I am getting an error while running naive bayes classifier in R. I am using the following code-
mod1 <- naiveBayes(factor(X20) ~ factor(X1) + factor(X2) +factor(X3) +factor(X4)+factor(X5)+factor(X6)+factor(X7)
+factor(X8)+factor(X9)
+factor(X10)+factor(X11)+ factor(X12)+factor(X13)+factor(X14)
+factor(X15)
+factor(X16)+factor(X17)
+factor(X18)+factor(X19),data=intent.test)
res1 <- predict(mod1)$posterior
First part of this code runs fine. But when it try to predict the posterior probability it throws following error-
**Error in as.data.frame(newdata) :
argument "newdata" is missing, with no default**
I tried running something like
res1 <- predict(mod1,new_data=intent.test)$posterior
but this also gives the same error.
You seem to be using the e1071::naiveBayes algorithm, which expects a newdata argument for prediction, hence the two errors raised when running your code. (You can check the source code of the predict.naiveBayes function on CRAN; the second line in the code is expecting a newdata, as newdata <- as.data.frame(newdata).) Also as pointed out by #Vincent, you're better off converting your variables to factor before calling the NB algorithm, although this has certainly nothing to do with the above errors.
Using NaiveBayes from the klar package, no such problem would happen. E.g.,
data(spam, package="ElemStatLearn")
library(klaR)
# set up a training sample
train.ind <- sample(1:nrow(spam), ceiling(nrow(spam)*2/3), replace=FALSE)
# apply NB classifier
nb.res <- NaiveBayes(spam ~ ., data=spam[train.ind,])
# predict on holdout units
nb.pred <- predict(nb.res, spam[-train.ind,])
# but this also works on the training sample, i.e. without using a `newdata`
head(predict(nb.res))
Related
I have used the decision tree to predict my test set. After running my code I get a table which has the results, but I want to use the confusionMatrix() command from the caret library. I have tried several things, but none has worked. Please see my code:
library(rpart)
tree <- rpart(train$number ~ ., train, method = "class")
pred <- predict(tree,test, type ="class")
p <- predict(tree, type="class")
# Confusion Matrix
conf <- table(test$number, pred)
> conf
pred
Problem Reference
Problem 0 100
Reference 0 2782
I tried to do this:
p <- predict(tree, type="class")
confusionMatrix(p, entiredata$number)
Errors like data and reference should be the same type, so I changed it both to factors with as.factors(), then the arguments were not the same length. I searched the web and found similiar questions but they all didn't help me. My final goal is to receive the statistics as the accuracy.
library(caret)
confusionMatrix(p, test$number)
Since you predict only on the test data, you should compare predictions only on the test data, not the whole dataset.
I'm trying to bag conditional inference trees following the advice of Kuhn et al in 'Applied Predictive Modeling', Ch.8:
Conditional inference trees can also be bagged using the cforest function > in the party package if the argument mtry is equal to the number of
predictors:
library(party)
The mtry parameter should be the number of predictors (the
number of columns minus 1 for the outcome).
bagCtrl <- cforest_control(mtry = ncol(trainData) - 1)
baggedTree <- cforest(y ~ ., data = trainData, controls = bagCtrl)
Note there may be a typo in the above code (and also in the package's help file), as discussed here:
R package 'partykit' unused argument in ctree_control
However when I try to replicate this code using a dataframe (and trainData in above code is also a dataframe) such that there is more than one independent/predictor variable, I'm getting an error though it works for just one independent variable:
Some dummy code for simulations:
library(party)
df = data.frame(y = runif(5000), x = runif(5000), z = runif(5000))
bagCtrl <- cforest_control(mtry = ncol(df) - 1)
baggedTree_cforest <- cforest(y ~ ., data = df, control = bagCtrl)
The error message is:
Error: $ operator not defined for this S4 class
Thanks for any help.
As suggested, posting my comment from above as an answer as a general R 'trick' if something expected doesn't work and the program has several libraries loaded:
but what solved it was adding the party namespace explicitly to the function > call, so party::cforest() instead of just cforest(). I've also got
library(partykit) loaded in my actual program which too has a cforest()
function and the error could be stemming from there though both functions are > essentially the same
caret::train() is another example where this often pops up
Using R 3.2.0 with caret 6.0-41 and randomForest 4.6-10 on a 64-bit Linux machine.
When trying to use the predict() method on a randomForest object trained with the train() function from the caret package using a formula, the function returns an error.
When training via randomForest() and/or using x= and y= rather than a formula, it all runs smoothly.
Here is a working example:
library(randomForest)
library(caret)
data(imports85)
imp85 <- imports85[, c("stroke", "price", "fuelType", "numOfDoors")]
imp85 <- imp85[complete.cases(imp85), ]
imp85[] <- lapply(imp85, function(x) if (is.factor(x)) x[,drop=TRUE] else x) ## Drop empty levels for factors.
modRf1 <- randomForest(numOfDoors~., data=imp85)
caretRf <- train( numOfDoors~., data=imp85, method = "rf" )
modRf2 <- caretRf$finalModel
modRf3 <- randomForest(x=imp85[,c("stroke", "price", "fuelType")], y=imp85[, "numOfDoors"])
caretRf <- train(x=imp85[,c("stroke", "price", "fuelType")], y=imp85[, "numOfDoors"], method = "rf")
modRf4 <- caretRf$finalModel
p1 <- predict(modRf1, newdata=imp85)
p2 <- predict(modRf2, newdata=imp85)
p3 <- predict(modRf3, newdata=imp85)
p4 <- predict(modRf4, newdata=imp85)
Among the last 4 lines, only the second one p2 <- predict(modRf2, newdata=imp85) returns the following error:
Error in predict.randomForest(modRf2, newdata = imp85) :
variables in the training data missing in newdata
It seems that the reason for this error is that the predict.randomForest method uses rownames(object$importance) to determine the name of the variables used to train the random forest object. And when looking at
rownames(modRf1$importance)
rownames(modRf2$importance)
rownames(modRf3$importance)
rownames(modRf4$importance)
We see:
[1] "stroke" "price" "fuelType"
[1] "stroke" "price" "fuelTypegas"
[1] "stroke" "price" "fuelType"
[1] "stroke" "price" "fuelType"
So somehow, when using the caret train() function with a formula changes the name of the (factor) variables in the importance field of the randomForest object.
Is it really an inconsistency between the formula and and non-formula version of the caret train() function? Or am I missing something?
First, almost never use the $finalModel object for prediction. Use predict.train. This is one good example of why.
There is some inconsistency between how some functions (including randomForest and train) handle dummy variables. Most functions in R that use the formula method will convert factor predictors to dummy variables because their models require numerical representations of the data. The exceptions to this are tree- and rule-based models (that can split on categorical predictors), naive Bayes, and a few others.
So randomForest will not create dummy variables when you use randomForest(y ~ ., data = dat) but train (and most others) will using a call like train(y ~ ., data = dat).
The error occurs because fuelType is a factor. The dummy variables created by train don't have the same names so predict.randomForest can't find them.
Using the non-formula method with train will pass the factor predictors to randomForest and everything will work.
TL;DR
Use the non-formula method with train if you want the same levels or use predict.train
There can be two reasons why you get this error.
1. The categories of the categorical variables in the train and test sets don't match. To check that, you can run something like the following.
Well, first of all, it is good practice to keep the independent variables/features in a list. Say that list is "vars". And say, you separated "Data" into "Train" and "Test". Let's go:
for (v in vars){
if (class(Data[,v]) == 'factor'){
print(v)
# print(levels(Train[,v]))
# print(levels(Test[,v]))
print(all.equal(levels(Train[,v]) , levels(Test[,v])))
}
}
Once you find the non-matching categorical variables, you can go back, and impose the categories of Test data onto Train data, and then re-build your model. In a loop similar to above, for each nonMatchingVar, you can do
levels(Test$nonMatchingVar) <- levels(Train$nonMatchingVar)
2. A silly one. If you accidentally leave the dependent variable in the set of independent variables, you may run into this error message. I have done that mistake. Solution: Just be more careful.
Another way is to explicitly code the testing data using model.matrix, e.g.
p2 <- predict(modRf2, newdata=model.matrix(~., imp85))
I have some data and am trying to teach myself about utilize lagged predictors within regression models. I'm currently trying to generate predictions from a generalized additive model that uses splines to smooth the data and contains lags.
Let's say I have the following data and have split the data into training and test samples.
head(mtcars)
Train <- sample(1:nrow(mtcars), ceiling(nrow(mtcars)*3/4), replace=FALSE)
Great, let's train the gam model on the training set.
f_gam <- gam(hp ~ s(qsec, bs="cr") + s(lag(disp, 1), bs="cr"), data=mtcars[Train,])
summary(f_gam)
When I go to predict on the holdout sample, I get an error message.
f_gam.pred <- predict(f_gam, mtcars[-Train,]); f_gam.pred
Error in ExtractData(object, data, NULL) :
'names' attribute [1] must be the same length as the vector [0]
Calls: predict ... predict.gam -> PredictMat -> Predict.matrix3 -> ExtractData
Can anyone help diagnose the issue and help with a solution. I get that lag(__,1) leaves a data point as NA and that is likely the reason for the lengths being different. However, I don't have a solution to the problem.
I'm going to assume you're using gam() from the mgcv library. It appears that gam() doesn't like functions that are not defined in "base" in the s() terms. You can get around this by adding a column which include the transformed variable and then modeling using that variable. For example
tmtcars <- transform(mtcars, ldisp=lag(disp,1))
Train <- sample(1:nrow(mtcars), ceiling(nrow(mtcars)*3/4), replace=FALSE)
f_gam <- gam(hp ~ s(qsec, bs="cr") + s(ldisp, bs="cr"), data= tmtcars[Train,])
summary(f_gam)
predict(f_gam, tmtcars[-Train,])
works without error.
The problem appears to be coming from the mgcv:::get.var function. It tires to decode the terms with something like
eval(parse(text = txt), data, enclos = NULL)
and because they explicitly set the enclosure to NULL, variable and function names outside of base cannot be resolved. So because mean() is in the base package, this works
eval(parse(text="mean(x)"), data.frame(x=1:4), enclos=NULL)
# [1] 2.5
but because var() is defined in stats, this does not
eval(parse(text="var(x)"), data.frame(x=1:4), enclos=NULL)
# Error in eval(expr, envir, enclos) : could not find function "var"
and lag(), like var() is defined in the stats package.
I am doing just a regular logistic regression using the caret package in R. I have a binomial response variable coded 1 or 0 that is called a SALES_FLAG and 140 numeric response variables that I used dummyVars function in R to transform to dummy variables.
data <- dummyVars(~., data = data_2, fullRank=TRUE,sep="_",levelsOnly = FALSE )
dummies<-(predict(data, data_2))
model_data<- as.data.frame(dummies)
This gives me a data frame to work with. All of the variables are numeric. Next I split into training and testing:
trainIndex <- createDataPartition(model_data$SALE_FLAG, p = .80,list = FALSE)
train <- model_data[ trainIndex,]
test <- model_data[-trainIndex,]
Time to train my model using the train function:
model <- train(SALE_FLAG~. data=train,method = "glm")
Everything runs nice and I get a model. But when I run the predict function it does not give me what I need:
predict(model, newdata =test,type="prob")
and I get an ERROR:
Error in dimnames(out)[[2]] <- modelFit$obsLevels :
length of 'dimnames' [2] not equal to array extent
On the other hand when I replace "prob" with "raw" for type inside of the predict function I get prediction but I need probabilities so I can code them into binary variable given my threshold.
Not sure why this happens. I did the same thing without using the caret package and it worked how it should:
model2 <- glm(SALE_FLAG ~ ., family = binomial(logit), data = train)
predict(model2, newdata =test, type="response")
I spend some time looking at this but not sure what is going on and it seems very weird to me. I have tried many variations of the train function meaning I didn't use the formula and used X and Y. I used method = 'bayesglm' as well to check and id gave me the same error. I hope someone can help me out. I don't need to use it since the train function to get what I need but caret package is a good package with lots of tools and I would like to be able to figure this out.
Show us str(train) and str(test). I suspect the outcome variable is numeric, which makes train think that you are doing regression. That should also be apparent from printing model. Make it a factor if you want to do classification.
Max