Is this language decidable? - math

I'm struggling with whether or not this is decidable:
A = {x is an element of the set of Natural Numbers | for every y greater than x, 2y is the sum of two primes}
I'm inclined to think that this is decidable given the fact that when fed into a Turing Machine, it will never reach an accept state and loop for infinity unless it rejects. However, I also do know that for a language to be decidable, there must only exist an algorithm to decide it; we don't necessarily have to know how it's done. With this, part of me think that it is decidable? Does anyone know how to prove either?

This language is decidable, though the proof is a bit evil.
For starters, let's think about the properties of this language. Clearly, if n is a natural number contained in the language, then every number greater than n is also in the language. Thus there are three possible forms this language can take:
This language contains all natural numbers, or
This language contains no natural numbers, or
This language contains all natural numbers greater than some natural number n.
Languages (1) and (2) are, respectively, {0, 1}* and the empty language, both of which are decidable (so there are TMs that always halt that accept those languages). Every language of form (3) is also decidable, because for any n we can easily write a TM with n hardcoded into it that simply checks whether the input is at least n. Consequently, no matter which case is true (either 1, 2, or 3), there exists some TM that always halts whose language is the language you've provided, so your language is decidable.
But that said, this proof is nonconstructive. We can show that the language has to be decidable, but we can't actually find the TM that always halts that accepts it! In fact, no one knows which TM it is, because Goldbach's Conjecture (whether every even number greater than two is the sum of two primes) is an open problem in mathematics.
Hope this helps!

Related

In Big-O terms if O(n-1) is the same thing as O(n) then why in the master theorem is T(n-1) not equal T(n)?

Ok So I'm pretty new to CS and was recently learning about Big-O, Theta, and Omega as well as the master theorem and in lecture I saw that this was not the case for some reason and was wondering why is that?
Although both O(n) and T(n) use capital letters on the outside and lower-case n in the middle, they represent fundamentally different concepts.
If you’re analyzing an algorithm using a recurrence relation, it’s common to let T(n) denote the amount of time it takes for the algorithm to complete on an input of size n. As a result, we wouldn’t expect T(n) to be the same as T(n-1), since, in most cases, algorithms take longer to run when you give them larger inputs.
More generally, for any function f, if you wanted to claim that f(n) = f(n-1), you’d need to explain why you could assume this because this generally isn’t the case.
The tricky bit here is that when we write O(n), it looks like we’re writing a function named O and passing in the argument n, but the notation means something totally different. The notation O(n) is a placeholder for “some function that, when the inputs gets really big, is bounded from above by a multiple of n.” Similarly, O(n-1) means “some function that, when the inputs get really big, is bounded from above by a multiple of n-1.” And it happens to be the case that any function that’s bounded above by a multiple of n is also bounded from above by a multiple of n-1, which is why O(n) and O(n-1) denote the same thing.
Hope this helps!

How to quantitatively measure how simplified a mathematical expression is

I am looking for a simple method to assign a number to a mathematical expression, say between 0 and 1, that conveys how simplified that expression is (being 1 as fully simplified). For example:
eval('x+1') should return 1.
eval('1+x+1+x+x-5') should returns some value less than 1, because it is far from being simple (i.e., it can be further simplified).
The parameter of eval() could be either a string or an abstract syntax tree (AST).
A simple idea that occurred to me was to count the number of operators (?)
EDIT: Let simplified be equivalent to how close a system is to the solution of a problem. E.g., given an algebra problem (i.e. limit, derivative, integral, etc), it should assign a number to tell how close it is to the solution.
The closest metaphor I can come up with it how a maths professor would look at an incomplete problem and mentally assess it in order to tell how close the student is to the solution. Like in a math exam, were the student didn't finished a problem worth 20 points, but the professor assigns 8 out of 20. Why would he come up with 8/20, and can we program such thing?
I'm going to break a stack-overflow rule and post this as an answer instead of a comment, because not only I'm pretty sure the answer is you can't (at least, not the way you imagine), but also because I believe it can be educational up to a certain degree.
Let's assume that a criteria of simplicity can be established (akin to a normal form). It seems to me that you are very close to trying to solve an analogous to entscheidungsproblem or the halting problem. I doubt that in a complex rule system required for typical algebra, you can find a method that gives a correct and definitive answer to the number of steps of a series of term reductions (ipso facto an arbitrary-length computation) without actually performing it. Such answer would imply knowing in advance if such computation could terminate, and so contradict the fact that automatic theorem proving is, for any sufficiently powerful logic capable of representing arithmetic, an undecidable problem.
In the given example, the teacher is actually either performing that computation mentally (going step by step, applying his own sequence of rules), or gives an estimation based on his experience. But, there's no generic algorithm that guarantees his sequence of steps are the simplest possible, nor that his resulting expression is the simplest one (except for trivial expressions), and hence any quantification of "distance" to a solution is meaningless.
Wouldn't all this be true, your problem would be simple: you know the number of steps, you know how many steps you've taken so far, you divide the latter by the former ;-)
Now, returning to the criteria of simplicity, I also advice you to take a look on Hilbert's 24th problem, that specifically looked for a "Criteria of simplicity, or proof of the greatest simplicity of certain proofs.", and the slightly related proof compression. If you are philosophically inclined to further understand these subjects, I would suggest reading the classic Gödel, Escher, Bach.
Further notes: To understand why, consider a well-known mathematical artefact called the Mandelbrot fractal set. Each pixel color is calculated by determining if the solution to the equation z(n+1) = z(n)^2 + c for any specific c is bounded, that is, "a complex number c is part of the Mandelbrot set if, when starting with z(0) = 0 and applying the iteration repeatedly, the absolute value of z(n) remains bounded however large n gets." Despite the equation being extremely simple (you know, square a number and sum a constant), there's absolutely no way to know if it will remain bounded or not without actually performing an infinite number of iterations or until a cycle is found (disregarding complex heuristics). In this sense, every fractal out there is a rough approximation that typically usages an escape time algorithm as an heuristic to provide an educated guess whether the solution will be bounded or not.

Is the `IntegralDomain` in `numeric-prelude` really an Integral domain?

I am trying to model linear feedback shift registers in haskell. These can be modeled by polynomials over finite fields, so I am using numeric-prelude to get type classes that resemble mathematical algebraic structures more closely than those in the normal prelude.
I am by no means an expert in abstract algebra, so I have become a little confused about the IntegralDomain type class. The problem is that my book on abstract algebra (A book of abstract algebra by Charles C. Pinter) and the type classes seem to be conflicting with each other.
According to the book, the ring of polynomials over an integral domain, is itself an integral domain. Also, a ring of polynomials over a field is only an integral domain, but with the special(the fact that it is special is mentioned) property that the division algorithm holds.
That is, if F[x] is a polynomial over a field, then for a in F[x] and b!=0 in F[x], there exists q,r in F[x] such that b*q+r=a, and the degree of r is less than that of b.
The fact that this property is special to polynomials over a field, to me implies that it does not hold over any integral domain.
On the other hand, according to the type classes of numeric prelude, a polynomial over a field (that is zeroTestable) is also an IntegraldDomain. But according to the documentation, there are several laws of integralDomains, one of the being:
(a `div` b) * b + (a `mod` b) === a
http://hackage.haskell.org/packages/archive/numeric-prelude/0.4.0.1/doc/html/Algebra-IntegralDomain.html#t:C
This to me looks like the division algorithm, but then the division algorithm is true in any integral domain, including a polynomial over an integral domain contradiction my book. It is also worth noting that a polynomail over an integral domain does not have an instance for IntegralDomain in numeric-prelude(not that I can see at least, the fact that every type class is simply called C, make the documentation a little hard to read). So maybe the IntegralDomain in numeric prelude is an integral domain with the extra property that the division algorithm holds?
So is the IntegralDomain in numeric-prelude really an integral domain?
rubber duck debugging post script: While writing this question I got an idea for part of a possible explanation. Is it the requirement that "the degree of r is less than that of b." which makes the whole difference? That requirement is not in the numeric-prelude IntegralDomain. Then again, some of the other laws might imply this fact...
According to the book, a polynomial over an integral domain, is itself an integral domain.
That's not correctly phrased. The ring of polynomials over an integral domain is again an integral domain.
The ring of polynomials in one indeterminate over a field is even a principal ideal domain, as witnessed by the division algorithm, since every polynomial of degree 0 is a unit then.
In a general integral domain R, you have nonzero non-units, and if a is one, then you cannot write
X = q*a + r
with the degree of r smaller than that of a (which is 0).
Is it the requirement that "the degree of r is less than that of b." which makes the whole difference?
Precisely. That requirement guarantees that the division algorithm terminates. In a general integral domain, you can have a "canonical" choice of remainders modulo any fixed ring element, but the canonical remainder need not be "smaller" in any meaningful way, so an attempt to use the division algorithm need not terminate.
Then again, some of the other laws might imply this fact
None of the laws in Algebra.IntegralDomain imply that.
The law
(a+k*b) `mod` b === a `mod` b
is, I believe, hard to implement for a completely general integral domain, which could somewhat restrict the actual instances, but for something like Z[X] or R[X,Y] which are not PIDs, an instance is possible.

A Functional-Imperative Hybrid

Pure functional programming languages do not allow mutable data, but some computations are more naturally/intuitively expressed in an imperative way -- or an imperative version of an algorithm may be more efficient. I am aware that most functional languages are not pure, and let you assign/reassign variables and do imperative things but generally discourage it.
My question is, why not allow local state to be manipulated in local variables, but require that functions can only access their own locals and global constants (or just constants defined in an outer scope)? That way, all functions maintain referential transparency (they always give the same return value given the same arguments), but within a function, a computation can be expressed in imperative terms (like, say, a while loop).
IO and such could still be accomplished in the normal functional ways - through monads or passing around a "world" or "universe" token.
My question is, why not allow local state to be manipulated in local variables, but require that functions can only access their own locals and global constants (or just constants defined in an outer scope)?
Good question. I think the answer is that mutable locals are of limited practical value but mutable heap-allocated data structures (primarily arrays) are enormously valuable and form the backbone of many important collections including efficient stacks, queues, sets and dictionaries. So restricting mutation to locals only would not give an otherwise purely functional language any of the important benefits of mutation.
On a related note, communicating sequential processes exchanging purely functional data structures offer many of the benefits of both worlds because the sequential processes can use mutation internally, e.g. mutable message queues are ~10x faster than any purely functional queues. For example, this is idiomatic in F# where the code in a MailboxProcessor uses mutable data structures but the messages communicated between them are immutable.
Sorting is a good case study in this context. Sedgewick's quicksort in C is short and simple and hundreds of times faster than the fastest purely functional sort in any language. The reason is that quicksort mutates the array in-place. Mutable locals would not help. Same story for most graph algorithms.
The short answer is: there are systems to allow what you want. For example, you can do it using the ST monad in Haskell (as referenced in the comments).
The ST monad approach is from Haskell's Control.Monad.ST. Code written in the ST monad can use references (STRef) where convenient. The nice part is that you can even use the results of the ST monad in pure code, as it is essentially self-contained (this is basically what you were wanting in the question).
The proof of this self-contained property is done through the type-system. The ST monad carries a state-thread parameter, usually denoted with a type-variable s. When you have such a computation you'll have monadic result, with a type like:
foo :: ST s Int
To actually turn this into a pure result, you have to use
runST :: (forall s . ST s a) -> a
You can read this type like: give me a computation where the s type parameter doesn't matter, and I can give you back the result of the computation, without the ST baggage. This basically keeps the mutable ST variables from escaping, as they would carry the s with them, which would be caught by the type system.
This can be used to good effect on pure structures that are implemented with underlying mutable structures (like the vector package). One can cast off the immutability for a limited time to do something that mutates the underlying array in place. For example, one could combine the immutable Vector with an impure algorithms package to keep the most of the performance characteristics of the in place sorting algorithms and still get purity.
In this case it would look something like:
pureSort :: Ord a => Vector a -> Vector a
pureSort vector = runST $ do
mutableVector <- thaw vector
sort mutableVector
freeze mutableVector
The thaw and freeze functions are linear-time copying, but this won't disrupt the overall O(n lg n) running time. You can even use unsafeFreeze to avoid another linear traversal, as the mutable vector isn't used again.
"Pure functional programming languages do not allow mutable data" ... actually it does, you just simply have to recognize where it lies hidden and see it for what it is.
Mutability is where two things have the same name and mutually exclusive times of existence so that they may be treated as "the same thing at different times". But as every Zen philosopher knows, there is no such thing as "same thing at different times". Everything ceases to exist in an instant and is inherited by its successor in possibly changed form, in a (possibly) uncountably-infinite succession of instants.
In the lambda calculus, mutability thus takes the form illustrated by the following example: (λx (λx f(x)) (x+1)) (x+1), which may also be rendered as "let x = x + 1 in let x = x + 1 in f(x)" or just "x = x + 1, x = x + 1, f(x)" in a more C-like notation.
In other words, "name clash" of the "lambda calculus" is actually "update" of imperative programming, in disguise. They are one and the same - in the eyes of the Zen (who is always right).
So, let's refer to each instant and state of the variable as the Zen Scope of an object. One ordinary scope with a mutable object equals many Zen Scopes with constant, unmutable objects that either get initialized if they are the first, or inherit from their predecessor if they are not.
When people say "mutability" they're misidentifying and confusing the issue. Mutability (as we've just seen here) is a complete red herring. What they actually mean (even unbeknonwst to themselves) is infinite mutability; i.e. the kind which occurs in cyclic control flow structures. In other words, what they're actually referring to - as being specifically "imperative" and not "functional" - is not mutability at all, but cyclic control flow structures along with the infinite nesting of Zen Scopes that this entails.
The key feature that lies absent in the lambda calculus is, thus, seen not as something that may be remedied by the inclusion of an overwrought and overthought "solution" like monads (though that doesn't exclude the possibility of it getting the job done) but as infinitary terms.
A control flow structure is the wrapping of an unwrapped (possibility infinite) decision tree structure. Branches may re-converge. In the corresponding unwrapped structure, they appear as replicated, but separate, branches or subtrees. Goto's are direct links to subtrees. A goto or branch that back-branches to an earlier part of a control flow structure (the very genesis of the "cycling" of a cyclic control flow structure) is a link to an identically-shaped copy of the entire structure being linked to. Corresponding to each structure is its Universally Unrolled decision tree.
More precisely, we may think of a control-flow structure as a statement that precedes an actual expression that conditions the value of that expression. The archetypical case in point is Landin's original case, itself (in his 1960's paper, where he tried to lambda-ize imperative languages): let x = 1 in f(x). The "x = 1" part is the statement, the "f(x)" is the value being conditioned by the statement. In C-like form, we could write this as x = 1, f(x).
More generally, corresponding to each statement S and expression Q is an expression S[Q] which represents the result Q after S is applied. Thus, (x = 1)[f(x)] is just λx f(x) (x + 1). The S wraps around the Q. If S contains cyclic control flow structures, the wrapping will be infinitary.
When Landin tried to work out this strategy, he hit a hard wall when he got to the while loop and went "Oops. Never mind." and fell back into what become an overwrought and overthought solution, while this simple (and in retrospect, obvious) answer eluded his notice.
A while loop "while (x < n) x = x + 1;" - which has the "infinite mutability" mentioned above, may itself be treated as an infinitary wrapper, "if (x < n) { x = x + 1; if (x < 1) { x = x + 1; if (x < 1) { x = x + 1; ... } } }". So, when it wraps around an expression Q, the result is (in C-like notation) "x < n? (x = x + 1, x < n? (x = x + 1, x < n? (x = x + 1, ...): Q): Q): Q", which may be directly rendered in lambda form as "x < n? (λx x < n (λx x < n? (λx·...) (x + 1): Q) (x + 1): Q) (x + 1): Q". This shows directly the connection between cyclicity and infinitariness.
This is an infinitary expression that, despite being infinite, has only a finite number of distinct subexpressions. Just as we can think of there being a Universally Unrolled form to this expression - which is similar to what's shown above (an infinite decision tree) - we can also think of there being a Maximally Rolled form, which could be obtained by labelling each of the distinct subexpressions and referring to the labels, instead. The key subexpressions would then be:
A: x < n? goto B: Q
B: x = x + 1, goto A
The subexpression labels, here, are "A:" and "B:", while the references to the subexpressions so labelled as "goto A" and "goto B", respectively. So, by magic, the very essence of Imperativitity emerges directly out of the infinitary lambda calculus, without any need to posit it separately or anew.
This way of viewing things applies even down to the level of binary files. Every interpretation of every byte (whether it be a part of an opcode of an instruction that starts 0, 1, 2 or more bytes back, or as part of a data structure) can be treated as being there in tandem, so that the binary file is a rolling up of a much larger universally unrolled structure whose physical byte code representation overlaps extensively with itself.
Thus, emerges the imperative programming language paradigm automatically out of the pure lambda calculus, itself, when the calculus is extended to include infinitary terms. The control flow structure is directly embodied in the very structure of the infinitary expression, itself; and thus requires no additional hacks (like Landin's or later descendants, like monads) - as it's already there.
This synthesis of the imperative and functional paradigms arose in the late 1980's via the USENET, but has not (yet) been published. Part of it was already implicit in the treatment (dating from around the same time) given to languages, like Prolog-II, and the much earlier treatment of cyclic recursive structures by infinitary expressions by Irene Guessarian LNCS 99 "Algebraic Semantics".
Now, earlier I said that the magma-based formulation might get you to the same place, or to an approximation thereof. I believe there is a kind of universal representation theorem of some sort, which asserts that the infinitary based formulation provides a purely syntactic representation, and that the semantics that arise from the monad-based representation factors through this as "monad-based semantics" = "infinitary lambda calculus" + "semantics of infinitary languages".
Likewise, we may think of the "Q" expressions above as being continuations; so there may also be a universal representation theorem for continuation semantics, which similarly rolls this formulation back into the infinitary lambda calculus.
At this point, I've said nothing about non-rational infinitary terms (i.e. infinitary terms which possess an infinite number of distinct subterms and no finite Minimal Rolling) - particularly in relation to interprocedural control flow semantics. Rational terms suffice to account for loops and branches, and so provide a platform for intraprocedural control flow semantics; but not as much so for the call-return semantics that are the essential core element of interprocedural control flow semantics, if you consider subprograms to be directly represented as embellished, glorified macros.
There may be something similar to the Chomsky hierarchy for infinitary term languages; so that type 3 corresponds to rational terms, type 2 to "algebraic terms" (those that can be rolled up into a finite set of "goto" references and "macro" definitions), and type 0 for "transcendental terms". That is, for me, an unresolved loose end, as well.

A little diversion into floating point (im)precision, part 1

Most mathematicians agree that:
eπi + 1 = 0
However, most floating point implementations disagree. How well can we settle this dispute?
I'm keen to hear about different languages and implementations, and various methods to make the result as close to zero as possible. Be creative!
It's not that most floating point implementations disagree, it's just that they cannot get the accuracy necessary to get a 100% answer. And the correct answer is that they can't.
PI is an infinite series of digits that nobody has been able to denote by anything other than a symbolic representation, and e^X is the same, and thus the only way to get to 100% accuracy is to go symbolic.
Here's a short list of implementations and languages I've tried. It's sorted by closeness to zero:
Scheme: (+ 1 (make-polar 1 (atan 0 -1)))
⇒ 0.0+1.2246063538223773e-16i (Chez Scheme, MIT Scheme)
⇒ 0.0+1.22460635382238e-16i (Guile)
⇒ 0.0+1.22464679914735e-16i (Chicken with numbers egg)
⇒ 0.0+1.2246467991473532e-16i (MzScheme, SISC, Gauche, Gambit)
⇒ 0.0+1.2246467991473533e-16i (SCM)
Common Lisp: (1+ (exp (complex 0 pi)))
⇒ #C(0.0L0 -5.0165576136843360246L-20) (CLISP)
⇒ #C(0.0d0 1.2246063538223773d-16) (CMUCL)
⇒ #C(0.0d0 1.2246467991473532d-16) (SBCL)
Perl: use Math::Complex; Math::Complex->emake(1, pi) + 1
⇒ 1.22464679914735e-16i
Python: from cmath import exp, pi; exp(complex(0, pi)) + 1
⇒ 1.2246467991473532e-16j (CPython)
Ruby: require 'complex'; Complex::polar(1, Math::PI) + 1
⇒ Complex(0.0, 1.22464679914735e-16) (MRI)
⇒ Complex(0.0, 1.2246467991473532e-16) (JRuby)
R: complex(argument = pi) + 1
⇒ 0+1.224606353822377e-16i
Is it possible to settle this dispute?
My first thought is to look to a symbolic language, like Maple. I don't think that counts as floating point though.
In fact, how does one represent i (or j for the engineers) in a conventional programming language?
Perhaps a better example is sin(π) = 0? (Or have I missed the point again?)
I agree with Ryan, you would need to move to another number representation system. The solution is outside the realm of floating point math because you need pi to represented as an infinitely long decimal so any limited precision scheme just isn't going to work (at least not without employing some kind of fudge-factor to make up the lost precision).
Your question seems a little odd to me, as you seem to be suggesting that the Floating Point math is implemented by the language. That's generally not true, as the FP math is done using a floating point processor in hardware. But software or hardware, floating point will always be inaccurate. That's just how floats work.
If you need better precision you need to use a different number representation. Just like if you're doing integer math on numbers that don't fit in an int or long. Some languages have libraries for that built in (I know java has BigInteger and BigDecimal), but you'd have to explicitly use those libraries instead of native types, and the performance would be (sometimes significantly) worse than if you used floats.
#Ryan Fox In fact, how does one represent i (or j for the engineers) in a conventional programming language?
Native complex data types are far from unknown. Fortran had it by the mid-sixties, and the OP exhibits a variety of other languages that support them in hist followup.
And complex numbers can be added to other languages as libraries (with operator overloading they even look just like native types in the code).
But unless you provide a special case for this problem, the "non-agreement" is just an expression of imprecise machine arithmetic, no? It's like complaining that
float r = 2/3;
float s = 3*r;
float t = s - 2;
ends with (t != 0) (At least if you use an dumb enough compiler)...
I had looooong coffee chats with my best pal talking about Irrational numbers and the diference between other numbers. Well, both of us agree in this different point of view:
Irrational numbers are relations, as functions, in a way, what way? Well, think about "if you want a perfect circle, give me a perfect pi", but circles are diferent to the other figures (4 sides, 5, 6... 100, 200) but... How many more sides do you have, more like a circle it look like. If you followed me so far, connecting all this ideas here is the pi formula:
So, pi is a function, but one that never ends! because of the ∞ parameter, but I like to think that you can have "instance" of pi, if you change the ∞ parameter for a very big Int, you will have a very big pi instance.
Same with e, give me a huge parameter, I will give you a huge e.
Putting all the ideas together:
As we have memory limitations, the language and libs provide to us huge instance of irrational numbers, in this case, pi and e, as final result, you will have long aproach to get 0, like the examples provided by #Chris Jester-Young
In fact, how does one represent i (or j for the engineers) in a conventional programming language?
In a language that doesn't have a native representation, it is usually added using OOP to create a Complex class to represent i and j, with operator overloading to properly deal with operations involving other Complex numbers and or other number primitives native to the language.
Eg: Complex.java, C++ < complex >
Numerical Analysis teaches us that you can't rely on the precise value of small differences between large numbers.
This doesn't just affect the equation in question here, but can bring instability to everything from solving a near-singular set of simultaneous equations, through finding the zeros of polynomials, to evaluating log(~1) or exp(~0) (I have even seen special functions for evaluating log(x+1) and (exp(x)-1) to get round this).
I would encourage you not to think in terms of zeroing the difference -- you can't -- but rather in doing the associated calculations in such a way as to ensure the minimum error.
I'm sorry, it's 43 years since I had this drummed into me at uni, and even if I could remember the references, I'm sure there's better stuff around now. I suggest this as a starting point.
If that sounds a bit patronising, I apologise. My "Numerical Analysis 101" was part of my Chemistry course, as there wasn't much CS in those days. I don't really have a feel for the place/importance numerical analysis has in a modern CS course.
It's a limitation of our current floating point computational architectures. Floating point arithmetic is only an approximation of numeric poles like e or pi (or anything beyond the precision your bits allow). I really enjoy these numbers because they defy classification, and appear to have greater entropy(?) than even primes, which are a canonical series. A ratio defy's numerical representation, sometimes simple things like that can blow a person's mind (I love it).
Luckily entire languages and libraries can be dedicated to precision trigonometric functions by using notational concepts (similar to those described by Lasse V. Karlsen ).
Consider a library/language that describes concepts like e and pi in a form that a machine can understand. Does a machine have any notion of what a perfect circle is? Probably not, but we can create an object - circle that satisfies all the known features we attribute to it (constant radius, relationship of radius to circumference is 2*pi*r = C). An object like pi is only described by the aforementioned ratio. r & C can be numeric objects described by whatever precision you want to give them. e can be defined "as the e is the unique real number such that the value of the derivative (slope of the tangent line) of the function f(x) = ex at the point x = 0 is exactly 1" from wikipedia.
Fun question.

Resources