Efficiently Load A Sparse Matrix in R - r

I'm having trouble efficiently loading data into a sparse matrix format in R.
Here is an (incomplete) example of my current strategy:
library(Matrix)
a1=Matrix(0,5000,100000,sparse=T)
for(i in 1:5000)
a1[i,idxOfCols]=x
Where x is usually around length 20. This is not efficient and eventually slows to a crawl. I know there is a better way but wasn't sure how. Suggestions?

You can populate the matrix all at once:
library(Matrix)
n <- 5000
m <- 1e5
k <- 20
idxOfCols <- sample(1:m, k)
x <- rnorm(k)
a2 <- sparseMatrix(
i=rep(1:n, each=k),
j=rep(idxOfCols, n),
x=rep(x, k),
dims=c(n,m)
)
# Compare
a1 <- Matrix(0,5000,100000,sparse=T)
for(i in 1:n) {
a1[i,idxOfCols] <- x
}
sum(a1 - a2) # 0

You don't need to use a for-loop. Yu can just use standard matrix indexing with a two column matrix:
a1[ cbind(i,idxOfCols) ] <- x

Related

R: Stuck on a "simple" problem: calculating total sum of squares in a n*m matrix

Given a data matrix with n rows and m columns, I would like to calculate the total sum of squares in R.
For this I've tried a loop that iterates through the rows of each column and saves the results in a vector. These are then added to the "TSS" vector where each value is the SS of one column. The sum of this vector should be the TSS.
set.seed(2020)
m <- matrix(c(sample(1:100, 80)), nrow = 40, ncol = 2)
tss <- c()
for(j in 1:ncol(m)){
tssVec <- c()
for(i in 1:nrow(m)){
b <- sum(((m[i,]) - mean(m[,j]))^2)
tssVec <- c(tssVec, b)
}
tss <- c(tss, sum(tssVec))
}
sum(tss)
The output is equal to 136705.6. This is not feasible at all. As a novice coder, I am unfortunately stuck.
Any help is appreciated!
There are many methods to evaluate the TSS, of course they will give you the same result. I would do something like:
Method 1 that implies the use of ANOVA:
n <- as.data.frame(m)
mylm <- lm(n$V1 ~ n$V2)
SSTotal <-sum(anova(mylm)[,2])
Method 2:
SSTotal <- var( m[,1] ) * (nrow(m)-1)

R: Efficient way to convert factor into binary matrix

I'd like to convert a size n factor into a n×n binary matrix whose (i, j) element is 1 if i-th and j-th element of factor are same and 0 otherwise.
The following is a naive way to implement what I want to do but this code is quite slow. Is there any more efficient way to do the same thing?
size <- 100
id <- factor(sample(3, size, replace=TRUE))
mat <- matrix(0, nrow=size, ncol=size)
for(i in 1:size){
for(j in 1:size){
if(id[i] == id[j]){
mat[i, j] <- 1
}
}
}
Another alternative, which should be relatively fast
tcrossprod(model.matrix( ~ id + 0))
Similarly to Hong Ooi's answer you can use also sparse matrices
library(Matrix)
tcrossprod(sparse.model.matrix( ~ id + 0))
outer can be used for this.
mat <- outer(id, id, "==")
Since the output is a binary matrix, and O(N^2) objects are kind of large, this is a good use case for sparse matrices:
library(Matrix)
mat <- Matrix(nrow=100, ncol=100)
mat[] <- outer(id, id, "==") # [] means to assign into the existing 'mat' matrix

Downsample matrix in R?

My question is about how to improve the performance of function that downsamples from the columns of a matrix without replacement (a.k.a. "rarefication" of a matrix... I know there has been mention of this here, but I could not find a clear answer that a) does what I need; b) does it quickly).
Here is my function:
downsampled <- function(data,samplerate=0.8) {
data.test <- apply(data,2,function(q) {
names(q) <- rownames(data)
samplepool <- character()
for (i in names(q)) {
samplepool <- append(samplepool,rep(i,times=q[i]))
}
sampled <- sample(samplepool,size=samplerate*length(samplepool),replace = F)
tab <- table(sampled)
mat <- match(names(tab),names(q))
toret=numeric(length <- length(q))
names(toret) <- names(q)
toret[mat] <- tab
return(toret)
})
return(data.test)
}
I need to be downsampling matrices with millions of entries. I find this is quite slow (here I'm using a 1000x1000 matrix, which is about 20-100x smaller than my typical data size):
mat <- matrix(sample(0:40,1000*1000,replace=T),ncol=1000,nrow=1000)
colnames(mat) <- paste0("C",1:1000)
rownames(mat) <- paste0("R",1:1000)
system.time(matd <- downsampled(mat,0.8))
## user system elapsed
## 69.322 21.791 92.512
Is there a faster/easier way to perform this operation that I haven't thought of?
I think you can make this dramatically faster. If I understand what you are trying to do correctly, you want to down-sample each cell of the matrix, such that if samplerate = 0.5 and the cell of the matrix is mat[i,j] = 5, then you want to sample up to 5 things where each thing has a 0.5 chance of being sampled.
To speed things up, rather than doing all these operations on columns of the matrix, you can just loop through each cell of the matrix, draw n things from that cell by using runif (e.g., if mat[i,j] = 5, you can generate 5 random numbers between 0 and 1, and then add up the number of values that are < samplerate), and finally add the number of things to a new matrix. I think this effectively achieves the same down-sampling scheme, but much more efficiently (both in terms of running time and lines of code).
# Sample matrix
set.seed(23)
n <- 1000
mat <- matrix(sample(0:10,n*n,replace=T),ncol=n,nrow=n)
colnames(mat) <- paste0("C",1:n)
rownames(mat) <- paste0("R",1:n)
# Old function
downsampled<-function(data,samplerate=0.8) {
data.test<-apply(data,2,function(q){
names(q)<-rownames(data)
samplepool<-character()
for (i in names(q)) {
samplepool=append(samplepool,rep(i,times=q[i]))
}
sampled=sample(samplepool,size=samplerate*length(samplepool),replace = F)
tab=table(sampled)
mat=match(names(tab),names(q))
toret=numeric(length = length(q))
names(toret)<-names(q)
toret[mat]<-tab
return(toret)
})
return(data.test)
}
# New function
downsampled2 <- function(mat, samplerate=0.8) {
new <- matrix(0, nrow(mat), ncol(mat))
colnames(new) <- colnames(mat)
rownames(new) <- rownames(mat)
for (i in 1:nrow(mat)) {
for (j in 1:ncol(mat)) {
new[i,j] <- sum(runif(mat[i,j], 0, 1) < samplerate)
}
}
return(new)
}
# Compare times
system.time(downsampled(mat,0.8))
## user system elapsed
## 26.840 3.249 29.902
system.time(downsampled2(mat,0.8))
## user system elapsed
## 4.704 0.247 4.918
Using an example 1000 X 1000 matrix, the new function I provided runs about 6 times faster.
One source of savings would be to remove the for loop that appends samplepool using rep. Here is a reproducible example:
myRows <- 1:5
names(myRows) <- letters[1:5]
# get the repeated values for sampling
samplepool <- rep(names(myRows), myRows)
Within your function, this would be
samplepool <- rep(names(q), q)

Linear Independence of Large Sparse Matrices in R

I have three large matrices: I, G, and G^2. These are 4Million x 4Million matrices and they are sparse. I would like to check if they are linearly independent and I would like to do this in R.
For small matrices, a way to this is to vectorize each matrix: stack columns on top of each other and test if the matrix formed by the three stacked vectors has rank three.
However, due to the size of my problem I am not sure how to proceed.
(1) Is there a way to vectorize a Large Sparse Matrix into a Very Large Sparse Vector in R?
(2) Is there any other solution to the problem that could make this test efficient ?
Thanks in advance
When converting your matrices to vectors, you can keep only the non-zero elements.
# Sample data
n <- 4e6
k <- n
library(Matrix)
I <- spMatrix(n, n, 1:n, 1:n, rep(1,n))
G <- spMatrix(n, n,
sample(1:n, k, replace=TRUE),
sample(1:n, k, replace=TRUE),
sample(0:9, k, replace=TRUE)
)
G2 <- G %*% G
G2 <- as(G2, "dgTMatrix") # For the j slot
# Only keep elements that are non-zero in one of the 3 matrices
i <- as.integer( c(G#i, G2#i, I#i) + 1 )
j <- as.integer( c(G#j, G2#j, I#j) + 1 )
ij <- cbind(i,j)
rankMatrix( cbind( G2[ij], G[ij], I[ij] ) ) # 3
# Another example
m <- ceiling(n/2)-1
G <- spMatrix(n, n,
c(1:n, 2*(1:m)),
c(1:n, 2*(1:m)+1),
rep(1, n+m)
)
G2 <- as(G %*% G, "dgTMatrix")
i <- c(G#i, G2#i, I#i) + 1
j <- c(G#j, G2#j, I#j) + 1
ij <- cbind(i,j)
rankMatrix( cbind( G2[ij], G[ij], I[ij] ) ) # 2
(To speed things up, you could take only a small part of those vectors:
if the rank is already 3, you know that they are independent,
if it is 2, you can check if the linear dependence relation also holds for the large vectors.)

create a vector from outputs

I have the following code in R:
z <- scale(x) / sqrt(n-1) # standardized matrix x such that z'z=correlation matrix
R <- t(z) %*% z # correlation matrix
I <- diag(py - 1) # identity matrix(py defined before)
df <- rep(0, length(k)) # k=seq(0,5,0.001)
for (i in seq(0,5,0.001)) {
H <- z %*% solve(R+(i*I)) %*% t(z)
tr <- sum(diag(H))
df <- c(df,tr) ## problem here
}
The last line in the code is not good, as what I want is a vector (df) that reads each number from tr for each i, so that df returns a vector containing all tr.
Any help is appreciated.
Thanks
Separate the points that you want to solve at from the loop index.
solve_points <- seq(0,5,0.001)
for(i in seq_along(solve_points))
{
H=z%*%solve(R+(solve_points*I))%*%t(z)
tr=sum(diag(H))
df[i] <- tr
You want to fill in the vector df, not concatenate it all the time. That will slow R down a lot as it has to copy the object each iteration of the loop.
I think you probably want something like this:
for (i in seq_along(k)) { ## loop over 1:length(k)
H <- z %*% solve(R+(k[i]*I)) %*% t(z) ## use i to index into k
tr <- sum(diag(H))
df[i] <- tr ## add `tr` to the ith element of df
}
but a reproducible example would have helped. For example, you might not need to index k, depends on what your code is really doing and you don;t provide all the objects to check.

Resources