Ray-Sphere intersection: the discriminant is WRONG - math

Alright, so I'm working on a ray tracer using phong shading. So far, everything is good. I've cast rays that have hit the spheres in my scene, applied phong shading to them, and it looks normal.
Now, I'm calculating shadow rays, which is shooting a ray from the point of intersection from the primary ray to the light source, and seeing if it hits any objects on the way. If it does, then it's in a shadow.
However, when computing whether the shadow ray hits any spheres, there seems to be an error with my discriminant that is calculated, which is odd since it's been correct so far for primary rays.
Here's the setup:
// Origin of ray (x,y,z)
origin: -1.9865333, 1.0925934, -9.8653316
// Direction of ray (x,y,z), already normalized
ray: -0.99069530, -0.13507602, -0.016648887
// Center of sphere (x,y,z)
cCenter: 1.0, 1.0, -10.0
// Radius of the sphere (x,y,z)
cRadius: 1.0
, and here's the code for finding the discriminant:
// A = d DOT d
float a = dotProd(ray, ray);
// B = 2 * (o - c) DOT d
Point temp (2.0*(origin.getX() - cCenter.getX()), 2.0*(origin.getY() - cCenter.getY()), 2.0*(origin.getZ() - cCenter.getZ()));
float b = dotProd(temp, ray);
// C = (o - c) DOT (o - c) - r^2
temp.setAll(origin.getX() - cCenter.getX(), origin.getY() - cCenter.getY(), origin.getZ() - cCenter.getZ());
float c = dotProd(temp, temp);
c -= (cRadius * cRadius);
// Find the discriminant (B^2 - 4AC)
float discrim = (b*b) - 4*a*c;
Clearly, the ray is pointing away from the sphere, yet the discriminant here is positive (2.88) indicating that the ray is hitting the sphere. And this code works fine for primary rays as their discriminants must be correct, yet not for these secondary shadow rays.
Am I missing something here?

So short answer for my problem, in case someone finds this and has the same problem:
The discriminant tells you whether a hit exists for a line (and not for a ray, like I thought). If it's positive, then it has detected a hit somewhere on the line.
So, when calculating the t-value(s) for the ray, check to see if they're negative. If they are, then it's a hit BEHIND the point of origin of the ray (ie. the opposite direction of the ray), so discard it. Only keep the positive values, as they're hits in the direction of the ray.
Even shorter answer: discard negative t-values.
Credit goes to woodchips for making me realize this.

The issue is, the trick to finding the intersection of a line and a sphere requires the solution of a quadratic equation. Such an equation has one of three possibilities as a solution - there are 0, 1, or 2 real solutions to that equation. The sign of the discriminant tells us how many real solutions there are (as well as helping us to solve for those solutions.)
If a unique solution exists, then the line just kisses the surface of the sphere. This happens when the discriminant is exactly zero.
If two solutions exist, then the line passes through the sphere, hitting the surface in TWO distinct points.
If no real solution exists (the case where the discriminant is negative) then the line lies too far away from the sphere to touch it at all.
Having discovered if the line ever goes near the sphere or not, only then do we worry if the ray hits it. For this, we can look at how we define the ray. A ray is a half line, extending to infinity in only one direction. So we look to see where on the line the intersection points happen. Only if the intersection happens on the half of the line that we care about is there a RAY-sphere intersection.
The point is, computation of the discriminant (and simply testing its sign) tells you ONLY about what the line does, not about where an intersection occurs along that line.
Of course, a careful reading of the link you yourself provided would have told you all of this.

Pretty sure "o-c" should be "c-o"
You're shooting a ray off in the wrong direction and finding the intersection on the other side of the sphere.

Related

DirectX negative W

I really was trying to find an answer on this very basic (at first sight) question.
For simplicity depth test is disabled during further discussion (it doesn’t have a big deal).
For example, we have triangle (after transformation) with next float4 coordinates.
top CenterPoint: (0.0f, +0.6f, 0.6f, 1f)
basic point1: (+0.4f, -0.4f, 0.4f, 1f),
basic point2: (-0.4f, -0.4f, 0.4f, 1f),
I’m sending float4 for input and use straight VertexShader (without transforms), so I’m sure about input. And we have result is reasonable:
But what we will get if we'll start to move CenterPoint to point of camera position. In our case we don’t have camera so will move this point to minus infinity.
I'm getting quite reasonable results as long as w (with z) is positive.
For example, (0.0f, +0.006f, 0.006f, .01f) – look the same.
But what if I'll use next coordinates (0.0f, -0.6f, -1f, -1f).
(Note: we have to switch points or change rasterizer for culling preventing).
According to huge amount of resource I'll have test like: -w < z < w, so GPU should cut of that point. And yes, in principle, I don’t see point. But triangle still visible! OK, according to huge amount of other resource (and my personal understanding) we'll have division like (x/w, y/w, z/w) so result should be (0, 0.6, 1). But I'm getting
And even if that result have some sense (one point is somewhere far away behind as), how really DirectX (I think it is rather GPU) works in such cases (in case of infinite points and negative W)?
It seems that I don't know something very basic, but it seems that nobody know that.
[Added]: I want to note that point w < 0 - is not a real input.
In real life such points are result of transformation by matrices and according to the math (math that are used in standard Direct sdk and other places) corresponds to the point that appears behind the camera position.
And yes, that point is clipped, but questions is rather about strange triangle that contains such point.
[Brief answer]: Clipping is essentially not just z/w checking and division (see details below).
Theoretically, NDC depth is divided into two distinct areas. The following diagram shows these areas for znear = 1, zfar = 3. The horizontal axis shows view-space z and the vertical axis shows the resulting NDC depth for a standard projective transform:
We can see that the part between view-space z of 1 and 3 (znear, zmax) gets mapped to NDC depth 0 to 1. This is the part that we are actually interested in.
However, the part where view-space z is negative also produces positive NDC depth. However, those are parts that result from fold-overs. I.e., if you take a corner of your triangle and slowly decrease z (along with w), starting in the area between znear and zfar, you would observe the following:
we start between znear and zfar, everything is good
as soon as we pass znear, the point gets clipped because NDC depth < 0.
when we are at view-space z = 0, the point also has w = 0 and no valid projection.
as we decrease view-space z further, the point gets a valid projection again (starting at infinity) and comes back in with positive NDC depth.
However, this last part is the area behind the camera. So, homogeneous clipping is made, such that this part is also clipped away by znear clipping.
Check the old D3D9 documentation for the formulas and some more illustrative explanations here.

How to calculate a point on a circle knowing the radius and center point

I have a complicated problem and it involves an understanding of Maths I'm not confident with.
Some slight context may help. I'm building a 3D train simulator for children and it will run in the browser using WebGL. I'm trying to create a network of points to place the track assets (see image) and provide reference for the train to move along.
To help explain my problem I have created a visual representation as I am a designer who can script and not really a programmer or a mathematician:
Basically, I have 3 shapes (Figs. A, B & C) and although they have width, can be represented as a straight line for A and curves (B & C). Curves B & C are derived (bend modified) from A so are all the same length (l) which is 112. The curves (B & C) each have a radius (r) of 285.5 and the (a) angle they were bent at was 22.5°.
Each shape (A, B & C) has a registration point (start point) illustrated by the centre of the green boxes attached to each of them.
What I am trying to do is create a network of "track" starting at 0, 0 (using standard Cartesian coordinates).
My problem is where to place the next element after a curve. If it were straight track then there is no problem as I can use the length as a constant offset along the y axis but that would be boring so I need to add curves.
Fig. D. demonstrates an example of a possible track layout but please understand that I am not looking for a static answer (based on where everything is positioned in the image), I need a formula that can be applied no matter how I configure the track.
Using Fig. D. I tried to work out where to place the second curved element after the first one. I used the formula for plotting a point of the circumference of a circle given its centre coordinates and radius (Fig. E.).
I had point 1 as that was simply a case of setting the length (y position) of the straight line. I could easily work out the centre of the circle because that's just the offset y position, the offset of the radius (r) (x position) and the angle (a) which is always 22.5° (which, incidentally, was converted to Radians as per formula requirements).
After passing the values through the formula I didn't get the correct result because the formula assumed I was working anti-clockwise starting at 3 o'clock so I had to deduct 180 from (a) and convert that to Radians to get the expected result.
That did work and if I wanted to create a 180° track curve I could use the same centre point and simply deducted 22.5° from the angle each time. Great. But I want a more dynamic track layout like in Figs. D & E.
So, how would I go about working point 5 in Fig. E. because that represents the centre point for that curve segment? I simply have no idea.
Also, as a bonus question, is this the correct way to be doing this or am I over-complicating things?
This problem is the only issue stopping me from building my game and, as you can appreciate, it is a bit of a biggie so I thank anyone for their contribution in advance.
As you build up the track, the position of the next piece of track to be placed needs to be relative to location and direction of the current end of the track.
I would store an (x,y) position and an angle a to indicate the current point (with x,y starting at 0, and a starting at pi/2 radians, which corresponds to straight up in the "anticlockwise from 3-o'clock" system).
Then construct
fx = cos(a);
fy = sin(a);
lx = -sin(a);
ly = cos(a);
which correspond to the x and y components of 'forward' and 'left' vectors relative to the direction we are currently facing. If we wanted to move our position one unit forward, we would increment (x,y) by (fx, fy).
In your case, the rule for placing a straight section of track is then:
x=x+112*fx
y=y+112*fy
The rule for placing a curve is slightly more complex. For a curve turning right, we need to move forward 112*sin(22.5°), then side-step right 112*(1-cos(22.5°), then turn clockwise by 22.5°. In code,
x=x+285.206*sin(22.5*pi/180)*fx // Move forward
y=y+285.206*sin(22.5*pi/180)*fy
x=x+285.206*(1-cos(22.5*pi/180))*(-lx) // Side-step right
y=y+285.206*(1-cos(22.5*pi/180))*(-ly)
a=a-22.5*pi/180 // Turn to face new direction
Turning left is just like turning right, but with a negative angle.
To place the subsequent pieces, just run this procedure again, calculating fx,fy, lx and ly with the now-updated value of a, and then incrementing x and y depending on what type of track piece is next.
There is one other point that you might consider; in my experience, building tracks which form closed loops with these sort of pieces usually works if you stick to making 90° turns or rather symmetric layouts. However, it's quite easy to make tracks which don't quite join up, and it's not obvious to see how they should be modified to allow them to join. Something to bear in mind perhaps if your program allows children to design their own layouts.
Point 5 is equidistant from 3 as 2, but in the opposite direction.

Intersection between two Arcs? (arc = distance between pair of angles)

I'm trying to find a way to calculate the intersection between two arcs.
I need to use this to determine how much of an Arc is visually on the right half of a circle, and how much on the left.
I though about creating an arc of the right half, and intersect that with the actual arc.
But it takes me wayyy to much time to solve this, so I thought about asking here - someone must have done it before.
Edit:
I'm sorry the previous illustration was provided when my head was too heavy after crunching angles. I'll try to explain again:
In this link you can see that I cut the arc in the middle to two halves, the right part of the Arc contains 135 degrees, and the left part has 90.
This Arc starts at -180 and ends at 45. (or starts at 180 and ends at 405 if normalized).
I have managed to create this code in order to calculate the amount of arc degrees contained in the right part, and in the left part:
f1 = (angle2>270.0f?270.0f:angle2) - (angle1<90.0f?90.0f:angle1);
if (f1 < 0.0f) f1 = 0.0f;
f2 = (angle2>640.0f?640.0f:angle2) - (angle1<450.0f?450.0f:angle1);
if (f2 < 0.0f) f2 = 0.0f;
f3 = (angle2>90.0f?90.0f:angle2) - angle1;
if (f3<0.0f) f3=0.0f;
f4 = (angle2>450.0f?450.0f:angle2) - (angle1<270.0f?270.0f:angle1);
if (f4<0.0f) f4=0.0f;
It works great after normalizing the angles to be non-negative, but starting below 360 of course.
Then f1 + f2 gives me the sum of the left half, and f3 + f4 gives me the sum of the right half.
It also does not consider a case when the arc is defined as more than 360, which may be an "error" case.
BUT, this seems like more of a "workaround", and not a correct mathematical solution.
I'm looking for a more elegant solution, which should be based on "intersection" between two arc (because math has no "sides", its not visual";
Thanks!!
I think this works, but I haven't tested it thoroughly. You have 2 arcs and each arc has a start angle and a stop angle. I'll work this in degrees measured clockwise from north, as you have done, but it will be just as easy to work in radians measured anti-clockwise from east as the mathematicians do.
First 'normalise' your arcs, that is, reduce all the angles in them to lie in [0,360), so take out multiples of 360deg and make all the angles +ve. Make sure that the stop angle of each arc lies to clockwise of the start angle.
Next, choose the start angle of one of your arcs, it doesn't matter which. Sort all the angles you have (4 of them) into numerical order. If any of the angles are numerically smaller than the start angle you have chosen, add 360deg to them.
Re-sort the angles into increasing numerical order. Your chosen start angle will be the first element in the new list. From the start angle you already chose, what is the next angle in the list ?
1) If it is the stop angle of the same arc then either there is no overlap or this arc is entirely contained within the other arc. Make a note and find the next angle. If the next angle is the start angle of the other arc there is no overlap and you can stop; if it is the stop angle of the other arc then the overlap contains the whole of the first arc. Stop
2) If it is the start angle of the other arc, then the overlap begins at that angle. Make a note of this angle. The next angle your sweep encounters has to be a stop angle and the overlap ends there. Stop.
3) If it is the stop angle of the other arc then the overlap comprises the angle between the start angle of the first arc and this angle. Stop.
This isn't particularly elegant and relies on ifs rather more than I generally like but it should work and be relatively easy to translate into your favourite programming language.
And look, no trigonometry at all !
EDIT
Here's a more 'mathematical' approach since you seem to feel the need.
For an angle theta in (-pi,pi] the hyperbolic sine function (often called sinh) maps the angle to an interval on the real line in the interval (approximately) (-11.5,11.5]. Unlike arcsin and arccos the inverse of this function is also single-valued on the same interval. Follow these steps:
1) If an arc includes 0 break it into 2 arcs, (start,0) and (0,stop). You now have 2, 3 or 4 intervals on the real line.
2) Compute the intersection of those intervals and transform back from linear measurement into angular measurement. You now have the intersection of the two arcs.
This test can be resumed with a one-line test. Even if a good answer is already posted, let me present mine.
Let assume that the first arc is A:(a0,a1) and the second arc is B:(b0,b1). I assume that the angle values are unique, i.e. in the range [0°,360°[, [0,2*pi[ or ]-pi,pi] (the range itself is not important, we will see why). I will take the range ]-pi,pi] as the range of all angles.
To explain in details the approach, I first design a test for interval intersection in R. Thus, we have here a1>=a0 and b1>=b0. Following the same notations for real intervals, I compute the following quantity:
S = (b0-a1)*(b1-a0)
If S>0, the two segments are not overlapping, else their intersection is not empty. It is indeed easy to see why this formula works. If S>0, we have two cases:
b0>a1 implies that b1>a0, so there is no intersection: a0=<a1<b0=<b1.
b1<a0 implies that b0<b1, so there is no intersection: b0=<b1<a0=<a1.
So we have a single mathematical expression which performs well in R.
Now I expand it over the circular domain ]-pi,pi]. The hypotheses a0<a1 and b0<b1 are not true anymore: for example, an arc can go from pi/2 to -pi/2, it is the left hemicircle.
So I compute the following quantity:
S = (b0-a1)*(b1-a0)*H(a1-a0)*H(b1-b0)
where H is the step function defined by H(x)=-1 if x<0 else H(x)=1
Again, if S>0, there is no intersection between the arcs A and B. There are 16 cases to explore, and I will not do this here ... but it is easy to make them on a sheet :).
Remark: The value of S is not important, just the signs of the terms. The beauty of this formula is that it is independant from the range you have taken. Also, you can rewrite it as a logical test:
T := (b0>a1)^(b1>a0)^(a1>=a0)^(b1>=b0)
where ^ is logical XOR
EDIT
Alas, there is an obvious failure case in this formula ... So I correct it here. I realize that htere is a case where the intersection of the two arcs can be two arcs, for example when -pi<a0<b1<b0<a1<pi.
The solution to correct this is to introduce a second test: if the sum of the angles is above 2*pi, the arcs intersect for sure.
So the formula turns out to be:
T := (a1+b1-a0-b0+2*pi*((b1<b0)+(a1<a0))<2*pi) | ((b0>a1)^(b1>a0)^(a1>=a0)^(b1>=b0))
Ok, it is way less elegant than the previous one, but it is now correct.

Simple 2D Plane Trajectory with Bezier Curve

Hello and Happy New Year !
Let me begin with the strict facts instead of writing the whole scenario here.
This is what i have:
A plane in 2D Space (X,Y)
A destination this plane has to fly to in 2D space (X,Y)
A bezier curve class that generates the bezier from 4 points (A,B,C,D)
This is what i need to do:
When user clicks on the space in X', Y' i need to generate a bezier curve
for this plane to fly there.
These are some assumptions:
It is known that plane can't rotate in one place, it has to make some minimal turn
It is known that when destination is in front of the plane it doesn't make any turn
Bezier curve has to be calculated from 4 points where
point A = actual plane position
point B = actual plane position + actual plane direction * 2 (so it goes forward a bit ? )
point C = needs to be calculated
point D = plane destination
Here are few of those scenarios drawn:
Question:
How do i calculate this bezier curve, i already have point A,D but i need those B,C to make this turn proper.
How can i characterize this bezier so that let's say planeA has smaller turns than planeB ?
I almost had it, but almost is nothing in this case so i better rewrite this with your help.
Thanks for any help with this, i am scratching my head with this and found it's not that easy i was thinking... or ?
The point B that you described ("actual plane position + actual plane direction") would work quite well. How far you go along the plane direction will adjust when the plane begins its turn.
For point C, setting it to be same as point D (the destination) will work quite well.
As for turning rates, I'm not sure you're going to get much control using a (cubic) bezier curve. They are all about location and direction, with nothing to tweak the second order curvature. Adjusting point B might be a good compromise, but it's more adjusting reaction time and path rather than turning rate.

Point-Triangle Collision Detection in 3D

How do I correct for floating point error in the following physical simulation:
Original point (x, y, z),
Desired point (x', y', z') after forces are applied.
Two triangles (A, B, C) and (B, C, D), who share edge BC
I am using this method for collision detection:
For each Triangle
If the original point is in front of the current triangle, and the desired point is behind the desired triangle:
Calculate the intersection point of the ray (original-desired) and the plane (triangle's normal).
If the intersection point is inside the triangle edges (!)
Respond to the collision.
End If
End If
Next Triangle
The problem I am having is that sometimes the point falls into the grey area of floating point math where it is so close to the line BC that it fails to collide with either triangle, even though technically it should always collide with one or the other since they share an edge. When this happens the point passes right between the two edge sharing triangles. I have marked one line of the code with (!) because I believe that's where I should be making a change.
One idea that works in very limited situations is to skip the edge testing. Effectively turning the triangles into planes. This only works when my meshes are convex hulls, but I plan to create convex shapes.
I am specifically using the dot product and triangle normals for all of my front-back testing.
This is an inevitable problem when shooting a single ray against some geometry with edges and vertices. It's amazing how physical simulations seem to seek out the smallest of numerical inaccuracies!
Some of the explanations and solutions proposed by other respondents will not work. In particular:
Numerical inaccuracy really can cause a ray to "fall through the gap". The problem is that we intersect the ray with the plane ABC (getting the point P, say) before testing against line BC. Then we intersect the ray with plane BCD (getting the point Q, say) before testing against line BC. P and Q are both represented by the closest floating-point approximation; there's no reason to expect that these exactly lie on the planes that they are supposed to lie on, and so every possibility that you can have both P to the left of BC and Q to the right of BC.
Using less-than-or-equal test won't help; it's inaccuracy in the intersection of the ray and the plane that's the trouble.
Square roots are not the issue; you can do all of the necessary computations using dot products and floating-point division.
Here are some genuine solutions:
For convex meshes, you can just test against all the planes and ignore the edges and vertices, as you say (thus avoiding the issue entirely).
Don't intersect the ray with each triangle in turn. Instead, use the scalar triple product. (This method makes the exact same sequence of computations for the ray and the edge BC when considering each triangle, ensuring that any numerical inaccuracy is at least consistent between the two triangles.)
For non-convex meshes, give the edges and vertices some width. That is, place a small sphere at each vertex in the mesh, and place a thin cylinder along each edge of the mesh. Intersect the ray with these spheres and cylinders as well as with the triangles. These additional geometric figures stop the ray passing through edges and vertices of the mesh.
Let me strongly recommend the book Real-Time Collision Detection by Christer Ericson. There's a discussion of this exact problem on pages 446–448, and an explanation of the scalar triple product approach to intersecting a ray with a triangle on pages 184–188.
It sounds like you ain't including testing if it's ON the edge (you're writing "Inside triangle edges"). Try changing code to "less than or equal" (inside, or overlapping).
I find it somewhat unlikely that your ray would fall exactly between the triangles in a way that the floating point precision would take effect. Are you absolutely positive that this is indeed the problem?
At any rate, a possible solution is instead of shooting just one ray to shoot three that are very close to each other. If one falls exactly in between that atleast one of the other two is guaranteed to fall on a triangle.
This will atleast allow you to test if the problem is really the floating point error or something more likely.
#Statement: I am indeed already using a "greater than or equal to" comparison in my code, thank you for the suggestion. +1
My current solution is to add a small nudge amount to the edge test. Basically when each triangle is tested, its edges are pushed out by a very small amount to counteract the error in floating point. Sort of like testing if the result of a floating point calculation is less than 0.01 rather than testing for equality with zero.
Is this a reasonable solution?
If you are doing distance measurements, watch out for square roots. They have a nasty habit of throwing away half of your precision. If you stack a few of these calculations up, you can get in big trouble fast. Here is a distance function I have used.
double Distance(double x0, double y0, double x1, double y1)
{
double a, b, dx, dy;
dx = abs(x1 - x0);
dy = abs(y1 - y0);
a = max(dx, dy));
if (a == 0)
return 0;
b = min(dx, dy);
return a * sqrt( 1 + (b*b) / (a*a) );
}
Since the last operation isn't a square root, you don't lose the precision any more.
I discovered this in a project I was working on. After studying it and figuring out what it did I tracked down the programmer who I thought was responsible to congratulate him, but he had no idea what I was talking about.

Resources