 6L, 4L, 9L, 4L, 7L, 10L, 11L, 8L, 6L, 7L, 3L, 8L,
8L, 12L, 7L, 13L, 5L, 4L, 10L, 6L, 8L, 7L, 11L, 3L, 3L, 5L, 4L,
4L, 11L, 3L, 3L, 3L, 3L, 7L, 4L, 5L, 3L, 5L, 1L, 5L, 2L, 5L,
6L, 6L, 4L, 3L, 6L, 7L, 3L, 8L, 1L, 3L, 5L, 9L, 9L, 10L, 6L,
9L, 7L, 5L, 5L, 10L, 6L, 9L, 2L, 6L, 6L, 1L, 6L, 4L, 5L, 3L,
3L, 3L, 3L, 3L, 2L, 6L, 1L, 5L, 3L, 4L, 9L, 3L, 8L, 5L, 7L, 5L,
10L, 5L, 4L, 0L, 8L, 6L, 4L, 6L, 7L, 4L, 3L, 1L, 3L, 3L, 6L,
5L, 7L, 3L, 7L, 2L, 2L, 6L, 4L, 3L, 3L, 2L, 2L, 4L, 2L, 5L, 5L,
7L, 3L, 5L, 2L, 2L, 1L, 5L, 1L, 3L, 2L, 5L, 3L, 1L, 4L, 0L, 1L,
4L, 3L, 2L, 2L, 2L, 6L, 3L, 4L, 2L, 2L, 8L, 4L, 3L, 6L, 6L, 2L,
4L, 11L, 3L, 4L, 4L, 5L, 5L, 1L, 5L, 2L, 7L, 3L, 2L, 4L, 2L,
3L, 6L, 3L, 11L, 7L, 5L, 9L, 5L, 6L, 5L, 9L, 6L, 5L, 7L, 1L,
14L, 7L, 7L, 7L, 2L, 5L, 5L, 9L, 2L, 9L, 2L, 6L, 2L, 9L, 4L,
3L, 4L, 9L, 7L, 6L, 5L, 4L, 5L, 6L, 4L, 5L, 2L, 5L, 4L, 7L, 3L,
9L, 6L, 9L, 7L, 2L, 7L, 6L, 7L, 3L, 4L, 8L, 3L, 8L, 10L, 3L,
3L, 5L, 4L, 8L, 6L, 5L, 4L, 5L, 1L, 6L, 6L, 8L, 9L, 5L, 10L,
1L, 8L, 7L, 7L, 6L, 5L, 1L, 5L, 8L, 11L, 2L, 6L, 7L, 6L, 5L,
20L, 8L, 10L, 7L, 5L, 2L, 5L, 3L, 17L, 6L, 5L, 0L, 1L, 1L, 9L,
1L)
I have run a ZINB model and I know that it is the best fit for my data. I want to demonstrate on a graph that this distribution is my best option. I am using fitdist
library(fitdistrplus)
library(gamlss)
nb<-fitdist(data, "nbinom")
pois<-fitdist(data, "pois")
zinb<-fitdist(data, 'ZANBI',start = list(mu = 4, sigma = 0.2))
par(mfrow = c(2, 2))
plot.legend <- c("Negative binomial", "Poisson", "ZINB")
My problem is that, just as I wanted to demonstrate that nbinom and pois are not the best fit, I can't do it with zero inflated poissonZIP.
I am using gamlss
zip<-fitdist(data, 'ZIP',start = list(mu = 7.09, sigma = 4.5))
Here I'm using the values suggested in here considering mean(data[data != 0]) and var(data[data != 0]). I always get:
Error in fitdist(data, "ZIP", start = list(mu = 7.09, sigma = 4.5)) :
the function mle failed to estimate the parameters,
with the error code 100
In addition: Warning messages:
1: In fitdist(data, "ZIP", start = list(mu = 7.09, sigma = 4.5)) :
The dZIP function should return a zero-length vector when input has length zero and not raise an error
2: In fitdist(data, "ZIP", start = list(mu = 7.09, sigma = 4.5)) :
The pZIP function should return a zero-length vector when input has length zero and not raise an error
How can I plot a ZIP of my values to demonstrate is not the best fit?
The following arguments on the ZIP fit worked for me:
A start sigma < 1.
The Nelder-Mead optimizer
A (lower, upper) bounds for the optimization parameters mu and sigma set respectively to (0, Inf) and (0, 1),
The result of running the following code on your data array is below, which confirms that the Zero-Inflated Negative Binomial is the best fit (based on AIC and BIC).
library(fitdistrplus)
library(gamlss)
nb<-fitdist(data, "nbinom")
pois<-fitdist(data, "pois")
zinb<-fitdist(data, 'ZANBI',start = list(mu = 4, sigma = 0.2))
zip<-fitdist(data, 'ZIP', start = list(mu = 7.09, sigma = 0.5), discrete=TRUE,
optim.method="Nelder-Mead", lower = c(0, 0), upper = c(Inf, 1))
print(nb)
print(pois)
print(zinb)
print(zip)
cdfcomp(list(nb, zinb, pois, zip))
gofstat(list(nb, zinb, pois, zip))
The only thing that worries me is that the standard error of the estimated parameters for the ZIP fit are NA...
Partial OUTPUT
Fitting of the distribution ' nbinom ' by maximum likelihood
Parameters:
estimate Std. Error
size 1.007110 0.05297338
mu 5.548579 0.16643396
Fitting of the distribution ' pois ' by maximum likelihood
Parameters:
estimate Std. Error
lambda 5.548313 0.06522914
Fitting of the distribution ' ZANBI ' by maximum likelihood
Parameters:
estimate Std. Error
mu 6.8886199 0.1549058
sigma 0.3401722 0.0266448
Fitting of the distribution ' ZIP ' by maximum likelihood
Parameters:
estimate Std. Error
mu 7.0869552 NA
sigma 0.2171502 NA
Goodness-of-fit criteria
1-mle-nbinom 2-mle-ZANBI 3-mle-pois 4-mle-ZIP
Akaike's Information Criterion 7302.831 7141.004 10169.16 7981.985
Bayesian Information Criterion 7313.177 7151.350 10174.33 7992.331
I have a dataset of ER admissions with many zeros. These are daily admissions from 2016-06-05 to 2019-12-31. This is my data:
df<-structure(list(date = structure(c(1465084800, 1465171200, 1465257600,
1465344000, 1465430400, 1465516800, 1465603200, 1465689600, 1465776000,
1465862400, 1465948800, 1466035200, 1466121600, 1466208000, 1466294400,
1466380800, 1466467200, 1466553600, 1466640000, 1466726400, 1466812800,
1466899200, 1466985600, 1467072000, 1467158400, 1467244800, 1467331200,
1467417600, 1467504000, 1467590400, 1467676800, 1467763200, 1467849600,
1467936000, 1468022400, 1468108800, 1468195200, 1468281600, 1468368000,
1468454400, 1468540800, 1468627200, 1468713600, 1468800000, 1468886400,
1468972800, 1469059200, 1469145600, 1469232000, 1469318400, 1469404800,
1469491200, 1469577600, 1469664000, 1469750400, 1469836800, 1469923200,
1470009600, 1470096000, 1470182400, 1470268800, 1470355200, 1470441600,
1470528000, 1470614400, 1470700800, 1470787200, 1470873600, 1470960000,
1471046400, 1471132800, 1471219200, 1471305600, 1471392000, 1471478400,
1471564800, 1471651200, 1471737600, 1471824000, 1471910400, 1471996800,
1472083200, 1472169600, 1472256000, 1472342400, 1472428800, 1472515200,
1472601600, 1472688000, 1472774400, 1472860800, 1472947200, 1473033600,
1473120000, 1473206400, 1473292800, 1473379200, 1473465600, 1473552000,
1473638400, 1473724800, 1473811200, 1473897600, 1473984000, 1474070400,
1474156800, 1474243200, 1474329600, 1474416000, 1474502400, 1474588800,
1474675200, 1474761600, 1474848000, 1474934400, 1475020800, 1475107200,
1475193600, 1475280000, 1475366400, 1475452800, 1475539200, 1475625600,
1475712000, 1475798400, 1475884800, 1475971200, 1476057600, 1476144000,
1476230400, 1476316800, 1476403200, 1476489600, 1476576000, 1476662400,
1476748800, 1476835200, 1476921600, 1477008000, 1477094400, 1477180800,
1477267200, 1477353600, 1477440000, 1477526400, 1477612800, 1477699200,
1477785600, 1477872000, 1477958400, 1478044800, 1478131200, 1478217600,
1478304000, 1478390400, 1478476800, 1478563200, 1478649600, 1478736000,
1478822400, 1478908800, 1478995200, 1479081600, 1479168000, 1479254400,
1479340800, 1479427200, 1479513600, 1479600000, 1479686400, 1479772800,
1479859200, 1479945600, 1480032000, 1480118400, 1480204800, 1480291200,
1480377600, 1480464000, 1480550400, 1480636800, 1480723200, 1480809600,
1480896000, 1480982400, 1481068800, 1481155200, 1481241600, 1481328000,
1481414400, 1481500800, 1481587200, 1481673600, 1481760000, 1481846400,
1481932800, 1482019200, 1482105600, 1482192000, 1482278400, 1482364800,
1482451200, 1482537600, 1482624000, 1482710400, 1482796800, 1482883200,
1482969600, 1483056000, 1483142400, 1483228800, 1483315200, 1483401600,
1483488000, 1483574400, 1483660800, 1483747200, 1483833600, 1483920000,
1484006400, 1484092800, 1484179200, 1484352000, 1484438400, 1484524800,
1484611200, 1484697600, 1484784000, 1484870400, 1484956800, 1485043200,
1485129600, 1485216000, 1485302400, 1485388800, 1485475200, 1485561600,
1485648000, 1485734400, 1485820800, 1485907200, 1485993600, 1486080000,
1486166400, 1486252800, 1486339200, 1486425600, 1486512000, 1486598400,
1486684800, 1486771200, 1486857600, 1486944000, 1487030400, 1487116800,
1487203200, 1487289600, 1487376000, 1487462400, 1487548800, 1487635200,
1487721600, 1487808000, 1487894400, 1487980800, 1488067200, 1488153600,
1488240000, 1488326400, 1488412800, 1488499200, 1488585600, 1488672000,
1488758400, 1488844800, 1488931200, 1489017600, 1489104000, 1489190400,
1489276800, 1489363200, 1489449600, 1489536000, 1489622400, 1489708800,
1489795200, 1489881600, 1489968000, 1490054400, 1490140800, 1490227200,
1490313600, 1490400000, 1490486400, 1490572800, 1490659200, 1490745600,
1490832000, 1490918400, 1491004800, 1491091200, 1491177600, 1491264000,
1491350400, 1491436800, 1491523200, 1491609600, 1491696000, 1491782400,
1491868800, 1491955200, 1492041600, 1492128000, 1492214400, 1492300800,
1492387200, 1492473600, 1492560000, 1492646400, 1492732800, 1492819200,
1492905600, 1492992000, 1493078400, 1493164800, 1493251200, 1493337600,
1493424000, 1493510400, 1493596800, 1493683200, 1493769600, 1493856000,
1493942400, 1494028800, 1494115200, 1494201600, 1494288000, 1494374400,
1494460800, 1494547200, 1494633600, 1494720000, 1494806400, 1494892800,
1494979200, 1495065600, 1495152000, 1495238400, 1495324800, 1495411200,
1495497600, 1495584000, 1495670400, 1495756800, 1495843200, 1495929600,
1496016000, 1496102400, 1496188800, 1496275200, 1496361600, 1496448000,
1496534400, 1496620800, 1496707200, 1496793600, 1496880000, 1496966400,
1497052800, 1497139200, 1497225600, 1497312000, 1497398400, 1497484800,
1497571200, 1497657600, 1497744000, 1497830400, 1497916800, 1498003200,
1498089600, 1498176000, 1498262400, 1498348800, 1498435200, 1498521600,
1498608000, 1498694400, 1498780800, 1498867200, 1498953600, 1499040000,
1499126400, 1499212800, 1499299200, 1499385600, 1499472000, 1499558400,
1499644800, 1499731200, 1499817600, 1499904000, 1499990400, 1500076800,
1500163200, 1500249600, 1500336000, 1500422400, 1500508800, 1500595200,
1500681600, 1500768000, 1500854400, 1500940800, 1501027200, 1501113600,
1501200000, 1501286400, 1501372800, 1501459200, 1501545600, 1501632000,
1501718400, 1501804800, 1501891200, 1501977600, 1502064000, 1502150400,
1502236800, 1502323200, 1502409600, 1502496000, 1502582400, 1502668800,
1502755200, 1502841600, 1502928000, 1503014400, 1503100800, 1503187200,
1503273600, 1503360000, 1503446400, 1503532800, 1503619200, 1503705600,
1503792000, 1503878400, 1503964800, 1504051200, 1504137600, 1504224000,
1504310400, 1504396800, 1504483200, 1504569600, 1504656000, 1504742400,
1504828800, 1504915200, 1505001600, 1505088000, 1505174400, 1505260800,
1505347200, 1505433600, 1505520000, 1505606400, 1505692800, 1505779200,
1505865600, 1505952000, 1506038400, 1506124800, 1506211200, 1506297600,
1506384000, 1506470400, 1506556800, 1506643200, 1506729600, 1506816000,
1506902400, 1506988800, 1507075200, 1507161600, 1507248000, 1507334400,
1507420800, 1507507200, 1507593600, 1507680000, 1507766400, 1507852800,
1507939200, 1508025600, 1508112000, 1508198400, 1508284800, 1508371200,
1508457600, 1508544000, 1508630400, 1508716800, 1508803200, 1508889600,
1508976000, 1509062400, 1509148800, 1509235200, 1509321600, 1509408000,
1509494400, 1509580800, 1509667200, 1509753600, 1509840000, 1509926400,
1510012800, 1510099200, 1510185600, 1510272000, 1510358400, 1510444800,
1510531200, 1510617600, 1510704000, 1510790400, 1510876800, 1510963200,
1511049600, 1511136000, 1511222400, 1511308800, 1511395200, 1511481600,
1511568000, 1511654400, 1511740800, 1511827200, 1511913600, 1.512e+09,
1512086400, 1512172800, 1512259200, 1512345600, 1512432000, 1512518400,
1512604800, 1512691200, 1512777600, 1512864000, 1512950400, 1513036800,
1513123200, 1513209600, 1513296000, 1513382400, 1513468800, 1513555200,
1513641600, 1513728000, 1513814400, 1513900800, 1513987200, 1514073600,
1514160000, 1514246400, 1514332800, 1514419200, 1514505600, 1514592000,
1514678400, 1514764800, 1514851200, 1514937600, 1515024000, 1515110400,
1515196800, 1515283200, 1515369600, 1515456000, 1515542400, 1515628800,
1515715200, 1515801600, 1515888000, 1515974400, 1516060800, 1516147200,
1516233600, 1516320000, 1516406400, 1516492800, 1516579200, 1516665600,
1516752000, 1516838400, 1516924800, 1517011200, 1517097600, 1517184000,
1517270400, 1517356800, 1517443200, 1517529600, 1517616000, 1517702400,
1517788800, 1517875200, 1517961600, 1518048000, 1518134400, 1518220800,
1518307200, 1518393600, 1518480000, 1518566400, 1518652800, 1518739200,
1518825600, 1518912000, 1518998400, 1519084800, 1519171200, 1519257600,
1519344000, 1519430400, 1519516800, 1519603200, 1519689600, 1519776000,
1519862400, 1519948800, 1520035200, 1520121600, 1520208000, 1520294400,
1520380800, 1520467200, 1520553600, 1520640000, 1520726400, 1520812800,
1520899200, 1520985600, 1521072000, 1521158400, 1521244800, 1521331200,
1521417600, 1521504000, 1521590400, 1521676800, 1521763200, 1521849600,
1521936000, 1522022400, 1522108800, 1522195200, 1522281600, 1522368000,
1522454400, 1522540800, 1522627200, 1522713600, 1522800000, 1522886400,
1522972800, 1523059200, 1523145600, 1523232000, 1523318400, 1523404800,
1523491200, 1523577600, 1523664000, 1523750400, 1523836800, 1523923200,
1524009600, 1524096000, 1524182400, 1524268800, 1524355200, 1524441600,
1524528000, 1524614400, 1524700800, 1524787200, 1524873600, 1524960000,
1525046400, 1525132800, 1525219200, 1525305600, 1525392000, 1525478400,
1525564800, 1525651200, 1525737600, 1525824000, 1525910400, 1525996800,
1526083200, 1526169600, 1526256000, 1526342400, 1526428800, 1526515200,
1526601600, 1526688000, 1526774400, 1526860800, 1526947200, 1527033600,
1527120000, 1527206400, 1527292800, 1527379200, 1527465600, 1527552000,
1527638400, 1527724800, 1527811200, 1527897600, 1527984000, 1528070400,
1528156800, 1528243200, 1528329600, 1528416000, 1528502400, 1528588800,
1528675200, 1528761600, 1528848000, 1528934400, 1529020800, 1529107200,
1529193600, 1529280000, 1529366400, 1529452800, 1529539200, 1529625600,
1529712000, 1529798400, 1529884800, 1529971200, 1530057600, 1530144000,
1530230400, 1530316800, 1530403200, 1530489600, 1530576000, 1530662400,
1530748800, 1530835200, 1530921600, 1531008000, 1531094400, 1531180800,
1531267200, 1531353600, 1531440000, 1531526400, 1531612800, 1531699200,
1531785600, 1531872000, 1531958400, 1532044800, 1532131200, 1532217600,
1532304000, 1532390400, 1532476800, 1532563200, 1532649600, 1532736000,
1532822400, 1532908800, 1532995200, 1533081600, 1533168000, 1533254400,
1533340800, 1533427200, 1533513600, 1533600000, 1533686400, 1533772800,
1533859200, 1533945600, 1534032000, 1534118400, 1534204800, 1534291200,
1534377600, 1534464000, 1534550400, 1534636800, 1534723200, 1534809600,
1534896000, 1534982400, 1535068800, 1535155200, 1535241600, 1535328000,
1535414400, 1535500800, 1535587200, 1535673600, 1535760000, 1535846400,
1535932800, 1536019200, 1536105600, 1536192000, 1536278400, 1536364800,
1536451200, 1536537600, 1536624000, 1536710400, 1536796800, 1536883200,
1536969600, 1537056000, 1537142400, 1537228800, 1537315200, 1537401600,
1537488000, 1537574400, 1537660800, 1537747200, 1537833600, 1537920000,
1538006400, 1538092800, 1538179200, 1538265600, 1538352000, 1538438400,
1538524800, 1538611200, 1538697600, 1538784000, 1538870400, 1538956800,
1539043200, 1539129600, 1539216000, 1539302400, 1539388800, 1539475200,
1539561600, 1539648000, 1539734400, 1539820800, 1539907200, 1539993600,
1540080000, 1540166400, 1540252800, 1540339200, 1540425600, 1540512000,
1540598400, 1540684800, 1540771200, 1540857600, 1540944000, 1541030400,
1541116800, 1541203200, 1541289600, 1541376000, 1541462400, 1541548800,
1541635200, 1541721600, 1541808000, 1541894400, 1541980800, 1542067200,
1542153600, 1542240000, 1542326400, 1542412800, 1542499200, 1542585600,
1542672000, 1542758400, 1542844800, 1542931200, 1543017600, 1543104000,
1543190400, 1543276800, 1543363200, 1543449600, 1543536000, 1543622400,
1543708800, 1543795200, 1543881600, 1543968000, 1544054400, 1544140800,
1544227200, 1544313600, 1544400000, 1544486400, 1544572800, 1544659200,
1544745600, 1544832000, 1544918400, 1545004800, 1545091200, 1545177600,
1545264000, 1545350400, 1545436800, 1545523200, 1545609600, 1545696000,
1545782400, 1545868800, 1545955200, 1546041600, 1546128000, 1546214400,
1546300800, 1546387200, 1546473600, 1546560000, 1546646400, 1546732800,
1546819200, 1546905600, 1546992000, 1547078400, 1547164800, 1547251200,
1547337600, 1547424000, 1547510400, 1547596800, 1547683200, 1547769600,
1547856000, 1547942400, 1548028800, 1548115200, 1548201600, 1548288000,
1548374400, 1548460800, 1548547200, 1548633600, 1548720000, 1548806400,
1548892800, 1548979200, 1549065600, 1549152000, 1549238400, 1549324800,
1549411200, 1549497600, 1549584000, 1549670400, 1549756800, 1549843200,
1549929600, 1550016000, 1550102400, 1550188800, 1550275200, 1550361600,
1550448000, 1550534400, 1550620800, 1550707200, 1550793600, 1550880000,
1550966400, 1551052800, 1551139200, 1551225600, 1551312000, 1551398400,
1551484800, 1551571200, 1551657600, 1551744000, 1551830400, 1551916800,
1552003200, 1552089600, 1552176000, 1552262400, 1552348800, 1552435200,
1552521600, 1552608000, 1552694400, 1552780800, 1552867200, 1552953600,
1553040000, 1553126400, 1553212800, 1553299200, 1553385600, 1553472000,
1553558400, 1553644800, 1553731200, 1553817600, 1553904000, 1553990400,
1554076800, 1554163200, 1554249600, 1554336000, 1554422400, 1554508800,
1554595200, 1554681600, 1554768000, 1554854400, 1554940800, 1555027200,
1555113600, 1555200000, 1555286400, 1555372800, 1555459200, 1555545600,
1555632000, 1555718400, 1555804800, 1555891200, 1555977600, 1556064000,
1556150400, 1556236800, 1556323200, 1556409600, 1556496000, 1556582400,
1556668800, 1556755200, 1556841600, 1556928000, 1557014400, 1557100800,
1557187200, 1557273600, 1557360000, 1557446400, 1557532800, 1557619200,
1557705600, 1557792000, 1557878400, 1557964800, 1558051200, 1558137600,
1558224000, 1558310400, 1558396800, 1558483200, 1558569600, 1558656000,
1558742400, 1558828800, 1558915200, 1559001600, 1559088000, 1559174400,
1559260800, 1559347200, 1559433600, 1559520000, 1559606400, 1559692800,
1559779200, 1559865600, 1559952000, 1560038400, 1560124800, 1560211200,
1560297600, 1560384000, 1560470400, 1560556800, 1560643200, 1560729600,
1560816000, 1560902400, 1560988800, 1561075200, 1561161600, 1561248000,
1561334400, 1561420800, 1561507200, 1561593600, 1561680000, 1561766400,
1561852800, 1561939200, 1562025600, 1562112000, 1562198400, 1562284800,
1562371200, 1562457600, 1562544000, 1562630400, 1562716800, 1562803200,
1562889600, 1562976000, 1563062400, 1563148800, 1563235200, 1563321600,
1563408000, 1563494400, 1563580800, 1563667200, 1563753600, 1563840000,
1563926400, 1564012800, 1564099200, 1564185600, 1564272000, 1564358400,
1564444800, 1564531200, 1564617600, 1564704000, 1564790400, 1564876800,
1564963200, 1565049600, 1565136000, 1565222400, 1565308800, 1565395200,
1565481600, 1565568000, 1565654400, 1565740800, 1565827200, 1565913600,
1.566e+09, 1566086400, 1566172800, 1566259200, 1566345600, 1566432000,
1566518400, 1566604800, 1566691200, 1566777600, 1566864000, 1566950400,
1567036800, 1567123200, 1567209600, 1567296000, 1567382400, 1567468800,
1567555200, 1567641600, 1567728000, 1567814400, 1567900800, 1567987200,
1568073600, 1568160000, 1568246400, 1568332800, 1568419200, 1568505600,
1568592000, 1568678400, 1568764800, 1568851200, 1568937600, 1569024000,
1569110400, 1569196800, 1569283200, 1569369600, 1569456000, 1569542400,
1569628800, 1569715200, 1569801600, 1569888000, 1569974400, 1570060800,
1570147200, 1570233600, 1570320000, 1570406400, 1570492800, 1570579200,
1570665600, 1570752000, 1570838400, 1570924800, 1571011200, 1571097600,
1571184000, 1571270400, 1571356800, 1571443200, 1571529600, 1571616000,
1571702400, 1571788800, 1571875200, 1571961600, 1572048000, 1572134400,
1572220800, 1572307200, 1572393600, 1572480000, 1572566400, 1572652800,
1572739200, 1572825600, 1572912000, 1572998400, 1573084800, 1573171200,
1573257600, 1573344000, 1573430400, 1573516800, 1573603200, 1573689600,
1573776000, 1573862400, 1573948800, 1574035200, 1574121600, 1574208000,
1574294400, 1574380800, 1574467200, 1574553600, 1574640000, 1574726400,
1574812800, 1574899200, 1574985600, 1575072000, 1575158400, 1575244800,
1575331200, 1575417600, 1575504000, 1575590400, 1575676800, 1575763200,
1575849600, 1575936000, 1576022400, 1576108800, 1576195200, 1576281600,
1576368000, 1576454400, 1576540800, 1576627200, 1576713600, 1576800000,
1576886400, 1576972800, 1577059200, 1577145600, 1577232000, 1577318400,
1577404800, 1577491200, 1577577600, 1577664000, 1577750400), class = c("POSIXct",
"POSIXt"), tzone = "UTC"), adm = c(1L, 4L, 5L, 10L, 13L,
8L, 3L, 5L, 13L, 9L, 5L, 10L, 9L, 4L, 4L, 13L, 10L, 10L, 7L,
7L, 3L, 1L, 11L, 4L, 5L, 9L, 10L, 3L, 2L, 7L, 8L, 4L, 5L, 6L,
3L, 4L, 13L, 7L, 8L, 6L, 5L, 3L, 10L, 4L, 8L, 8L, 2L, 9L, 5L,
2L, 8L, 7L, 6L, 6L, 6L, 4L, 3L, 9L, 11L, 6L, 7L, 7L, 3L, 4L,
18L, 14L, 8L, 9L, 5L, 3L, 7L, 3L, 8L, 3L, 9L, 3L, 4L, 7L, 7L,
5L, 8L, 7L, 10L, 9L, 9L, 11L, 8L, 3L, 9L, 10L, 11L, 9L, 12L,
13L, 9L, 15L, 11L, 13L, 3L, 24L, 11L, 13L, 14L, 14L, 5L, 10L,
6L, 10L, 8L, 9L, 13L, 5L, 8L, 8L, 6L, 17L, 11L, 11L, 8L, 2L,
14L, 6L, 1L, 7L, 5L, 3L, 12L, 6L, 10L, 7L, 15L, 9L, 7L, 3L, 9L,
11L, 3L, 5L, 14L, 7L, 3L, 20L, 17L, 14L, 7L, 11L, 11L, 2L, 4L,
9L, 5L, 10L, 7L, 10L, 13L, 7L, 18L, 13L, 18L, 20L, 16L, 9L, 5L,
13L, 16L, 11L, 9L, 7L, 12L, 13L, 21L, 9L, 7L, 13L, 4L, 7L, 5L,
13L, 19L, 17L, 8L, 7L, 4L, 18L, 14L, 8L, 8L, 16L, 13L, 9L, 14L,
8L, 20L, 7L, 12L, 14L, 8L, 16L, 10L, 9L, 20L, 5L, 7L, 8L, 16L,
11L, 10L, 12L, 20L, 5L, 2L, 21L, 16L, 18L, 0L, 16L, 4L, 6L, 16L,
6L, 15L, 15L, 10L, 8L, 13L, 22L, 14L, 5L, 8L, 11L, 14L, 7L, 9L,
7L, 7L, 8L, 5L, 12L, 6L, 20L, 10L, 17L, 9L, 7L, 13L, 9L, 13L,
15L, 18L, 10L, 8L, 10L, 12L, 16L, 16L, 11L, 13L, 8L, 8L, 20L,
16L, 11L, 14L, 18L, 10L, 8L, 17L, 24L, 8L, 15L, 16L, 9L, 10L,
22L, 15L, 16L, 16L, 20L, 16L, 7L, 12L, 10L, 16L, 16L, 17L, 16L,
13L, 4L, 14L, 14L, 18L, 11L, 4L, 3L, 10L, 19L, 9L, 9L, 10L, 4L,
9L, 9L, 5L, 6L, 13L, 7L, 4L, 2L, 7L, 13L, 6L, 4L, 3L, 6L, 5L,
2L, 9L, 6L, 10L, 9L, 3L, 2L, 7L, 12L, 14L, 12L, 12L, 2L, 4L,
7L, 5L, 7L, 9L, 5L, 6L, 6L, 9L, 10L, 6L, 11L, 4L, 6L, 3L, 5L,
3L, 5L, 4L, 10L, 7L, 4L, 6L, 9L, 11L, 6L, 10L, 3L, 1L, 9L, 9L,
11L, 8L, 3L, 5L, 7L, 6L, 8L, 8L, 9L, 4L, 2L, 5L, 7L, 13L, 6L,
12L, 3L, 9L, 7L, 4L, 6L, 8L, 11L, 9L, 4L, 5L, 10L, 11L, 17L,
15L, 3L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 1L, 2L, 1L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 16L, 17L, 6L,
6L, 9L, 6L, 12L, 6L, 13L, 6L, 5L, 9L, 6L, 14L, 2L, 17L, 4L, 10L,
6L, 1L, 15L, 8L, 8L, 5L, 7L, 7L, 8L, 12L, 2L, 3L, 7L, 11L, 6L,
9L, 10L, 11L, 11L, 4L, 12L, 1L, 7L, 6L, 3L, 8L, 11L, 7L, 6L,
5L, 5L, 11L, 7L, 7L, 6L, 7L, 5L, 7L, 10L, 5L, 4L, 7L, 5L, 9L,
7L, 14L, 10L, 4L, 9L, 5L, 10L, 12L, 14L, 6L, 5L, 12L, 5L, 3L,
8L, 8L, 4L, 9L, 9L, 12L, 2L, 8L, 5L, 4L, 5L, 1L, 4L, 4L, 7L,
6L, 8L, 10L, 13L, 9L, 4L, 8L, 8L, 9L, 12L, 4L, 7L, 6L, 5L, 5L,
7L, 2L, 5L, 10L, 0L, 4L, 6L, 5L, 3L, 8L, 2L, 1L, 1L, 6L, 6L,
1L, 2L, 5L, 9L, 10L, 7L, 10L, 3L, 12L, 7L, 4L, 1L, 5L, 6L, 6L,
5L, 4L, 1L, 5L, 0L, 8L, 6L, 4L, 1L, 7L, 5L, 3L, 8L, 3L, 0L, 3L,
2L, 0L, 6L, 10L, 0L, 8L, 3L, 0L, 1L, 1L, 5L, 7L, 0L, 1L, 0L,
3L, 1L, 9L, 2L, 8L, 1L, 0L, 0L, 5L, 1L, 0L, 2L, 1L, 0L, 7L, 1L,
2L, 0L, 0L, 4L, 4L, 10L, 0L, 6L, 4L, 3L, 0L, 4L, 1L, 3L, 1L,
0L, 0L, 0L, 5L, 0L, 6L, 6L, 3L, 5L, 0L, 4L, 0L, 2L, 3L, 5L, 2L,
4L, 3L, 1L, 1L, 0L, 2L, 0L, 3L, 0L, 3L, 4L, 4L, 7L, 0L, 0L, 1L,
9L, 0L, 3L, 0L, 4L, 0L, 3L, 4L, 5L, 0L, 0L, 4L, 3L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 1L, 2L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L,
1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 2L, 0L,
1L, 1L, 0L, 0L, 0L, 0L, 13L, 10L, 13L, 10L, 11L, 8L, 27L, 8L,
12L, 20L, 15L, 9L, 10L, 3L, 8L, 13L, 16L, 13L, 12L, 13L, 10L,
14L, 14L, 10L, 10L, 7L, 13L, 12L, 12L, 23L, 7L, 12L, 6L, 7L,
10L, 8L, 13L, 16L, 10L, 11L, 18L, 7L, 15L, 18L, 10L, 9L, 15L,
4L, 3L, 9L, 12L, 2L, 6L, 4L, 4L, 8L, 4L, 7L, 11L, 9L, 7L, 9L,
15L, 7L, 7L, 14L, 15L, 6L, 3L, 7L, 6L, 22L, 7L, 8L, 6L, 12L,
7L, 11L, 10L, 6L, 10L, 6L, 5L, 16L, 11L, 11L, 6L, 9L, 10L, 4L,
14L, 7L, 6L, 4L, 9L, 4L, 7L, 10L, 11L, 8L, 6L, 7L, 3L, 8L, 8L,
12L, 7L, 13L, 5L, 4L, 10L, 6L, 8L, 7L, 11L, 3L, 3L, 5L, 4L, 4L,
11L, 3L, 3L, 3L, 3L, 7L, 4L, 5L, 3L, 5L, 1L, 5L, 2L, 5L, 6L,
6L, 4L, 3L, 6L, 7L, 3L, 8L, 1L, 3L, 5L, 9L, 9L, 10L, 6L, 9L,
7L, 5L, 5L, 10L, 6L, 9L, 2L, 6L, 6L, 1L, 6L, 4L, 5L, 3L, 3L,
3L, 3L, 3L, 2L, 6L, 1L, 5L, 3L, 4L, 9L, 3L, 8L, 5L, 7L, 5L, 10L,
5L, 4L, 0L, 8L, 6L, 4L, 6L, 7L, 4L, 3L, 1L, 3L, 3L, 6L, 5L, 7L,
3L, 7L, 2L, 2L, 6L, 4L, 3L, 3L, 2L, 2L, 4L, 2L, 5L, 5L, 7L, 3L,
5L, 2L, 2L, 1L, 5L, 1L, 3L, 2L, 5L, 3L, 1L, 4L, 0L, 1L, 4L, 3L,
2L, 2L, 2L, 6L, 3L, 4L, 2L, 2L, 8L, 4L, 3L, 6L, 6L, 2L, 4L, 11L,
3L, 4L, 4L, 5L, 5L, 1L, 5L, 2L, 7L, 3L, 2L, 4L, 2L, 3L, 6L, 3L,
11L, 7L, 5L, 9L, 5L, 6L, 5L, 9L, 6L, 5L, 7L, 1L, 14L, 7L, 7L,
7L, 2L, 5L, 5L, 9L, 2L, 9L, 2L, 6L, 2L, 9L, 4L, 3L, 4L, 9L, 7L,
6L, 5L, 4L, 5L, 6L, 4L, 5L, 2L, 5L, 4L, 7L, 3L, 9L, 6L, 9L, 7L,
2L, 7L, 6L, 7L, 3L, 4L, 8L, 3L, 8L, 10L, 3L, 3L, 5L, 4L, 8L,
6L, 5L, 4L, 5L, 1L, 6L, 6L, 8L, 9L, 5L, 10L, 1L, 8L, 7L, 7L,
6L, 5L, 1L, 5L, 8L, 11L, 2L, 6L, 7L, 6L, 5L, 20L, 8L, 10L, 7L,
5L, 2L, 5L, 3L, 17L, 6L, 5L, 0L, 1L, 1L, 9L, 1L)), row.names = c(NA,
-1304L), class = "data.frame")
I want to do a time series analysis with it.
I transformed it into a ts to get a pacf
ts1 <- zoo(df$adm, df$date)
ts <- as.xts(ts1)
pacf(ts)
The problem is that the x-axis, usually showing lags like, 1,2,3...is showing lags in magnitudes of hundred of thousands.
How can I correct this?
TL;DR: The pacf() function converts its main argument to ts by calling as.ts() and then computes the PACF from that. In your application you probably just want to treat the observations as an equidistant series so it's easiest to strip the time index and just compute the PACF of the data vector. You can do that via:
pacf(coredata(ts1))
pacf(coredata(ts))
Both lead to identical results.
Details: The as.ts() methods for both zoo and xts try to preserve the time index when creating the ts object. While the zoo method does not assume any knowledge about the time class and just converts it to numeric, the xts method behaves somewhat differently because it "understands" what a POSIXct object is.
In either case the time index gets coerced to numeric which is the time in seconds since 1970-01-01 for POSIXct. Therefore the distance between the observations is 1 day = 86400 seconds and hence the frequency is 1/86400 = 1.157407e-05. Using the simple Date class instead of POSIXct would avoid this problem.
Finally, pacf(ts1) fails because as.ts(ts1) creates a ts series with one missing value because there is one gap in the data:
ts1[221:224]
## 2017-01-11 2017-01-12 2017-01-14 2017-01-15
## 15 15 10 8
Possibly it may be sensible to fill the observation for 2017-01-13 with 0?
This is closely related to this question: Set frequency in xts object. The frequency is used in pacf here.
In particular, in your case the frequency (time in days between observations) is really small:
> frequency(ts)
[1] 1.157407e-05
You have daily data, so if you set attr(ts, 'frequency') <- 1 before pacf call, it will work.
ts1 <- zoo(df$adm, df$date)
ts <- xts::as.xts(ts1)
attr(ts, 'frequency') <- 1
pacf(ts)
Using the fpp3 forecasting packages I get the daily PACF lags per below if that helps.
(I don't use zoo/xts myself so can't say why that's showing the larger magnitudes.)
library(fpp3)
df <- structure(list(date = structure(c(
1465084800, 1465171200, 1465257600,
1465344000, 1465430400, 1465516800, 1465603200, 1465689600, 1465776000,
1465862400, 1465948800, 1466035200, 1466121600, 1466208000, 1466294400,
1466380800, 1466467200, 1466553600, 1466640000, 1466726400, 1466812800,
1466899200, 1466985600, 1467072000, 1467158400, 1467244800, 1467331200,
1467417600, 1467504000, 1467590400, 1467676800, 1467763200, 1467849600,
1467936000, 1468022400, 1468108800, 1468195200, 1468281600, 1468368000,
1468454400, 1468540800, 1468627200, 1468713600, 1468800000, 1468886400,
1468972800, 1469059200, 1469145600, 1469232000, 1469318400, 1469404800,
1469491200, 1469577600, 1469664000, 1469750400, 1469836800, 1469923200,
1470009600, 1470096000, 1470182400, 1470268800, 1470355200, 1470441600,
1470528000, 1470614400, 1470700800, 1470787200, 1470873600, 1470960000,
1471046400, 1471132800, 1471219200, 1471305600, 1471392000, 1471478400,
1471564800, 1471651200, 1471737600, 1471824000, 1471910400, 1471996800,
1472083200, 1472169600, 1472256000, 1472342400, 1472428800, 1472515200,
1472601600, 1472688000, 1472774400, 1472860800, 1472947200, 1473033600,
1473120000, 1473206400, 1473292800, 1473379200, 1473465600, 1473552000,
1473638400, 1473724800, 1473811200, 1473897600, 1473984000, 1474070400,
1474156800, 1474243200, 1474329600, 1474416000, 1474502400, 1474588800,
1474675200, 1474761600, 1474848000, 1474934400, 1475020800, 1475107200,
1475193600, 1475280000, 1475366400, 1475452800, 1475539200, 1475625600,
1475712000, 1475798400, 1475884800, 1475971200, 1476057600, 1476144000,
1476230400, 1476316800, 1476403200, 1476489600, 1476576000, 1476662400,
1476748800, 1476835200, 1476921600, 1477008000, 1477094400, 1477180800,
1477267200, 1477353600, 1477440000, 1477526400, 1477612800, 1477699200,
1477785600, 1477872000, 1477958400, 1478044800, 1478131200, 1478217600,
1478304000, 1478390400, 1478476800, 1478563200, 1478649600, 1478736000,
1478822400, 1478908800, 1478995200, 1479081600, 1479168000, 1479254400,
1479340800, 1479427200, 1479513600, 1479600000, 1479686400, 1479772800,
1479859200, 1479945600, 1480032000, 1480118400, 1480204800, 1480291200,
1480377600, 1480464000, 1480550400, 1480636800, 1480723200, 1480809600,
1480896000, 1480982400, 1481068800, 1481155200, 1481241600, 1481328000,
1481414400, 1481500800, 1481587200, 1481673600, 1481760000, 1481846400,
1481932800, 1482019200, 1482105600, 1482192000, 1482278400, 1482364800,
1482451200, 1482537600, 1482624000, 1482710400, 1482796800, 1482883200,
1482969600, 1483056000, 1483142400, 1483228800, 1483315200, 1483401600,
1483488000, 1483574400, 1483660800, 1483747200, 1483833600, 1483920000,
1484006400, 1484092800, 1484179200, 1484352000, 1484438400, 1484524800,
1484611200, 1484697600, 1484784000, 1484870400, 1484956800, 1485043200,
1485129600, 1485216000, 1485302400, 1485388800, 1485475200, 1485561600,
1485648000, 1485734400, 1485820800, 1485907200, 1485993600, 1486080000,
1486166400, 1486252800, 1486339200, 1486425600, 1486512000, 1486598400,
1486684800, 1486771200, 1486857600, 1486944000, 1487030400, 1487116800,
1487203200, 1487289600, 1487376000, 1487462400, 1487548800, 1487635200,
1487721600, 1487808000, 1487894400, 1487980800, 1488067200, 1488153600,
1488240000, 1488326400, 1488412800, 1488499200, 1488585600, 1488672000,
1488758400, 1488844800, 1488931200, 1489017600, 1489104000, 1489190400,
1489276800, 1489363200, 1489449600, 1489536000, 1489622400, 1489708800,
1489795200, 1489881600, 1489968000, 1490054400, 1490140800, 1490227200,
1490313600, 1490400000, 1490486400, 1490572800, 1490659200, 1490745600,
1490832000, 1490918400, 1491004800, 1491091200, 1491177600, 1491264000,
1491350400, 1491436800, 1491523200, 1491609600, 1491696000, 1491782400,
1491868800, 1491955200, 1492041600, 1492128000, 1492214400, 1492300800,
1492387200, 1492473600, 1492560000, 1492646400, 1492732800, 1492819200,
1492905600, 1492992000, 1493078400, 1493164800, 1493251200, 1493337600,
1493424000, 1493510400, 1493596800, 1493683200, 1493769600, 1493856000,
1493942400, 1494028800, 1494115200, 1494201600, 1494288000, 1494374400,
1494460800, 1494547200, 1494633600, 1494720000, 1494806400, 1494892800,
1494979200, 1495065600, 1495152000, 1495238400, 1495324800, 1495411200,
1495497600, 1495584000, 1495670400, 1495756800, 1495843200, 1495929600,
1496016000, 1496102400, 1496188800, 1496275200, 1496361600, 1496448000,
1496534400, 1496620800, 1496707200, 1496793600, 1496880000, 1496966400,
1497052800, 1497139200, 1497225600, 1497312000, 1497398400, 1497484800,
1497571200, 1497657600, 1497744000, 1497830400, 1497916800, 1498003200,
1498089600, 1498176000, 1498262400, 1498348800, 1498435200, 1498521600,
1498608000, 1498694400, 1498780800, 1498867200, 1498953600, 1499040000,
1499126400, 1499212800, 1499299200, 1499385600, 1499472000, 1499558400,
1499644800, 1499731200, 1499817600, 1499904000, 1499990400, 1500076800,
1500163200, 1500249600, 1500336000, 1500422400, 1500508800, 1500595200,
1500681600, 1500768000, 1500854400, 1500940800, 1501027200, 1501113600,
1501200000, 1501286400, 1501372800, 1501459200, 1501545600, 1501632000,
1501718400, 1501804800, 1501891200, 1501977600, 1502064000, 1502150400,
1502236800, 1502323200, 1502409600, 1502496000, 1502582400, 1502668800,
1502755200, 1502841600, 1502928000, 1503014400, 1503100800, 1503187200,
1503273600, 1503360000, 1503446400, 1503532800, 1503619200, 1503705600,
1503792000, 1503878400, 1503964800, 1504051200, 1504137600, 1504224000,
1504310400, 1504396800, 1504483200, 1504569600, 1504656000, 1504742400,
1504828800, 1504915200, 1505001600, 1505088000, 1505174400, 1505260800,
1505347200, 1505433600, 1505520000, 1505606400, 1505692800, 1505779200,
1505865600, 1505952000, 1506038400, 1506124800, 1506211200, 1506297600,
1506384000, 1506470400, 1506556800, 1506643200, 1506729600, 1506816000,
1506902400, 1506988800, 1507075200, 1507161600, 1507248000, 1507334400,
1507420800, 1507507200, 1507593600, 1507680000, 1507766400, 1507852800,
1507939200, 1508025600, 1508112000, 1508198400, 1508284800, 1508371200,
1508457600, 1508544000, 1508630400, 1508716800, 1508803200, 1508889600,
1508976000, 1509062400, 1509148800, 1509235200, 1509321600, 1509408000,
1509494400, 1509580800, 1509667200, 1509753600, 1509840000, 1509926400,
1510012800, 1510099200, 1510185600, 1510272000, 1510358400, 1510444800,
1510531200, 1510617600, 1510704000, 1510790400, 1510876800, 1510963200,
1511049600, 1511136000, 1511222400, 1511308800, 1511395200, 1511481600,
1511568000, 1511654400, 1511740800, 1511827200, 1511913600, 1.512e+09,
1512086400, 1512172800, 1512259200, 1512345600, 1512432000, 1512518400,
1512604800, 1512691200, 1512777600, 1512864000, 1512950400, 1513036800,
1513123200, 1513209600, 1513296000, 1513382400, 1513468800, 1513555200,
1513641600, 1513728000, 1513814400, 1513900800, 1513987200, 1514073600,
1514160000, 1514246400, 1514332800, 1514419200, 1514505600, 1514592000,
1514678400, 1514764800, 1514851200, 1514937600, 1515024000, 1515110400,
1515196800, 1515283200, 1515369600, 1515456000, 1515542400, 1515628800,
1515715200, 1515801600, 1515888000, 1515974400, 1516060800, 1516147200,
1516233600, 1516320000, 1516406400, 1516492800, 1516579200, 1516665600,
1516752000, 1516838400, 1516924800, 1517011200, 1517097600, 1517184000,
1517270400, 1517356800, 1517443200, 1517529600, 1517616000, 1517702400,
1517788800, 1517875200, 1517961600, 1518048000, 1518134400, 1518220800,
1518307200, 1518393600, 1518480000, 1518566400, 1518652800, 1518739200,
1518825600, 1518912000, 1518998400, 1519084800, 1519171200, 1519257600,
1519344000, 1519430400, 1519516800, 1519603200, 1519689600, 1519776000,
1519862400, 1519948800, 1520035200, 1520121600, 1520208000, 1520294400,
1520380800, 1520467200, 1520553600, 1520640000, 1520726400, 1520812800,
1520899200, 1520985600, 1521072000, 1521158400, 1521244800, 1521331200,
1521417600, 1521504000, 1521590400, 1521676800, 1521763200, 1521849600,
1521936000, 1522022400, 1522108800, 1522195200, 1522281600, 1522368000,
1522454400, 1522540800, 1522627200, 1522713600, 1522800000, 1522886400,
1522972800, 1523059200, 1523145600, 1523232000, 1523318400, 1523404800,
1523491200, 1523577600, 1523664000, 1523750400, 1523836800, 1523923200,
1524009600, 1524096000, 1524182400, 1524268800, 1524355200, 1524441600,
1524528000, 1524614400, 1524700800, 1524787200, 1524873600, 1524960000,
1525046400, 1525132800, 1525219200, 1525305600, 1525392000, 1525478400,
1525564800, 1525651200, 1525737600, 1525824000, 1525910400, 1525996800,
1526083200, 1526169600, 1526256000, 1526342400, 1526428800, 1526515200,
1526601600, 1526688000, 1526774400, 1526860800, 1526947200, 1527033600,
1527120000, 1527206400, 1527292800, 1527379200, 1527465600, 1527552000,
1527638400, 1527724800, 1527811200, 1527897600, 1527984000, 1528070400,
1528156800, 1528243200, 1528329600, 1528416000, 1528502400, 1528588800,
1528675200, 1528761600, 1528848000, 1528934400, 1529020800, 1529107200,
1529193600, 1529280000, 1529366400, 1529452800, 1529539200, 1529625600,
1529712000, 1529798400, 1529884800, 1529971200, 1530057600, 1530144000,
1530230400, 1530316800, 1530403200, 1530489600, 1530576000, 1530662400,
1530748800, 1530835200, 1530921600, 1531008000, 1531094400, 1531180800,
1531267200, 1531353600, 1531440000, 1531526400, 1531612800, 1531699200,
1531785600, 1531872000, 1531958400, 1532044800, 1532131200, 1532217600,
1532304000, 1532390400, 1532476800, 1532563200, 1532649600, 1532736000,
1532822400, 1532908800, 1532995200, 1533081600, 1533168000, 1533254400,
1533340800, 1533427200, 1533513600, 1533600000, 1533686400, 1533772800,
1533859200, 1533945600, 1534032000, 1534118400, 1534204800, 1534291200,
1534377600, 1534464000, 1534550400, 1534636800, 1534723200, 1534809600,
1534896000, 1534982400, 1535068800, 1535155200, 1535241600, 1535328000,
1535414400, 1535500800, 1535587200, 1535673600, 1535760000, 1535846400,
1535932800, 1536019200, 1536105600, 1536192000, 1536278400, 1536364800,
1536451200, 1536537600, 1536624000, 1536710400, 1536796800, 1536883200,
1536969600, 1537056000, 1537142400, 1537228800, 1537315200, 1537401600,
1537488000, 1537574400, 1537660800, 1537747200, 1537833600, 1537920000,
1538006400, 1538092800, 1538179200, 1538265600, 1538352000, 1538438400,
1538524800, 1538611200, 1538697600, 1538784000, 1538870400, 1538956800,
1539043200, 1539129600, 1539216000, 1539302400, 1539388800, 1539475200,
1539561600, 1539648000, 1539734400, 1539820800, 1539907200, 1539993600,
1540080000, 1540166400, 1540252800, 1540339200, 1540425600, 1540512000,
1540598400, 1540684800, 1540771200, 1540857600, 1540944000, 1541030400,
1541116800, 1541203200, 1541289600, 1541376000, 1541462400, 1541548800,
1541635200, 1541721600, 1541808000, 1541894400, 1541980800, 1542067200,
1542153600, 1542240000, 1542326400, 1542412800, 1542499200, 1542585600,
1542672000, 1542758400, 1542844800, 1542931200, 1543017600, 1543104000,
1543190400, 1543276800, 1543363200, 1543449600, 1543536000, 1543622400,
1543708800, 1543795200, 1543881600, 1543968000, 1544054400, 1544140800,
1544227200, 1544313600, 1544400000, 1544486400, 1544572800, 1544659200,
1544745600, 1544832000, 1544918400, 1545004800, 1545091200, 1545177600,
1545264000, 1545350400, 1545436800, 1545523200, 1545609600, 1545696000,
1545782400, 1545868800, 1545955200, 1546041600, 1546128000, 1546214400,
1546300800, 1546387200, 1546473600, 1546560000, 1546646400, 1546732800,
1546819200, 1546905600, 1546992000, 1547078400, 1547164800, 1547251200,
1547337600, 1547424000, 1547510400, 1547596800, 1547683200, 1547769600,
1547856000, 1547942400, 1548028800, 1548115200, 1548201600, 1548288000,
1548374400, 1548460800, 1548547200, 1548633600, 1548720000, 1548806400,
1548892800, 1548979200, 1549065600, 1549152000, 1549238400, 1549324800,
1549411200, 1549497600, 1549584000, 1549670400, 1549756800, 1549843200,
1549929600, 1550016000, 1550102400, 1550188800, 1550275200, 1550361600,
1550448000, 1550534400, 1550620800, 1550707200, 1550793600, 1550880000,
1550966400, 1551052800, 1551139200, 1551225600, 1551312000, 1551398400,
1551484800, 1551571200, 1551657600, 1551744000, 1551830400, 1551916800,
1552003200, 1552089600, 1552176000, 1552262400, 1552348800, 1552435200,
1552521600, 1552608000, 1552694400, 1552780800, 1552867200, 1552953600,
1553040000, 1553126400, 1553212800, 1553299200, 1553385600, 1553472000,
1553558400, 1553644800, 1553731200, 1553817600, 1553904000, 1553990400,
1554076800, 1554163200, 1554249600, 1554336000, 1554422400, 1554508800,
1554595200, 1554681600, 1554768000, 1554854400, 1554940800, 1555027200,
1555113600, 1555200000, 1555286400, 1555372800, 1555459200, 1555545600,
1555632000, 1555718400, 1555804800, 1555891200, 1555977600, 1556064000,
1556150400, 1556236800, 1556323200, 1556409600, 1556496000, 1556582400,
1556668800, 1556755200, 1556841600, 1556928000, 1557014400, 1557100800,
1557187200, 1557273600, 1557360000, 1557446400, 1557532800, 1557619200,
1557705600, 1557792000, 1557878400, 1557964800, 1558051200, 1558137600,
1558224000, 1558310400, 1558396800, 1558483200, 1558569600, 1558656000,
1558742400, 1558828800, 1558915200, 1559001600, 1559088000, 1559174400,
1559260800, 1559347200, 1559433600, 1559520000, 1559606400, 1559692800,
1559779200, 1559865600, 1559952000, 1560038400, 1560124800, 1560211200,
1560297600, 1560384000, 1560470400, 1560556800, 1560643200, 1560729600,
1560816000, 1560902400, 1560988800, 1561075200, 1561161600, 1561248000,
1561334400, 1561420800, 1561507200, 1561593600, 1561680000, 1561766400,
1561852800, 1561939200, 1562025600, 1562112000, 1562198400, 1562284800,
1562371200, 1562457600, 1562544000, 1562630400, 1562716800, 1562803200,
1562889600, 1562976000, 1563062400, 1563148800, 1563235200, 1563321600,
1563408000, 1563494400, 1563580800, 1563667200, 1563753600, 1563840000,
1563926400, 1564012800, 1564099200, 1564185600, 1564272000, 1564358400,
1564444800, 1564531200, 1564617600, 1564704000, 1564790400, 1564876800,
1564963200, 1565049600, 1565136000, 1565222400, 1565308800, 1565395200,
1565481600, 1565568000, 1565654400, 1565740800, 1565827200, 1565913600,
1.566e+09, 1566086400, 1566172800, 1566259200, 1566345600, 1566432000,
1566518400, 1566604800, 1566691200, 1566777600, 1566864000, 1566950400,
1567036800, 1567123200, 1567209600, 1567296000, 1567382400, 1567468800,
1567555200, 1567641600, 1567728000, 1567814400, 1567900800, 1567987200,
1568073600, 1568160000, 1568246400, 1568332800, 1568419200, 1568505600,
1568592000, 1568678400, 1568764800, 1568851200, 1568937600, 1569024000,
1569110400, 1569196800, 1569283200, 1569369600, 1569456000, 1569542400,
1569628800, 1569715200, 1569801600, 1569888000, 1569974400, 1570060800,
1570147200, 1570233600, 1570320000, 1570406400, 1570492800, 1570579200,
1570665600, 1570752000, 1570838400, 1570924800, 1571011200, 1571097600,
1571184000, 1571270400, 1571356800, 1571443200, 1571529600, 1571616000,
1571702400, 1571788800, 1571875200, 1571961600, 1572048000, 1572134400,
1572220800, 1572307200, 1572393600, 1572480000, 1572566400, 1572652800,
1572739200, 1572825600, 1572912000, 1572998400, 1573084800, 1573171200,
1573257600, 1573344000, 1573430400, 1573516800, 1573603200, 1573689600,
1573776000, 1573862400, 1573948800, 1574035200, 1574121600, 1574208000,
1574294400, 1574380800, 1574467200, 1574553600, 1574640000, 1574726400,
1574812800, 1574899200, 1574985600, 1575072000, 1575158400, 1575244800,
1575331200, 1575417600, 1575504000, 1575590400, 1575676800, 1575763200,
1575849600, 1575936000, 1576022400, 1576108800, 1576195200, 1576281600,
1576368000, 1576454400, 1576540800, 1576627200, 1576713600, 1576800000,
1576886400, 1576972800, 1577059200, 1577145600, 1577232000, 1577318400,
1577404800, 1577491200, 1577577600, 1577664000, 1577750400
), class = c(
"POSIXct",
"POSIXt"
), tzone = "UTC"), adm = c(
1L, 4L, 5L, 10L, 13L,
8L, 3L, 5L, 13L, 9L, 5L, 10L, 9L, 4L, 4L, 13L, 10L, 10L, 7L,
7L, 3L, 1L, 11L, 4L, 5L, 9L, 10L, 3L, 2L, 7L, 8L, 4L, 5L, 6L,
3L, 4L, 13L, 7L, 8L, 6L, 5L, 3L, 10L, 4L, 8L, 8L, 2L, 9L, 5L,
2L, 8L, 7L, 6L, 6L, 6L, 4L, 3L, 9L, 11L, 6L, 7L, 7L, 3L, 4L,
18L, 14L, 8L, 9L, 5L, 3L, 7L, 3L, 8L, 3L, 9L, 3L, 4L, 7L, 7L,
5L, 8L, 7L, 10L, 9L, 9L, 11L, 8L, 3L, 9L, 10L, 11L, 9L, 12L,
13L, 9L, 15L, 11L, 13L, 3L, 24L, 11L, 13L, 14L, 14L, 5L, 10L,
6L, 10L, 8L, 9L, 13L, 5L, 8L, 8L, 6L, 17L, 11L, 11L, 8L, 2L,
14L, 6L, 1L, 7L, 5L, 3L, 12L, 6L, 10L, 7L, 15L, 9L, 7L, 3L, 9L,
11L, 3L, 5L, 14L, 7L, 3L, 20L, 17L, 14L, 7L, 11L, 11L, 2L, 4L,
9L, 5L, 10L, 7L, 10L, 13L, 7L, 18L, 13L, 18L, 20L, 16L, 9L, 5L,
13L, 16L, 11L, 9L, 7L, 12L, 13L, 21L, 9L, 7L, 13L, 4L, 7L, 5L,
13L, 19L, 17L, 8L, 7L, 4L, 18L, 14L, 8L, 8L, 16L, 13L, 9L, 14L,
8L, 20L, 7L, 12L, 14L, 8L, 16L, 10L, 9L, 20L, 5L, 7L, 8L, 16L,
11L, 10L, 12L, 20L, 5L, 2L, 21L, 16L, 18L, 0L, 16L, 4L, 6L, 16L,
6L, 15L, 15L, 10L, 8L, 13L, 22L, 14L, 5L, 8L, 11L, 14L, 7L, 9L,
7L, 7L, 8L, 5L, 12L, 6L, 20L, 10L, 17L, 9L, 7L, 13L, 9L, 13L,
15L, 18L, 10L, 8L, 10L, 12L, 16L, 16L, 11L, 13L, 8L, 8L, 20L,
16L, 11L, 14L, 18L, 10L, 8L, 17L, 24L, 8L, 15L, 16L, 9L, 10L,
22L, 15L, 16L, 16L, 20L, 16L, 7L, 12L, 10L, 16L, 16L, 17L, 16L,
13L, 4L, 14L, 14L, 18L, 11L, 4L, 3L, 10L, 19L, 9L, 9L, 10L, 4L,
9L, 9L, 5L, 6L, 13L, 7L, 4L, 2L, 7L, 13L, 6L, 4L, 3L, 6L, 5L,
2L, 9L, 6L, 10L, 9L, 3L, 2L, 7L, 12L, 14L, 12L, 12L, 2L, 4L,
7L, 5L, 7L, 9L, 5L, 6L, 6L, 9L, 10L, 6L, 11L, 4L, 6L, 3L, 5L,
3L, 5L, 4L, 10L, 7L, 4L, 6L, 9L, 11L, 6L, 10L, 3L, 1L, 9L, 9L,
11L, 8L, 3L, 5L, 7L, 6L, 8L, 8L, 9L, 4L, 2L, 5L, 7L, 13L, 6L,
12L, 3L, 9L, 7L, 4L, 6L, 8L, 11L, 9L, 4L, 5L, 10L, 11L, 17L,
15L, 3L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 1L, 2L, 1L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 3L, 16L, 17L, 6L,
6L, 9L, 6L, 12L, 6L, 13L, 6L, 5L, 9L, 6L, 14L, 2L, 17L, 4L, 10L,
6L, 1L, 15L, 8L, 8L, 5L, 7L, 7L, 8L, 12L, 2L, 3L, 7L, 11L, 6L,
9L, 10L, 11L, 11L, 4L, 12L, 1L, 7L, 6L, 3L, 8L, 11L, 7L, 6L,
5L, 5L, 11L, 7L, 7L, 6L, 7L, 5L, 7L, 10L, 5L, 4L, 7L, 5L, 9L,
7L, 14L, 10L, 4L, 9L, 5L, 10L, 12L, 14L, 6L, 5L, 12L, 5L, 3L,
8L, 8L, 4L, 9L, 9L, 12L, 2L, 8L, 5L, 4L, 5L, 1L, 4L, 4L, 7L,
6L, 8L, 10L, 13L, 9L, 4L, 8L, 8L, 9L, 12L, 4L, 7L, 6L, 5L, 5L,
7L, 2L, 5L, 10L, 0L, 4L, 6L, 5L, 3L, 8L, 2L, 1L, 1L, 6L, 6L,
1L, 2L, 5L, 9L, 10L, 7L, 10L, 3L, 12L, 7L, 4L, 1L, 5L, 6L, 6L,
5L, 4L, 1L, 5L, 0L, 8L, 6L, 4L, 1L, 7L, 5L, 3L, 8L, 3L, 0L, 3L,
2L, 0L, 6L, 10L, 0L, 8L, 3L, 0L, 1L, 1L, 5L, 7L, 0L, 1L, 0L,
3L, 1L, 9L, 2L, 8L, 1L, 0L, 0L, 5L, 1L, 0L, 2L, 1L, 0L, 7L, 1L,
2L, 0L, 0L, 4L, 4L, 10L, 0L, 6L, 4L, 3L, 0L, 4L, 1L, 3L, 1L,
0L, 0L, 0L, 5L, 0L, 6L, 6L, 3L, 5L, 0L, 4L, 0L, 2L, 3L, 5L, 2L,
4L, 3L, 1L, 1L, 0L, 2L, 0L, 3L, 0L, 3L, 4L, 4L, 7L, 0L, 0L, 1L,
9L, 0L, 3L, 0L, 4L, 0L, 3L, 4L, 5L, 0L, 0L, 4L, 3L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L,
0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 1L, 2L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L,
1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 2L, 0L,
1L, 1L, 0L, 0L, 0L, 0L, 13L, 10L, 13L, 10L, 11L, 8L, 27L, 8L,
12L, 20L, 15L, 9L, 10L, 3L, 8L, 13L, 16L, 13L, 12L, 13L, 10L,
14L, 14L, 10L, 10L, 7L, 13L, 12L, 12L, 23L, 7L, 12L, 6L, 7L,
10L, 8L, 13L, 16L, 10L, 11L, 18L, 7L, 15L, 18L, 10L, 9L, 15L,
4L, 3L, 9L, 12L, 2L, 6L, 4L, 4L, 8L, 4L, 7L, 11L, 9L, 7L, 9L,
15L, 7L, 7L, 14L, 15L, 6L, 3L, 7L, 6L, 22L, 7L, 8L, 6L, 12L,
7L, 11L, 10L, 6L, 10L, 6L, 5L, 16L, 11L, 11L, 6L, 9L, 10L, 4L,
14L, 7L, 6L, 4L, 9L, 4L, 7L, 10L, 11L, 8L, 6L, 7L, 3L, 8L, 8L,
12L, 7L, 13L, 5L, 4L, 10L, 6L, 8L, 7L, 11L, 3L, 3L, 5L, 4L, 4L,
11L, 3L, 3L, 3L, 3L, 7L, 4L, 5L, 3L, 5L, 1L, 5L, 2L, 5L, 6L,
6L, 4L, 3L, 6L, 7L, 3L, 8L, 1L, 3L, 5L, 9L, 9L, 10L, 6L, 9L,
7L, 5L, 5L, 10L, 6L, 9L, 2L, 6L, 6L, 1L, 6L, 4L, 5L, 3L, 3L,
3L, 3L, 3L, 2L, 6L, 1L, 5L, 3L, 4L, 9L, 3L, 8L, 5L, 7L, 5L, 10L,
5L, 4L, 0L, 8L, 6L, 4L, 6L, 7L, 4L, 3L, 1L, 3L, 3L, 6L, 5L, 7L,
3L, 7L, 2L, 2L, 6L, 4L, 3L, 3L, 2L, 2L, 4L, 2L, 5L, 5L, 7L, 3L,
5L, 2L, 2L, 1L, 5L, 1L, 3L, 2L, 5L, 3L, 1L, 4L, 0L, 1L, 4L, 3L,
2L, 2L, 2L, 6L, 3L, 4L, 2L, 2L, 8L, 4L, 3L, 6L, 6L, 2L, 4L, 11L,
3L, 4L, 4L, 5L, 5L, 1L, 5L, 2L, 7L, 3L, 2L, 4L, 2L, 3L, 6L, 3L,
11L, 7L, 5L, 9L, 5L, 6L, 5L, 9L, 6L, 5L, 7L, 1L, 14L, 7L, 7L,
7L, 2L, 5L, 5L, 9L, 2L, 9L, 2L, 6L, 2L, 9L, 4L, 3L, 4L, 9L, 7L,
6L, 5L, 4L, 5L, 6L, 4L, 5L, 2L, 5L, 4L, 7L, 3L, 9L, 6L, 9L, 7L,
2L, 7L, 6L, 7L, 3L, 4L, 8L, 3L, 8L, 10L, 3L, 3L, 5L, 4L, 8L,
6L, 5L, 4L, 5L, 1L, 6L, 6L, 8L, 9L, 5L, 10L, 1L, 8L, 7L, 7L,
6L, 5L, 1L, 5L, 8L, 11L, 2L, 6L, 7L, 6L, 5L, 20L, 8L, 10L, 7L,
5L, 2L, 5L, 3L, 17L, 6L, 5L, 0L, 1L, 1L, 9L, 1L
)), row.names = c(
NA,
-1304L
), class = "data.frame")
df |>
mutate(date = as.Date(date)) |>
tsibble(index = date) |>
fill_gaps() |>
PACF(adm) |>
autoplot()
Created on 2022-06-30 by the reprex package (v2.0.1)
You could solve your problem as below.
ts1 <- zoo(df$adm, df$date)
ts <- as.xts(ts1)
pl = pacf(ts, xaxt="n")
axis(1, pl$lag, seq_along(pl$lag))
I'm using C5.0 to make a decision tree, and it's using my class label in the tree. A snippet of my data is below.
trainX
V1 V2 V3 V4 V5 V6
1 39 State-gov 77516 Bachelors 13 Never-married
2 50 Self-emp-not-inc 83311 Bachelors 13 Married-civ-spouse
3 38 Private 215646 HS-grad 9 Divorced
4 53 Private 234721 11th 7 Married-civ-spouse
5 28 Private 338409 Bachelors 13 Married-civ-spouse
V7 V8 V9 V10 V11 V12 V13 V14
1 Adm-clerical Not-in-family White Male 2174 0 40 United-States
2 Exec-managerial Husband White Male 0 0 13 United-States
3 Handlers-cleaners Not-in-family White Male 0 0 40 United-States
4 Handlers-cleaners Husband Black Male 0 0 40 United-States
5 Prof-specialty Wife Black Female 0 0 40 Cuba
trainY
[1] <=50K <=50K <=50K <=50K <=50K
There are cases in my data of >50K as well, this snippet of 5 just did not contain any.
When I make my tree, this is the code I use
library(C50)
trainX = X[1:100,]
trainY = Y[1:100]
testX = X[101:150,]
testY = Y[101:150]
model = C5.0(trainX, trainY)
summary(model)
And the output I get is...
Decision tree:
<=50K (100/25)
Evaluation on training data (100 cases):
Decision Tree
----------------
Size Errors
1 25(25.0%) <<
(a) (b) <-classified as
---- ----
75 (a): class <=50K
25 (b): class >50K
What am I doing wrong that it's using the classification as part of the tree?
EDIT - DPUTS below of Head. Still gives me the same issue, where its making a Decision Tree using the split as <=50K or >50K, which is my "Y" output and thus shouldn't be part of the decision making process.
trainX
structure(list(V1 = c(39L, 50L, 38L, 53L, 28L, 37L), V2 = structure(c(8L,
7L, 5L, 5L, 5L, 5L), .Label = c(" ?", " Federal-gov", " Local-gov",
" Never-worked", " Private", " Self-emp-inc", " Self-emp-not-inc",
" State-gov", " Without-pay"), class = "factor"), V3 = c(77516L,
83311L, 215646L, 234721L, 338409L, 284582L), V4 = structure(c(10L,
10L, 12L, 2L, 10L, 13L), .Label = c(" 10th", " 11th", " 12th",
" 1st-4th", " 5th-6th", " 7th-8th", " 9th", " Assoc-acdm", " Assoc-voc",
" Bachelors", " Doctorate", " HS-grad", " Masters", " Preschool",
" Prof-school", " Some-college"), class = "factor"), V5 = c(13L,
13L, 9L, 7L, 13L, 14L), V6 = structure(c(5L, 3L, 1L, 3L, 3L,
3L), .Label = c(" Divorced", " Married-AF-spouse", " Married-civ-spouse",
" Married-spouse-absent", " Never-married", " Separated", " Widowed"
), class = "factor"), V7 = structure(c(2L, 5L, 7L, 7L, 11L, 5L
), .Label = c(" ?", " Adm-clerical", " Armed-Forces", " Craft-repair",
" Exec-managerial", " Farming-fishing", " Handlers-cleaners",
" Machine-op-inspct", " Other-service", " Priv-house-serv", " Prof-specialty",
" Protective-serv", " Sales", " Tech-support", " Transport-moving"
), class = "factor"), V8 = structure(c(2L, 1L, 2L, 1L, 6L, 6L
), .Label = c(" Husband", " Not-in-family", " Other-relative",
" Own-child", " Unmarried", " Wife"), class = "factor"), V9 = structure(c(5L,
5L, 5L, 3L, 3L, 5L), .Label = c(" Amer-Indian-Eskimo", " Asian-Pac-Islander",
" Black", " Other", " White"), class = "factor"), V10 = structure(c(2L,
2L, 2L, 2L, 1L, 1L), .Label = c(" Female", " Male"), class = "factor"),
V11 = c(2174L, 0L, 0L, 0L, 0L, 0L), V12 = c(0L, 0L, 0L, 0L,
0L, 0L), V13 = c(40L, 13L, 40L, 40L, 40L, 40L), V14 = structure(c(40L,
40L, 40L, 40L, 6L, 40L), .Label = c(" ?", " Cambodia", " Canada",
" China", " Columbia", " Cuba", " Dominican-Republic", " Ecuador",
" El-Salvador", " England", " France", " Germany", " Greece",
" Guatemala", " Haiti", " Holand-Netherlands", " Honduras",
" Hong", " Hungary", " India", " Iran", " Ireland", " Italy",
" Jamaica", " Japan", " Laos", " Mexico", " Nicaragua", " Outlying-US(Guam-USVI-etc)",
" Peru", " Philippines", " Poland", " Portugal", " Puerto-Rico",
" Scotland", " South", " Taiwan", " Thailand", " Trinadad&Tobago",
" United-States", " Vietnam", " Yugoslavia"), class = "factor")), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11",
"V12", "V13", "V14"), row.names = c(NA, 6L), class = "data.frame")
trainY
structure(c(1L, 1L, 1L, 1L, 1L, 1L), .Label = c(" <=50K", " >50K"
), class = "factor")
After reading in trainX, trainY, the easiest way to reproduce this problem would be
library(C50)
test = C5.0(x=trainX, y=trainY)
My actual train Y :
structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L,
1L, 2L, 1L, 2L, 2L, 1L, 1L), .Label = c(" <=50K", " >50K"), class = "factor")
My actual trainX
structure(list(age = c(39L, 50L, 38L, 53L, 28L, 37L, 49L, 52L,
31L, 42L, 37L, 30L, 23L, 32L, 40L, 34L, 25L, 32L, 38L, 43L, 40L,
54L, 35L, 43L, 59L, 56L, 19L, 54L, 39L, 49L, 23L, 20L, 45L, 30L,
22L, 48L, 21L, 19L, 31L, 48L, 31L, 53L, 24L, 49L, 25L, 57L, 53L,
44L, 41L, 29L, 25L, 18L, 47L, 50L, 47L, 43L, 46L, 35L, 41L, 30L,
30L, 32L, 48L, 42L, 29L, 36L, 28L, 53L, 49L, 25L, 19L, 31L, 29L,
23L, 79L, 27L, 40L, 67L, 18L, 31L, 18L, 52L, 46L, 59L, 44L, 53L,
49L, 33L, 30L, 43L, 57L, 37L, 28L, 30L, 34L, 29L, 48L, 37L, 48L,
32L), workClass = structure(c(8L, 7L, 5L, 5L, 5L, 5L, 5L, 7L,
5L, 5L, 5L, 8L, 5L, 5L, 5L, 5L, 7L, 5L, 5L, 7L, 5L, 5L, 2L, 5L,
5L, 3L, 5L, 1L, 5L, 5L, 3L, 5L, 5L, 2L, 8L, 5L, 5L, 5L, 5L, 7L,
5L, 7L, 5L, 5L, 5L, 2L, 5L, 5L, 8L, 5L, 5L, 5L, 5L, 2L, 6L, 5L,
5L, 5L, 5L, 5L, 5L, 1L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 1L, 5L, 5L,
7L, 5L, 5L, 5L, 5L, 1L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 5L,
5L, 2L, 5L, 5L, 5L, 5L, 3L, 3L, 7L, 5L, 5L, 2L), .Label = c(" ?",
" Federal-gov", " Local-gov", " Never-worked", " Private", " Self-emp-inc",
" Self-emp-not-inc", " State-gov", " Without-pay"), class = "factor"),
fnlwgt = c(77516L, 83311L, 215646L, 234721L, 338409L, 284582L,
160187L, 209642L, 45781L, 159449L, 280464L, 141297L, 122272L,
205019L, 121772L, 245487L, 176756L, 186824L, 28887L, 292175L,
193524L, 302146L, 76845L, 117037L, 109015L, 216851L, 168294L,
180211L, 367260L, 193366L, 190709L, 266015L, 386940L, 59951L,
311512L, 242406L, 197200L, 544091L, 84154L, 265477L, 507875L,
88506L, 172987L, 94638L, 289980L, 337895L, 144361L, 128354L,
101603L, 271466L, 32275L, 226956L, 51835L, 251585L, 109832L,
237993L, 216666L, 56352L, 147372L, 188146L, 59496L, 293936L,
149640L, 116632L, 105598L, 155537L, 183175L, 169846L, 191681L,
200681L, 101509L, 309974L, 162298L, 211678L, 124744L, 213921L,
32214L, 212759L, 309634L, 125927L, 446839L, 276515L, 51618L,
159937L, 343591L, 346253L, 268234L, 202051L, 54334L, 410867L,
249977L, 286730L, 212563L, 117747L, 226296L, 115585L, 191277L,
202683L, 171095L, 249409L), education = structure(c(10L,
10L, 12L, 2L, 10L, 13L, 7L, 12L, 13L, 10L, 16L, 10L, 10L,
8L, 9L, 6L, 12L, 12L, 2L, 13L, 11L, 12L, 7L, 2L, 12L, 10L,
12L, 16L, 12L, 12L, 8L, 16L, 10L, 16L, 16L, 2L, 16L, 12L,
16L, 8L, 7L, 10L, 10L, 12L, 12L, 10L, 12L, 13L, 9L, 9L, 16L,
12L, 15L, 10L, 12L, 16L, 5L, 9L, 12L, 12L, 10L, 6L, 12L,
11L, 16L, 12L, 16L, 12L, 16L, 16L, 16L, 10L, 10L, 16L, 16L,
12L, 8L, 1L, 2L, 6L, 12L, 10L, 12L, 12L, 12L, 12L, 12L, 13L,
7L, 11L, 9L, 16L, 16L, 12L, 10L, 16L, 11L, 16L, 8L, 12L), .Label = c(" 10th",
" 11th", " 12th", " 1st-4th", " 5th-6th", " 7th-8th", " 9th",
" Assoc-acdm", " Assoc-voc", " Bachelors", " Doctorate",
" HS-grad", " Masters", " Preschool", " Prof-school", " Some-college"
), class = "factor"), educationNum = c(13L, 13L, 9L, 7L,
13L, 14L, 5L, 9L, 14L, 13L, 10L, 13L, 13L, 12L, 11L, 4L,
9L, 9L, 7L, 14L, 16L, 9L, 5L, 7L, 9L, 13L, 9L, 10L, 9L, 9L,
12L, 10L, 13L, 10L, 10L, 7L, 10L, 9L, 10L, 12L, 5L, 13L,
13L, 9L, 9L, 13L, 9L, 14L, 11L, 11L, 10L, 9L, 15L, 13L, 9L,
10L, 3L, 11L, 9L, 9L, 13L, 4L, 9L, 16L, 10L, 9L, 10L, 9L,
10L, 10L, 10L, 13L, 13L, 10L, 10L, 9L, 12L, 6L, 7L, 4L, 9L,
13L, 9L, 9L, 9L, 9L, 9L, 14L, 5L, 16L, 11L, 10L, 10L, 9L,
13L, 10L, 16L, 10L, 12L, 9L), marital = structure(c(5L, 3L,
1L, 3L, 3L, 3L, 4L, 3L, 5L, 3L, 3L, 3L, 5L, 5L, 3L, 3L, 5L,
5L, 3L, 1L, 3L, 6L, 3L, 3L, 1L, 3L, 5L, 3L, 1L, 3L, 5L, 5L,
1L, 3L, 3L, 5L, 5L, 2L, 3L, 3L, 3L, 3L, 3L, 6L, 5L, 3L, 3L,
1L, 3L, 5L, 3L, 5L, 3L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
3L, 3L, 1L, 3L, 1L, 3L, 3L, 5L, 5L, 6L, 3L, 5L, 3L, 5L, 3L,
3L, 5L, 3L, 5L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 5L, 5L, 3L, 1L,
1L, 3L, 3L, 5L, 3L, 3L, 1L, 5L), .Label = c(" Divorced",
" Married-AF-spouse", " Married-civ-spouse", " Married-spouse-absent",
" Never-married", " Separated", " Widowed"), class = "factor"),
occ = structure(c(2L, 5L, 7L, 7L, 11L, 5L, 9L, 5L, 11L, 5L,
5L, 11L, 2L, 13L, 4L, 15L, 6L, 8L, 13L, 5L, 11L, 9L, 6L,
15L, 14L, 14L, 4L, 1L, 5L, 4L, 12L, 13L, 5L, 2L, 9L, 8L,
8L, 2L, 13L, 11L, 8L, 11L, 14L, 2L, 7L, 11L, 8L, 5L, 4L,
11L, 5L, 9L, 11L, 5L, 5L, 14L, 8L, 9L, 2L, 8L, 13L, 1L, 15L,
11L, 14L, 4L, 2L, 2L, 5L, 1L, 11L, 13L, 13L, 8L, 11L, 9L,
2L, 1L, 9L, 6L, 13L, 9L, 9L, 13L, 4L, 13L, 12L, 11L, 13L,
11L, 11L, 4L, 8L, 13L, 12L, 7L, 11L, 13L, 5L, 9L), .Label = c(" ?",
" Adm-clerical", " Armed-Forces", " Craft-repair", " Exec-managerial",
" Farming-fishing", " Handlers-cleaners", " Machine-op-inspct",
" Other-service", " Priv-house-serv", " Prof-specialty",
" Protective-serv", " Sales", " Tech-support", " Transport-moving"
), class = "factor"), relationship = structure(c(2L, 1L,
2L, 1L, 6L, 6L, 2L, 1L, 2L, 1L, 1L, 1L, 4L, 2L, 1L, 1L, 4L,
5L, 1L, 5L, 1L, 5L, 1L, 1L, 5L, 1L, 4L, 1L, 2L, 1L, 2L, 4L,
4L, 4L, 1L, 5L, 4L, 6L, 1L, 1L, 1L, 1L, 1L, 5L, 2L, 1L, 1L,
5L, 1L, 2L, 6L, 4L, 6L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 1L, 2L, 1L, 2L, 6L, 1L, 4L, 4L, 4L, 1L, 2L, 3L, 4L, 1L,
1L, 4L, 1L, 2L, 1L, 6L, 1L, 2L, 4L, 1L, 1L, 2L, 2L, 1L, 5L,
5L, 6L, 1L, 2L, 1L, 1L, 5L, 4L), .Label = c(" Husband", " Not-in-family",
" Other-relative", " Own-child", " Unmarried", " Wife"), class = "factor"),
race = structure(c(5L, 5L, 5L, 3L, 3L, 5L, 3L, 5L, 5L, 5L,
3L, 2L, 5L, 3L, 2L, 1L, 5L, 5L, 5L, 5L, 5L, 3L, 3L, 5L, 5L,
5L, 5L, 2L, 5L, 5L, 5L, 3L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 4L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 3L, 2L, 5L, 5L, 5L, 5L, 5L, 3L
), .Label = c(" Amer-Indian-Eskimo", " Asian-Pac-Islander",
" Black", " Other", " White"), class = "factor"), sex = structure(c(2L,
2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L,
2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L,
2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L), .Label = c(" Female",
" Male"), class = "factor"), capGain = c(2174L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 14084L, 5178L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 5013L, 2407L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 14344L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), capLoss = c(0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 2042L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1408L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1902L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1573L, 0L, 0L, 1902L, 0L, 0L, 0L), hours = c(40L,
13L, 40L, 40L, 40L, 40L, 16L, 45L, 50L, 40L, 80L, 40L, 30L,
50L, 40L, 45L, 35L, 40L, 50L, 45L, 60L, 20L, 40L, 40L, 40L,
40L, 40L, 60L, 80L, 40L, 52L, 44L, 40L, 40L, 15L, 40L, 40L,
25L, 38L, 40L, 43L, 40L, 50L, 40L, 35L, 40L, 38L, 40L, 40L,
43L, 40L, 30L, 60L, 55L, 60L, 40L, 40L, 40L, 48L, 40L, 40L,
40L, 40L, 45L, 58L, 40L, 40L, 40L, 50L, 40L, 32L, 40L, 70L,
40L, 20L, 40L, 40L, 2L, 22L, 40L, 30L, 40L, 40L, 48L, 40L,
35L, 40L, 50L, 40L, 50L, 40L, 40L, 25L, 35L, 40L, 50L, 60L,
48L, 40L, 40L), country = structure(c(40L, 40L, 40L, 40L,
6L, 40L, 24L, 40L, 40L, 40L, 40L, 20L, 40L, 40L, 1L, 27L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 36L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 34L, 40L, 40L, 1L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 1L,
17L, 40L, 40L, 40L, 27L, 34L, 40L, 40L, 40L, 1L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 27L,
40L, 40L, 40L, 40L, 40L, 6L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 1L, 40L, 40L, 40L, 40L, 10L, 40L
), .Label = c(" ?", " Cambodia", " Canada", " China", " Columbia",
" Cuba", " Dominican-Republic", " Ecuador", " El-Salvador",
" England", " France", " Germany", " Greece", " Guatemala",
" Haiti", " Holand-Netherlands", " Honduras", " Hong", " Hungary",
" India", " Iran", " Ireland", " Italy", " Jamaica", " Japan",
" Laos", " Mexico", " Nicaragua", " Outlying-US(Guam-USVI-etc)",
" Peru", " Philippines", " Poland", " Portugal", " Puerto-Rico",
" Scotland", " South", " Taiwan", " Thailand", " Trinadad&Tobago",
" United-States", " Vietnam", " Yugoslavia"), class = "factor")), .Names = c("age",
"workClass", "fnlwgt", "education", "educationNum", "marital",
"occ", "relationship", "race", "sex", "capGain", "capLoss", "hours",
"country"), row.names = c(NA, 100L), class = "data.frame")
The code you provided constructs a factor with 1 level (<=50k) because the first vector input contains only 1Ls. You should assign these labels accordingly or use an easier way to construct your response variable - something like trainY <- as.factor(...).
I changed the way trainY is constructed to:
y <- structure(c(1L, 2L, 1L, 1L, 2L, 1L), .Label = c(" <=50K", " >50K"), class = "factor")
and after re-training the tree with same commands i got:
Decision tree:
V14 = Cuba: >50K (1)
V14 in {?,Cambodia,Canada,China,Columbia,Dominican-Republic,Ecuador,
El-Salvador,England,France,Germany,Greece,Guatemala,Haiti,
Holand-Netherlands,Honduras,Hong,Hungary,India,Iran,Ireland,Italy,
Jamaica,Japan,Laos,Mexico,Nicaragua,Outlying-US(Guam-USVI-etc),Peru,
Philippines,Poland,Portugal,Puerto-Rico,Scotland,South,Taiwan,Thailand,
Trinadad&Tobago,United-States,Vietnam,Yugoslavia}: <=50K (5/1)
Make sure you don't have only one class in the response when passing args to C5.0. hth
UPDATE
After plotting some of the predictors vs response I noticed that education and educationNum show the clearest division in the data (Doctorate implies >50K immediately). Next step was to tweak some of the very useful C5.0 Control options - they are well documented in the C5.0 package documentation and the official informal tutorial page - check them out they give you broad control over the classification controls.
For example:
C5.0(x = trainX,y = trainY,control = C5.0Control(subset = T, winnow = T,minCases = 4,fuzzyThreshold = T))
Decision tree:
educationNum <= 13 (14.5): <=50K (95/20)
educationNum >= 16 (14.5): >50K (5)
similiarly, doing some "feature engineering" which in this case meant just leaving out some of the columns from the original dataframe produced :
C5.0(x = trainX[ ,c(1:5, 9:13)], y = trainY)
Decision tree:
educationNum <= 14: <=50K (95/20)
educationNum > 14: >50K (5)
I believe that there is no one general "out of the box" C5.0 defaults setting that would produce satisfying results for all kinds of problems, so it really comes down to trying out different parameter settings, features etc...but as with all things R there is plenty of material around to give you some direction.