is there an easy way to go through a list?
lets say i wanted to access the 5th data on the list not knowing it was a B
["A","A","A","A","B","A","A","A","A"]
is there a way i can do it without having to sort through the list?
I do not know Miranda that well, but I expect the functions skip and take are available.
you can address the 5th element by making a function out of skip and take. When skip and take are not available, it is easy to create them yourself.
skip: skips the y number of elements in a list, when y is greater than the number of items in the list, it will return an empty list
take: takes the first y number of elements in a list, when y is greater than the number of items in the list, the full list will be returned.
skip y [] = []
skip 0 xs = xs
skip y (x:xs) = skip xs (y-1)
take y [] = []
take 0 xs = []
take y (x:xs) = x : take (y-1) xs
elementAt x xs = take 1 (skip x xs)
Lists are inductive datatypes. This means that functions defined over lists - for instance, accessing the nth element - are defined by recursion. The data structure you are looking for appears to be an array, which allows constant time lookup. The easiest way to find the element at an index in a list is directly:
lookup :: Int -> [a] -> Maybe [a]
lookup n [] = Nothing
lookup 0 (x:xs) = Just x
lookup n (x:xs) = lookup (n - 1) xs
Another way to do this would be to use the ! operator. Let's say you have a program with defined data in the list, such as:
plist = [A,A,A,A,B,A,A,A,A]
then executing plist!4 will give you the 5th element of that list. (4 being the 5th unit if you include 0,1,2,3,4)
So plist!4 returns B.
Lists are not arrays.
You can only access elements beginning from first. Think of lists as streams (like a song playing in radio). Lists may be of infinite length (as radio never stops).
Most programmers uses "syntactic" sugar, which hides the nature of lists behind an easier syntax.
Miranda automatically loads a default library named stdenv.m, which you can study.
Now, let's think about your problem:
You want to ignore ("drop") all elements before the 5th and then get the first element from the rest of the ramaining list.
This is expressed in Miranda as:
nth :: num -> [*] -> *
nth n = hd . drop (n-1)
This is a function with explicit type declaration to see, that function works with every list (elements are of wildcard type *).
Sample:
plist :: [[char]]
plist = ["A","A","A","A","B","A","A","A","A"]
result :: [char]
result = nth 5 plist
If you want to code your functions with error handling, you need techniques to catch that there is no 5th element in your list.
As seen above, one technique is "Maybe". Another is continuations.
A bad technique is to check the length of list first, because this will crash with infinite lists.
Related
Using only recursion (ie. no loops of any sort), given a list of elements, how can I call a function each time for every element of the list using that element as an argument each time in OCaml? Fold and map would not work because although they are applying a function to each element, it returns a list of whatever function I called on each element, which is not what I want.
To better illustrate what I'm essentially trying to do in OCaml, here's the idea of what I want in Ruby code:
arr.each {|x| some_function x}
but I must do this using only recursion and no iter functions
The correct recursive function is described as:
if the list is empty, do nothing;
else, process the first element and then the tail of the list.
The corresponding code is:
let rec do_all f lst =
match lst with
| [] -> ()
| x :: xs -> f x; do_all f xs
A fairly general template for a recursive function would be this:
let rec f x =
if x is trival to handle then
handle x
else
let (part, rest) = division of x into smaller parts in
let part_result = handle_part part in
let recursive_result = f rest in
combine part_result recursive_result
Since you don't need a result, you can skip a lot of this.
Which parts of this template seem most difficult to do for your problem?
Update
(As #EduardoLeĆ³n points out, when working with lists you can test for a trivial list and break down the list into smaller parts using pattern matching. Pattern matching is cool.)
Update 2
My question is sincere. Which part are you having trouble with? Otherwise we don't know what to suggest.
As follow up to yesterday's question Erlang: choosing unique items from a list, using recursion
In Erlang, say I wanted choose all unique items from a given list, e.g.
List = [foo, bar, buzz, foo].
and I had used your code examples resulting in
NewList = [bar, buzz].
How would I further manipulate NewList in Erlang?
For example, say I not only wanted to choose all unique items from List, but also count the total number of characters of all resulting items from NewList?
In functional programming we have patterns that occur so frequently they deserve their own names and support functions. Two of the most widely used ones are map and fold (sometimes reduce). These two form basic building blocks for list manipulation, often obviating the need to write dedicated recursive functions.
Map
The map function iterates over a list in order, generating a new list where each element is the result of applying a function to the corresponding element in the original list. Here's how a typical map might be implemented:
map(Fun, [H|T]) -> % recursive case
[Fun(H)|map(Fun, T)];
map(_Fun, []) -> % base case
[].
This is a perfect introductory example to recursive functions; roughly speaking, the function clauses are either recursive cases (result in a call to iself with a smaller problem instance) or base cases (no recursive calls made).
So how do you use map? Notice that the first argument, Fun, is supposed to be a function. In Erlang, it's possible to declare anonymous functions (sometimes called lambdas) inline. For example, to square each number in a list, generating a list of squares:
map(fun(X) -> X*X end, [1,2,3]). % => [1,4,9]
This is an example of Higher-order programming.
Note that map is part of the Erlang standard library as lists:map/2.
Fold
Whereas map creates a 1:1 element mapping between one list and another, the purpose of fold is to apply some function to each element of a list while accumulating a single result, such as a sum. The right fold (it helps to think of it as "going to the right") might look like so:
foldr(Fun, Acc, [H|T]) -> % recursive case
foldr(Fun, Fun(H, Acc), T);
foldr(_Fun, Acc, []) -> % base case
Acc.
Using this function, we can sum the elements of a list:
foldr(fun(X, Sum) -> Sum + X, 0, [1,2,3,4,5]). %% => 15
Note that foldr and foldl are both part of the Erlang standard library, in the lists module.
While it may not be immediately obvious, a very large class of common list-manipulation problems can be solved using map and fold alone.
Thinking recursively
Writing recursive algorithms might seem daunting at first, but as you get used to it, it turns out to be quite natural. When encountering a problem, you should identify two things:
How can I decompose the problem into smaller instances? In order for recursion to be useful, the recursive call must take a smaller problem as its argument, or the function will never terminate.
What's the base case, i.e. the termination criterion?
As for 1), consider the problem of counting the elements of a list. How could this possibly be decomposed into smaller subproblems? Well, think of it this way: Given a non-empty list whose first element (head) is X and whose remainder (tail) is Y, its length is 1 + the length of Y. Since Y is smaller than the list [X|Y], we've successfully reduced the problem.
Continuing the list example, when do we stop? Well, eventually, the tail will be empty. We fall back to the base case, which is the definition that the length of the empty list is zero. You'll find that writing function clauses for the various cases is very much like writing definitions for a dictionary:
%% Definition:
%% The length of a list whose head is H and whose tail is T is
%% 1 + the length of T.
length([H|T]) ->
1 + length(T);
%% Definition: The length of the empty list ([]) is zero.
length([]) ->
0.
You could use a fold to recurse over the resulting list. For simplicity I turned your atoms into strings (you could do this with list_to_atom/1):
1> NewList = ["bar", "buzz"].
["bar","buzz"]
2> L = lists:foldl(fun (W, Acc) -> [{W, length(W)}|Acc] end, [], NewList).
[{"buzz",4},{"bar",3}]
This returns a proplist you can access like so:
3> proplists:get_value("buzz", L).
4
If you want to build the recursion yourself for didactic purposes instead of using lists:
count_char_in_list([], Count) ->
Count;
count_char_in_list([Head | Tail], Count) ->
count_char_in_list(Tail, Count + length(Head)). % a string is just a list of numbers
And then:
1> test:count_char_in_list(["bar", "buzz"], 0).
7
I am building some equations in F#, and when working on my polynomial class I found some odd behavior using List.mapi
Basically, each polynomial has an array, so 3*x^2 + 5*x + 6 would be [|6, 5, 3|] in the array, so, when adding polynomials, if one array is longer than the other, then I just need to append the extra elements to the result, and that is where I ran into a problem.
Later I want to generalize it to not always use a float, but that will be after I get more working.
So, the problem is that I expected List.mapi to return a List not individual elements, but, in order to put the lists together I had to put [] around my use of mapi, and I am curious why that is the case.
This is more complicated than I expected, I thought I should be able to just tell it to make a new List starting at a certain index, but I can't find any function for that.
type Polynomial() =
let mutable coefficients:float [] = Array.empty
member self.Coefficients with get() = coefficients
static member (+) (v1:Polynomial, v2:Polynomial) =
let ret = List.map2(fun c p -> c + p) (List.ofArray v1.Coefficients) (List.ofArray v2.Coefficients)
let a = List.mapi(fun i x -> x)
match v1.Coefficients.Length - v2.Coefficients.Length with
| x when x < 0 ->
ret :: [((List.ofArray v1.Coefficients) |> a)]
| x when x > 0 ->
ret :: [((List.ofArray v2.Coefficients) |> a)]
| _ -> [ret]
I think that a straightforward implementation using lists and recursion would be simpler in this case. An alternative implementation of the Polynomial class might look roughly like this:
// The type is immutable and takes initial list as constructor argument
type Polynomial(coeffs:float list) =
// Local recursive function implementing the addition using lists
let rec add l1 l2 =
match l1, l2 with
| x::xs, y::ys -> (x+y) :: (add xs ys)
| rest, [] | [], rest -> rest
member self.Coefficients = coeffs
static member (+) (v1:Polynomial, v2:Polynomial) =
// Add lists using local function
let newList = add v1.Coefficients v2.Coefficients
// Wrap result into new polynomial
Polynomial(newList)
It is worth noting that you don't really need mutable field in the class, since the + operator creates and returns a new instance of the type, so the type is fully immutable (as you'd usually want in F#).
The nice thing in the add function is that after processing all elements that are available in both lists, you can simply return the tail of the non-empty list as the rest.
If you wanted to implement the same functionality using arrays, then it may be better to use a simple for loop (since arrays are, in principle, imperative, the usual imperative patterns are usually the best option for dealing with them). However, I don't think there is any particular reason for preferring arrays (maybe performance, but that would have to be evaluated later during the development).
As Pavel points out, :: operator appends a single element to the front of a list (see the add function above, which demonstrates that). You could write what you wanted using # which concatenates lists, or using Array.concat (which concatenates a sequence of arrays).
An implementation using higher-order functions and arrays is also possible - the best version I can come up with would look like this:
let add (a1:_[]) (a2:_[]) =
// Add parts where both arrays have elements
let l = min a1.Length a2.Length
let both = Array.map2 (+) a1.[0 .. l-1] a2.[0 .. l-1]
// Take the rest of the longer array
let rest =
if a1.Length > a2.Length
then a1.[l .. a1.Length - 1]
else a2.[l .. a2.Length - 1]
// Concatenate them
Array.concat [ both; rest ]
add [| 6; 5; 3 |] [| 7 |]
This uses slices (e.g. a.[0 .. l]) which give you a part of an array - you can use these to take the parts where both arrays have elements and the remaining part of the longer array.
I think you're misunderstanding what operator :: does. It's not used to concatenate two lists. It's used to prepend a single element to the list. Consequently, it's type is:
'a -> 'a list -> 'a list
In your case, you're giving ret as a first argument, and ret is itself a float list. Consequently, it expects the second argument to be of type float list list - hence why you need to add an extra [] to the second argument to make it to compile - and that will also be the result type of your operator +, which is probably not what you want.
You can use List.concat to concatenate two (or more) lists, but that is inefficient. In your example, I don't see the point of using lists at all - all this converting back & forth is going to be costly. For arrays, you can use Array.append, which is better.
By the way, it's not clear what is the purpose of mapi in your code at all. It's exactly the same as map, except for the index argument, but you're not using it, and your mapping is the identity function, so it's effectively a no-op. What's it about?
Could somebody explain what an "improper list" is?
Note: Thanks to all ! All you guys rock!
I think #Vijay's answer is the best one so far and I just intend to Erlangify it.
Pairs (cons cells) in Erlang are written as [Head|Tail] and nil is written as []. There is no restriction as to what the head and tail are but if you use the tail to chain more cons cells you get a list. If the final tail is [] then you get a proper list. There is special syntactic support for lists in that the proper list
[1|[2|[3|[]]]]
is written as
[1,2,3]
and the improper list
[1|[2|[3|4]]]
is written as
[1,2,3|4]
so you can see the difference. Matching against proper/improper lists is correspondingly easy. So a length function len for proper lists:
len([_|T]) -> 1 + len(T);
len([]) -> 0.
where we explicitly match for the terminating []. If given an improper list this will generate an error. While the function last_tail which returns the last tail of a list can handle improper lists as well:
last_tail([_|T]) -> last_tail(T);
last_tail(Tail) -> Tail. %Will match any tail
Note that building a list, or matching against it, as you normally do with [Head|Tail] does not check if the tail is list so there is no problem in handling improper lists. There is seldom a need for improper lists, though you can do cool things with them.
I think it's easier to explain this using Scheme.
A list is a chain of pairs that end with an empty list. In other words, a list ends with a pair whose cdr is ()
(a . (b . (c . (d . (e . ())))))
;; same as
(a b c d e)
A chain of pairs that doesn't end in the empty list is called an improper list. Note that an improper list is not a list. The list and dotted notations can be combined to represent improper lists, as the following equivalent notations show:
(a b c . d)
(a . (b . (c . d)))
An example of a usual mistake that leads to the construction of an improper list is:
scheme> (cons 1 (cons 2 3))
(1 2 . 3)
Notice the dot in (1 2 . 3)---that's like the dot in (2 . 3), saying that the cdr of a pair points to 3, not another pair or '(). That is, it's an improper list, not just a list of pairs. It doesn't fit the recursive definition of a list, because when we get to the second pair, its cdr isn't a list--it's an integer.
Scheme printed out the first part of the list as though it were a normal cdr-linked list, but when it got to the end, it couldn't do that, so it used "dot notation."
You generally shouldn't need to worry about dot notation, because you should use normal lists, not improper list. But if you see an unexpected dot when Scheme prints out a data structure, it's a good guess that you used cons and gave it a non-list as its second argument--something besides another pair or ().
Scheme provides a handy procedure that creates proper lists, called list. list can take any number of arguments, and constructs a proper list with those elements in that order. You don't have to remember to supply the empty list---list automatically terminates the list that way.
Scheme>(list 1 2 3 4)
(1 2 3 4)
Courtesy: An Introduction to Scheme
The definition of a list in Erlang is given in the manual - specifically Section 2.10
In Erlang the only thing you really need to know about improper lists is how to avoid them, and the way to do that is very simple - it is all down to the first 'thing' that you are going to build your list on. The following all create proper lists:
A = [].
B = [term()].
C = [term(), term(), term()].
In all these cases the syntax ensures that there is a hidden 'empty' tail which matches to '[]' sort of at the end....
So from them the following operations all produce a proper list:
X = [term() | A].
Y = [term() | B].
Z = [term() | C].
They are all operations which add a new head to a proper list.
What makes is useful is that you can feed each of X, Y or Z into a function like:
func([], Acc) -> Acc;
func([H | T], Acc) -> NewAcc = do_something(H),
func(T, [NewAcc | Acc]).
And they will rip through the list and terminate on the top clause when the hidden empty list at the tail is all that is left.
The problem comes when your base list has been improperly made, like so:
D = [term1() | term2()]. % term2() is any term except a list
This list doesn't have the hidden empty list as the terminal tail, it has a term...
From here on downwards is mince as Robert Virding pointed out in the comments
So how do you write a terminal clause for it?
What makes it infuriating is that there is no way to see if a list is improper by inspecting it... print the damn thing out it looks good... So you end up creating an improper base list, doing some stuff on it, passing it around, and then suddenly kabloowie you have a crash miles from where the error is and you pull your hair and scream and shout...
But you should be using the dialyzer to sniff these little beasts out for you.
Apologies
Following Robert's comment I tried printing out an improper list and, lo and behold, it is obvious:
(arrian#localhost)5>A = [1, 2, 3, 4].
[1,2,3,4]
(arrian#localhost)5> B = [1, 2, 3 | 4].
[1,2,3|4]
(arrian#localhost)6> io:format("A is ~p~nB is ~p~n", [A, B]).
A is [1,2,3,4]
B is [1,2,3|4]
I had spent some time hunting an improper list once and had convinced myself it was invsible, well Ah ken noo!
To understand what an improper list is, you must first understand the definition of a proper list.
Specifically, the "neat discovery" of lists is that you can represent a list using only forms with a fixed number of elements, viz:
;; a list is either
;; - empty, or
;; - (cons v l), where v is a value and l is a list.
This "data definition" (using the terms of How To Design Programs) has all kinds of
nice properties. One of the nicest is that if we define the behavior or meaning of a function on each "branch" of the data definition, we're guaranteed not to miss a case. More significantly, structures like this generally lead to nice clean recursive solutions.
The classic "length" example:
(define (length l)
(cond [(empty? l) 0]
[else (+ 1 (length (rest l))]))
Of course, everything's prettier in Haskell:
length [] = 0
length (f:r) = 1 + length r
So, what does this have to do with improper lists?
Well, an improper list uses this data definition, instead:
;; an improper list is either
;; - a value, or
;; - (cons v l), where v is a value and l is an improper list
The problem is that this definition leads to ambiguity. In particular, the first and second cases overlap. Suppose I define "length" for an improper list thusly:
(define (length l)
(cond [(cons? l) (+ 1 (length (rest l)))]
[else 1]))
The problem is that I've destroyed the nice property that if I take two values and put them into an improper list with (cons a b), the result has length two. To see why, suppose I consider the values (cons 3 4) and (cons 4 5). The result is (cons (cons 3 4) (cons 4 5)), which may be interpreted either as the improper list containing (cons 3 4) and (cons 4 5), or as the improper list containing (cons 3 4), 4, and 5.
In a language with a more restrictive type system (e.g. Haskell), the notion of an "improper list" doesn't make quite as much sense; you could interpret it as a datatype whose base case has two things in it, which is probably not what you want, either.
I think possibly it refers to a "dotted pair" in LISP, e.g. a list whose final cons cell has an atom, rather than a reference to another cons cell or NIL, in the cdr.
EDIT
Wikipedia suggests that a circular list also counts as improper. See
http://en.wikipedia.org/wiki/Lisp_(programming_language)
and search for 'improper' and check the footnotes.
I would say the implication of an improper list is that a recursive treatment of the list will not match the typical termination condition.
For example, say you call the following sum, in Erlang, on an improper list:
sum([H|T]) -> H + sum(T);
sum([]) -> 0.
Then it will raise an exception since the last tail is not the empty list, but an atom.
In Common Lisp improper lists are defined as:
dotted lists that have a non-NIL terminating 'atom'.
Example
(a b c d . f)
or
circular lists
Example
#1=(1 2 3 . #1#)
A list is made up of cells, each cell consisting of two pointers. First one pointing to the data element, second one to the next cell, or nil at the end of the list.
If the second one does not point to a cell (or nil), the list is improper. Functional languages will most probably allow you to construct cells, so you should be able to generate improper lists.
In Erlang (and probably in other FP languages as well) you can save some memory by storing your 2-tuples as improper lists:
2> erts_debug:flat_size({1,2}).
3
3> erts_debug:flat_size([1|2]).
2
In Erlang a proper list is one where [H|T].
H is the head of the list and T is the rest of the list as another list.
An improper list does not conform to this definition.
In erlang, a proper list is a singly linked list. An improper list is a singly linked list with the last node not being a real list node.
A proper list
[1, 2, 3] is like
An improper list
[1, 2 | 3] is like
From page 90 of Erlang Programming by Cesarini and Thomson, there is an example that has no detailed discussion. I'm quite the newbie to functional programming and recursive thinking, so I'm not familiar in solving problems this way.
"For example, the following function merges two lists (of the same length) by interleaving
their values: "
merge(Xs,Ys) -> lists:reverse(mergeL(Xs,Ys,[])).
mergeL([X|Xs],Ys,Zs) -> mergeR(Xs,Ys,[X|Zs]);
mergeL([],[],Zs) -> Zs.
mergeR(Xs,[Y|Ys],Zs) -> mergeL(Xs,Ys,[Y|Zs]);
mergeR([],[],Zs) -> Zs.
How does this work? Thanks!
step through it
merge([1,2],[3,4])
reverse(mergeL([1,2],[3,4],[]))
reverse(mergeR([2],[3,4],[1]))
reverse(mergeL([2],[4],[3,1]))
reverse(mergeR([], [4], [2,3,1]))
reverse(mergeL([], [], [4,2,3,1]))
reverse([4,2,3,1])
[1,3,2,4]
It's always good to work these functions by hand on a piece of paper with a small input where you're trying to figure it. You'll quickly see how it works.
This function is called first:
merge(Xs,Ys) -> lists:reverse(mergeL(Xs,Ys,[])).
The empty list [] passed to mergeL is the accumulator - this is where the answer will come from. Note that the first function calls mergeL - the left merge.
Let us pretend that this function is called as so:
merge([1, 2, 3], [a, b, c])
Two lists of the same length. This first function then calls mergeL:
mergeL([X|Xs],Ys,Zs) -> mergeR(Xs,Ys,[X|Zs]);
mergeL([],[],Zs) -> Zs.
There are 2 clauses in left merge. The call to mergeL with arguments will match these clauses in top down order.
The second of these clauses has three parameters - the first two of these are empty lists []. However the first time mergeL is called these two lists aren't empty they are the lists Xs and Ys so the first clause matches.
Lets break out the matches. This is the call to mergeL:
mergeL([1, 2, 3], [a, b, c], [])
and it matches the first clause in the following fashion:
X = 1
Xs = [2, 3]
Ys = [a, b, c]
Zs = []
This is because of the special form of the list:
[X | Xs]
This means match X to the head of the list (an individual item) and make Xs the tail of the list (a list).
We then build up the new function call. We can add the value X to the start of the list Zs the same way we pattern matched it out so we get the first mergeR call:
mergeR([2, 3], [a, b, c], [1])
The final argument is a one-item list caused by adding an item at the head of an empty list.
This this zips through until the end.
Actually the final clause of mergeL is redundant. By definition this function will exhaust in the final clause of mergeR (but I will leave that as an exercise for the reader).
What the example does is define a few states that the recursion will go through. There are 3 'functions' that are defined:
merge, mergeL and mergeR.
The lists to merge are Xs and Ys, whereas the Zs are the result of the merge.
The merge will start with calling 'merge' and supplying two lists. The first step is to call mergeL with the two lists to merge, and an empty resultset.
[X|Xs] takes the first element of the list (very much like array_shift would). This element is added to the head of the resultset ([X|Zs] does this). This resultset (containing one element now) is then passed to the next call, mergeR. mergeR does the same thing, only it takes an element from the second list. This behaviour will continue as long as the lists fed to mergeL or mergeR are not empty.
When mergeL or mergeR is called with two empty lists ([]) and a resultset (Zs), it will return the resultset (and not do another run, thus stopping the recursion).
Summary:
The start of the recursion is the first line, which defines 'merge'. This start will set the whole thing in motion by calling the first mergeL.
The body of the recursion is lines 2 and 4, which define the behaviour or mergeL and mergeR, which both call each other.
The stop of the recursion is defined by lines 3 and 5, which basicly tell the whole thing what to do when there are no more elements in the array.
Hope this helps!
I always look for those functions that will terminate the recursion first, in this case:
mergeL([],[],Zs) -> Zs.
and
mergeR([],[],Zs) -> Zs.
both of those will basically finish the "merging" when the first two parameters are empty lists.
So then I look at the first call of the function:
merge(Xs,Ys) -> lists:reverse(mergeL(Xs,Ys,[])).
Ignoring the reverse for a second, you will see that the last parameter is an empty list. So I'd expect the various mergeL and mergeR functions to move the elements of that array into the final parameter - and when they are all moved the function will basically terminate (although finally calling the reverse function of course)
And that is exactly what the remaining functions do:
mergeL([X|Xs],Ys,Zs) -> mergeR(Xs,Ys,[X|Zs]);
takes the first element of X and puts it into the Z array, and
mergeR(Xs,[Y|Ys],Zs) -> mergeL(Xs,Ys,[Y|Zs]);
takes the first element of Y and puts it into the Z array. The calling of the mergeR from mergeL and vice versa is doing the interleave part.
What's interesting to see (and easy to fix) is that the arrays X and Y must be of the same length or you'll end up calling mergeL or mergeR with an empty array in X or Y - and that won't match either [ X | Xs] or [ Y | Ys].
And the reason for the reverse is simply around the relative efficiency of [ X | Zs] vs [ Zs | X]. The former is much more efficient.