Indefinite Integral in R - r

I am looking to calculate the indefinite integral of an equation.
I have data from an accelerometer feed into R through a visual C program, and from there it was simple enough to come up with an equation to represent the acceleration curve. That is all well in good, however i need to calculate the impact velocity as well. From my understanding from the good ol' highschool days, the indefinite integral of my acceleration curve will yield the the equation for the velocity.
I know it is easy enough to perform numerical integration with the integrate() function, is there anything which is comparable for an indefinite integral?

library(Ryacas)
x <- Sym("x")
Integrate(sin(x), x)
gives
expression(-cos(x))
An alternative way:
yacas("Integrate(x)Sin(x)")
You can find the function reference here

If the NA's you mention are informative in the sense of indicating no acceleration input then they should be replace by zeros. Let's assume you have the data in acc.vec and the device recorded at a rate of rec_per_sec:
acc.vec[is.na(ac.vec)] <- 0
vel.vec <- cumsum(acc.vec)/recs_per_sec
I do not think constructing a best fit curve is going to improve your accuracy in this instance. To plot velocity versus time:
plot(1:length(acc.vec)/recs_per_sec, vel.vec,
xlab="Seconds", ylab="Integrated Acceleration = Velocity")

As Ben said, try the Ryacas package for calculating the antiderivative of a function. But you probably should ask yourself whether you really want to generate a continuous function which only approximates your data in the first place (fitting errors). I'd stick with numerical integration of your actual data. Keep in mind the uncertainty in each data point, of course.

Related

I want to draw a curve and generate a polynomial that closely fits it. How would I go about this?

I have an arbitrary curve (defined by a set of points) and I would like to generate a polynomial that fits that curve to an arbitrary precision. What is the best way to tackle this problem, or is there already a library or online service that performs this task?
Thanks!
If your "arbitrary curve" is described by a set of points (x_i,y_i) where each x_i is unique, and if you mean by "fits" the calculation of the best least-squares polynomial approximation of degree N, you can simply obtain the coefficients b of the polynomial using
b = polyfit(X,Y,N)
where X is the vector of x_i values, Y is the vector of Y_i values. In this way you can increase N until you obtain the accuracy you require. Of course you can achieve zero approximation error by calculating the interpolating polynomial. However, data fitting often requires some thought beforehand - you need to give thought to what you want the approximation to achieve. There are a variety of mathematical ways of assessing approximation error (by using different norms), the choice of which will depend on your requirements of the resulting approximation. There are also many potential pitfalls (such as overfitting) that you may come across and blindly attempting to fit curves may result in an approximation that is theoritically sound but utterly useless to you in practical terms. I would suggest doing a little research on approximation theory if the above method does not meet your requirements, as has been suggested in the comments on your question.

High order PDEs

I'm trying to solve a 6th-order nonlinear PDE (1D) with fixed boundary values (extended Fisher-Kolmogorov - EFK). After failing with FTCS, next attempt is MoL (either central in space or FEM) using e.g. LSODES.
How can this be implemented? Using Python/C + OpenMP so far, but need some pointers
to do this efficiently.
EFK with additional 6th order term:
u_t = d u_6x - g u_4x + u_xx + u-u^3
where d, g are real coefficients.
u(x,0) = exp(-x^2/16),
ux = 0 on boundary
domain is [0,300] and dx << 1 since i'm looking for pattern formations (subject to the values
of d, g)
I hope this is sufficient information.
All PDE solutions like this will ultimately end up being expressed using linear algebra in your program, so the trick is to figure out how to get the PDE into that form before you start coding.
Finite element methods usually begin with a weighted residual method. Non-linear equations will require a linear approximation and iterative methods like Newton-Raphson. I would recommend that you start there.
Yours is a transient solution, so you'll have to do time stepping. You can either use an explicit method and live with the small time steps that stability limits will demand or an implicit method, which will force you to do a matrix inversion at each step.
I'd do a Fourier analysis first of the linear piece to get an idea of the stability requirements.
The only term in that equation that makes it non-linear is the last one: -u^3. Have you tried starting by leaving that term off and solving the linear equation that remains?
UPDATE: Some additional thoughts prompted by comments:
I understand how important the u^3 term is. Diffusion is a 2nd order derivative w.r.t. space, so I wouldn't be so certain that a 6th order equation will follow suit. My experience with PDEs comes from branches of physics that don't have 6th order equations, so I honestly don't know what the solution might look like. I'd solve the linear problem first to get a feel for it.
As for stability and explicit methods, it's dogma that the stability limits placed on time step size makes them likely to fail, but the probability isn't 1.0. I think map reduce and cloud computing might make an explicit solution more viable than it was even 10-20 years ago. Explicit dynamics have become a mainstream way to solve difficult statics problems, because they don't require a matrix inversion.

Filtering methods of the complex oscilliations

If I have a system of a springs, not one, but for example 3 degree of freedom system of the springs connected in some with each other. I can make a system of differential equations for but it is impossible to solve it in a general way. The question is, are there any papers or methods for filtering such a complex oscilliations, in order to get rid of the oscilliations and get a real signal as much as possible? For example if I connect 3 springs in some way, and push them to start the vibrations, or put some weight on them, and then take the vibrations from each spring, are there any filtering methods to make it easy to determine the weight (in case if some mass is put above) of each mass? I am interested in filtering complex spring like systems.
Three springs, six degrees of freedom? This is a trivial solution using finite element methods and numerical integration. It's a system of six coupled ODEs. You can apply any form of numerical integration, such as 5th order Runge-Kutta.
I'd recommend doing an eigenvalue analysis of the system first to find out something about its frequency characteristics and normal modes. I'd also do an FFT of the dynamic forces you apply to the system. You don't mention any damping, so if you happen to excite your system at a natural frequency that's close to a resonance you might have some interesting behavior.
If the dynamic equation has this general form (sorry, I don't have LaTeX here to make it look nice):
Ma + Kx = F
where M is the mass matrix (diagonal), a is the acceleration (2nd derivative of displacements w.r.t. time), K is the stiffness matrix, and F is the forcing function.
If you're saying you know the response, you'll have to pre-multiply by the transpose of the response function and try to solve for M. It's diagonal, so you have a shot at it.
Are you connecting the springs in such a way that the behavior of the system is approximately linear? (e.g. at least as close to linear as are musical instrument springs/strings?) Is this behavior consistant over time? (e.g. the springs don't melt or break.) If so, LTI (linear time invariant) systems theory might be applicable. Given enough measurements versus the numbers of degrees of freedom in the LTI system, one might be able to estimate a pole-zero plot of the system response, and go from there. Or something like a linear predictor might be useful.
Actually it is possible to solve the resulting system of differential equations as long as you know the masses, etc.
The standard approach is to use a Laplace Transform. In particular you start with a set of linear differential equations. Add variables until you have a set of first order linear differential equations. (So if you have y'' in your equation, you'd add the equation z = y' and replace y'' with z'.) Rewrite this in the form:
v' = Av + w
where v is a vector of variable, A is a matrix, and w is a scalar vector. (An example of something that winds up in w is gravity.)
Now apply a Laplace transform to get
s L(v) - v(0) = AL(v) + s w
Solve it to get
L(v) = inv(A - I s)(s w + v(0))
where inv inverts a matrix and I is the identity matrix. Apply the inverse Laplace transform (if you read up on Laplace transforms you can find tables of inverse of common types of functions - getting a complete list of the functions you actually encounter shouldn't be that hard), and you have your solution. (Be warned, these computations quickly get very complex.)
Now you have the ability to take a particular setup and solve for the future behavior. You also have the ability to (if you do things really carefully) figure out how the model responds to a small perturbation in parameters. But your problem is that you don't know the parameters to use. However you do have the ability to measure the positions in the system at repeated times.
If you put this together, what you can do is this. Measure your position at a number of points. First estimate all of the initial values of the parameters, and then all of the values a second later. You can adjust your parameters (using Newton's method) to come close enough to the values a second later. Take the measurements from 5 seconds later and use that initial estimate as your starting point to refine your calculations for what is happening 5 seconds later. Repeat with longer intervals to get all of your answers.
Writing and debugging this should take you some time. :-) I would strongly recommend investigating how much of this Mathematica knows how to do for you already...

Calculus, How can you find an equation from a series of numbers?

I'm analyzing financial data and would like to find the inflection points of a line. I know I can do this using derivatives, but first I need an equation. Is there a way to generate an equation based off of a series of numbers. I would need to do this programmaticly.
Spline interpolation is probably more useful for you than polynomial interpolation: if you fit a polynomial, it must inevitably head off to +/- infinity outside your data range.
You will also want a method which allows a slightly loose fit: financial data is often a bit noisy which can result in very weird curves if you try to fit it exactly.
There are established procedures for turning a set of existing data points into a polynomial; this is called Polynomial Interpolation. This article in Wikipedia: http://en.wikipedia.org/wiki/Polynomial_interpolation
explains it mathematically. You can probably Google for algorithms easily enough.
Given enough points, your polynomial tracks the original, unknown function reasonably well, so the polynomial's inflection points should roughly coincide with the peaks and troughs of your data.
On the other hand, we all know there's not really a function behind financial data. So if I were you I'd scan along those points and find every point that has a smaller value to either side of it, and declare that a high; and vice versa for lows. Force-fitting this data into a fictitious function isn't going to make it any more useful.
Update: Tom Smith advises that spline interpolation is to be preferred to polynomial interpolation for this kind of thing, and Wikipedia bears him out. Or rather, it's bullish on his answer.
What you are thinking is analytical calculus ... when having discrete data (e.g. points), you have to do it numerically. Now, a line usually doesn't have inflection points, so I guess you're thinking of a curve. You can either interpolate some kind of it through the points, then calculate the first derivative (also numerically, but for a larger number of points), or you can just calculate the first derivation from the points you have (which will be better depends on how many points you actually have).
But really, this is just theory since we don't know the nature of data, or the language or anything.
For more on the subject search: numerical analysis on wiki, and go from there.
I think curve fitting might help you in this case. Here is a discussion which might be handy.
cheers

How can I estimate the logarithmic form of data points using R?

I have data points that represent a logarithmic function.
Is there an approach where I can just estimate the function that describes this data using R?
Thanks.
I assume that you mean that you have vectors y and x and you try do fit a function y(x)=Alog(x).
First of all, fitting log is a bad idea, because it doesn't behave well. Luckily we have x(y)=exp(y/A), so we can fit an exponential function which is much more convenient. We can do it using nonlinear least squares:
nls(x~exp(y/A),start=list(A=1.),algorithm="port")
where start is an initial guess for A. This approach is a numerical optimization, so it may fail.
The more stable way is to transform it to a linear function, log(x(y))=y/A and fit a straight line using lm:
lm(log(x)~y)
If I understand right you want to estimate a function given some (x,y) values of it. If yes check the following links.
Read about this:
http://en.wikipedia.org/wiki/Spline_%28mathematics%29
http://en.wikipedia.org/wiki/Polynomial_interpolation
http://en.wikipedia.org/wiki/Newton_polynomial
http://en.wikipedia.org/wiki/Lagrange_polynomial
Googled it:
http://www.stat.wisc.edu/~xie/smooth_spline_tutorial.html
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/smooth.spline.html
http://www.image.ucar.edu/GSP/Software/Fields/Help/splint.html
I never used R so I am not sure if that works or not, but if you have Matlab i can explain you more.

Resources