Dependency management in R - r

Does R have a dependency management tool to facilitate project-specific dependencies? I'm looking for something akin to Java's maven, Ruby's bundler, Python's virtualenv, Node's npm, etc.
I'm aware of the "Depends" clause in the DESCRIPTION file, as well as the R_LIBS facility, but these don't seem to work in concert to provide a solution to some very common workflows.
I'd essentially like to be able to check out a project and run a single command to build and test the project. The command should install any required packages into a project-specific library without affecting the global R installation. E.g.:
my_project/.Rlibs/*

Unfortunately, Depends: within the DESCRIPTION: file is all you get for the following reasons:
R itself is reasonably cross-platform, but that means we need this to work across platforms and OSs
Encoding Depends: beyond R packages requires encoding the Depends in a portable manner across operating systems---good luck encoding even something simple such as 'a PNG graphics library' in a way that can be resolved unambiguously across systems
Windows does not have a package manager
AFAIK OS X does not have a package manager that mixes what Apple ships and what other Open Source projects provide
Even among Linux distributions, you do not get consistency: just take RStudio as an example which comes in two packages (which all provide their dependencies!) for RedHat/Fedora and Debian/Ubuntu
This is a hard problem.

The packrat package is precisely meant to achieve the following:
install any required packages into a project-specific library without affecting the global R installation
It allows installing different versions of the same packages in different project-local package libraries.
I am adding this answer even though this question is 5 years old, because this solution apparently didn't exist yet at the time the question was asked (as far as I can tell, packrat first appeared on CRAN in 2014).
Update (November 2019)
The new R package renv replaced packrat.

As a stop-gap, I've written a new rbundler package. It installs project dependencies into a project-specific subdirectory (e.g. <PROJECT>/.Rbundle), allowing the user to avoid using global libraries.
rbundler on Github
rbundler on CRAN
We've been using rbundler at Opower for a few months now and have seen a huge improvement in developer workflow, testability, and maintainability of internal packages. Combined with our internal package repository, we have been able to stabilize development of a dozen or so packages for use in production applications.
A common workflow:
Check out a project from github
cd into the project directory
Fire up R
From the R console:
library(rbundler)
bundle('.')
All dependencies will be installed into ./.Rbundle, and an .Renviron file will be created with the following contents:
R_LIBS_USER='.Rbundle'
Any R operations run from within this project directory will adhere to the project-speciic library and package dependencies. Note that, while this method uses the package DESCRIPTION to define dependencies, it needn't have an actual package structure. Thus, rbundler becomes a general tool for managing an R project, whether it be a simple script or a full-blown package.

You could use the following workflow:
1) create a script file, which contains everything you want to setup and store it in your projectd directory as e.g. projectInit.R
2) source this script from your .Rprofile (or any other file executed by R at startup) with a try statement
try(source("./projectInit.R"), silent=TRUE)
This will guarantee that even when no projectInit.R is found, R starts without error message
3) if you start R in your project directory, the projectInit.R file will be sourced if present in the directory and you are ready to go
This is from a Linux perspective, but should work in the same way under windows and Mac as well.

Related

Determining which R packages, and dependencies, use DLL files

I work in a corporate environment that uses Microsoft Windows Defender Application Control (WDAC) to provide security. This blocks unsigned EXE and DLL files from being installed on devices. R packages which use DLLs fail to install. The workaround to this is provide an R installation from an approved central source which also copies over a default set of packages, such as tidyverse, data.table etc. to the R library. Users can continue to install additional packages which are built with native R, but run into issues if they try to install, build from source, or update packages with DLL files in.
Is there a way to check whether a package uses DLL files in advance of installation?
Output something like:-
check_dll(foo)
result: "This package and its dependencies have no DLL files. You can install this package"
check_dll(bar)
result: "bar does not have any DLL files, but one dependency, OOF, uses DLL files.
You have already have a version of OOF installed so it should be safe to install bar"
check_dll(foobar)
result: "foobar has a DLL. Do not attempt to install foobar".
check_dll(RABOOF)
result: "RABOOF does not have any DLL files, but one of it's dependencies,
foobar, does have a DLL file. Do not attempt to install RABOOF".
tools::package_dependencies() will list the package dependencies, but nothing else.
Downloading the zip file from CRAN and inspecting it for a libs/x64 folder with contents will work, but seems a heavyweight approach. Theoretically if a package has lots of dependencies this could result in downloading a lot of files unnecessarily.
Look for the NeedsCompilation field in the DESCRIPTION file. If it is "yes", there will be a DLL. If it is "no", there probably won't be. (If it is not there, the package wasn't built properly, so all bets are off.)
The test is not perfect, because packages can put DLLs into the inst folder to get them installed without compiling them, though CRAN isn't supposed to allow that: "Source packages may not contain any form of binary executable code." But packages like pak (mentioned in the comments) may be allowed to get around this rule, e.g. by downloading binaries, so the test isn't perfect. You will also need to put together a blacklist of packages that will fail your WDAC tests even though they claim not to need compilation, containing pak and others like it.
The NeedsCompilation field is included as a column of the result of available.packages(), so it is very easy to access without trying to install the package.
I have accepted the answer from user2554330 as the best solution. It makes use of the normal set of commands used for package management; and the matrix generated by available.packages() can be passed to tools::package_dependencies(), removing the need for multiple internet queries.
For completeness I am documenting another possible solution. A script could query the unofficial CRAN Github mirror https://docs.r-hub.io/#cranatgh and look for a /src directory in each package project.

When should a Julia project have a Manifest AND Project file?

I am trying to understand when a Julia Project needs a Manifest AND Project file vs when it just needs a project file. What are the different situations that warrant each case? I am trying to make sure my own project is set up correctly(It has both files currently).
The Manifest.toml is a snapshot of the exact state of a Julia environment. It specifies all packages that are installed in the environment with version numbers - not just the ones that have been ] added but the entire dependency graph!
The Project.toml on the other hand just lists the direct dependencies, that is the packages that have been ] added explicitly, potentially with version bounds specified in a [compat] section.
By checking in both files (specifically the Manifest.toml), you make your project reproducible. Another user only has to ] instantiate and will have the exact same environment that you had when working on the project. This is great for application projects which might consist of multiple Julia scripts which are not intended for use by other Julia projects.
If you only check in the Project.toml you are specifying the dependency information more loosely and will leave room for Julias resolver to find appropriate package versions for all dependencies. This is what you should do when working on a Julia package since people will likely want to install your package next to other packages and overly restricting versions of dependencies will make your package incompatible.
Hence, I'd summarize as follows:
Application / "Project" -> Project.toml + Manifest.toml
Julia Package -> Only Project.toml
For more on applications and packages checkout the glossary of the Pkg.jl documentation.
(Note that there are exceptional cases (unregistered dependencies, for example) where you might have to check in a Manifest.toml for a Julia package.)
In Julia 1.2 and above, you can have nested Project.toml files to express test-specific dependencies. Since you may have a Project.toml in your test folder, which you would need to activate, I would also suggest including a Manifest.toml, as a record of under which environment you for-sure know your package's test are passing.
In other words, I believe in the package/application dichotomy mentioned in crstnbr's answer, and the recommendation to include Manifest.toml with applications, and I would further say that the tests within a package are like an application. The same goes for performance benchmarks that you might have in your package.
I haven't practiced this myself, but it seems like it would be nice to have the CI tests run under both the "frozen" version of the test/Manifest.toml, and the latest versions that the package manager can find of each package. If the tests start failing, it would be easier to tease apart whether the breakage is caused by a change in a dependency.

Virtual environment in R?

I've found several posts about best practice, reproducibility and workflow in R, for example:
How to increase longer term reproducibility of research (particularly using R and Sweave)
Complete substantive examples of reproducible research using R
One of the major preoccupations is ensuring portability of code, in the sense that moving it to a new machine (possibly running a different OS) is relatively straightforward and gives the same results.
Coming from a Python background, I'm used to the concept of a virtual environment. When coupled with a simple list of required packages, this goes some way to ensuring that the installed packages and libraries are available on any machine without too much fuss. Sure, it's no guarantee - different OSes have their own foibles and peculiarities - but it gets you 95% of the way there.
Does such a thing exist within R? Even if it's not as sophisticated. For example simply maintaining a plain text list of required packages and a script that will install any that are missing?
I'm about to start using R in earnest for the first time, probably in conjunction with Sweave, and would ideally like to start in the best way possible! Thanks for your thoughts.
I'm going to use the comment posted by #cboettig in order to resolve this question.
Packrat
Packrat is a dependency management system for R. Gives you three important advantages (all of them focused in your portability needs)
Isolated : Installing a new or updated package for one project won’t break your other projects, and vice versa. That’s because packrat gives each project its own private package library.
Portable: Easily transport your projects from one computer to another, even across different platforms. Packrat makes it easy to install the packages your project depends on.
Reproducible: Packrat records the exact package versions you depend on, and ensures those exact versions are the ones that get installed wherever you go.
What's next?
Walkthrough guide: http://rstudio.github.io/packrat/walkthrough.html
Most common commands: http://rstudio.github.io/packrat/commands.html
Using Packrat with RStudio: http://rstudio.github.io/packrat/rstudio.html
Limitations and caveats: http://rstudio.github.io/packrat/limitations.html
Update: Packrat has been soft-deprecated and is now superseded by renv, so you might want to check this package instead.
The Anaconda package manager conda supports creating R environments.
conda create -n r-environment r-essentials r-base
conda activate r-environment
I have had a great experience using conda to maintain different Python installations, both user specific and several versions for the same user. I have tested R with conda and the jupyter-notebook and it works great. At least for my needs, which includes RNA-sequencing analyses using the DEseq2 and related packages, as well as data.table and dplyr. There are many bioconductor packages available in conda via bioconda and according to the comments on this SO question, it seems like install.packages() might work as well.
It looks like there is another option from RStudio devs, renv. It's available on CRAN and supersedes Packrat.
In short, you use renv::init() to initialize your project library, and use renv::snapshot() / renv::restore() to save and load the state of your library.
I prefer this option to conda r-enviroments because here everything is stored in the file renv.lock, which can be committed to a Git repo and distributed to the team.
To add to this:
Note:
1. Have Anaconda installed already
2. Assumed your working directory is "C:"
To create desired environment -> "r_environment_name"
C:\>conda create -n "r_environment_name" r-essentials r-base
To see available environments
C:\>conda info --envs
.
..
...
To activate environment
C:\>conda activate "r_environment_name"
(r_environment_name) C:\>
Launch Jupyter Notebook and let the party begins
(r_environment_name) C:\> jupyter notebook
For a similar "requirements.txt", perhaps this link will help -> Is there something like requirements.txt for R?
Check out roveR, the R container management solution. For details, see https://www.slideshare.net/DavidKunFF/ownr-technical-introduction, in particular slide 12.
To install roveR, execute the following command in R:
install.packages("rover", repos = c("https://lair.functionalfinances.com/repos/shared", "https://lair.functionalfinances.com/repos/cran"))
To make full use of the power of roveR (including installing specific versions of packages for reproducibility), you will need access to a laiR - for CRAN, you can use our laiR instance at https://lair.ownr.io, for uploading your own packages and sharing them with your organization you will need a laiR license. You can contact us on the email address in the presentation linked above.

Generating dependency graph of Autotools packages

I have a software system having 30+ Open Source packages, most of them using GNU Autotools suite.
Are there tools to automatically generate package-to-package dependency graph? I.e. I'd like to see something like gst-plugins-good -> gst-plugins-base -> gstreamer -> glib.
I don't think so, but you could probably whip something together with this knowledge:
Scan the file named either configure.ac or configure.in in the package's root directory.
Look for a string of the form PKG_CHECK_MODULES([...],[...]...)
The second argument of that macro consists of package requirements of the form package or package >= version separated by whitespace.
The requirement string might not be the same as the package tarball name; a tarball that contains package.pc or package.pc.in provides the package package.
This only works for dependencies that use pkg-config. Some don't and you'll need to keep track of those dependencies by hand.
Probably not, because this is a hard problem. If there were only one way to build a package, it might not be too bad, but in general this isn't the case. You have the --enable-foo and --with-foo options that you can pass into configure. Those are sometimes package dependent also, requiring more packages. Most Linux distros (I think but am not completely sure) maintain these sort of dependency lists for yum or zypper or apt or whatever the package manager is by hand, and only one layer deep, leaving it up to the package manager to traverse the graph. The packages for the distro are only built one way. It's not unusual for these lists to be broken, also.

R: combining mutiple library locations with most up-to-date packages

Question: How do I move all of the most up-to-date R packages into one simple location that R (and everything else) will use from now and forever for my packages?
I have been playing around with R on Ubuntu 10.04 using variously RGedit, RCmdr, R shell, and RStudio. Meanwhile, I have installed packages, updated packages, and re-updated packages via apt, synaptic, install.packages(), etc... which apparently means these packages get placed everywhere, and (with the occasional sudo tossed in) with different permissions.
Currently I have different versions of different (and repeated) packages in:
/home/me/R/i486-pc-linux-gnu-library/2.10
/home/me/R/i486-pc-linux-gnu-library/2.14
/home/me/R/i486-pc-linux-gnu-library/
/usr/local/lib/R/site-library
/usr/lib/R/site-library
/usr/lib/R/library
First - I'm a single user, on a single machine - I don't want multiple library locations, I just want it to work.
Second - I am on an extremely slow connection, and can't keep just downloading packages repeatedly.
So - is there an easy way to merge all these library locations into one simple location? Can I just copy the folders over?
How do I set it in concrete that this is and always will be where anything R related looks for and updates packages?
This is maddening.
Thanks for your help.
Yes, it should almost work to just copy the folders over. But pre-2.14 packages WITHOUT a NAMESPACE file probably won't work in R 2.14 where all packages must have a namespace...
And you'd want to manually ensure you only copy the latest version of each package if you have multiple versions...
If you type .libPaths(), it will tell you where R looks for packages. The first in the list is where new packages are typically installed. I suspect that .libPaths() might return different things from RStudio vs. Rcmd etc.
After piecing together various bits of info here goes: A complete moron's guide to the R packages directory organization:
NB1 - this is my experience with Ubuntu - your mileage may vary
NB2 - I'm a single user on a single machine, and I like things simple.
Ubuntu puts anything installed via apt, or synaptic in:
/usr/lib/R/site-library
/usr/lib/R/library
directories. The default vanilla R install will try install packages here:
/usr/local/lib/R/site-library
Since these are system directories the user does not have write privileges to, depending on what method you are interacting with R you might be prompted with a friendly - "Hey buddy - we can't write there, you want us to put your packages in your home directory?" which seems innocent and reasonable enough... assuming you never change your GUI, or your working environment. If you do, the new GUI / environment might not be looking in the directory where the packages were placed, so won't find them. (Most interfaces have a way for you to point where your personal library of packages is, but who wants to muck about in config files?)
What seems to be the best practice for me (and feel free to correct me if I'm wrong) with a default install setup on Ubuntu, is to do any package management from a basic R shell as sudo: > sudo R and from there do your install.packages() voodoo. This seems to put packages in the usr/local/lib/R/site-library directory.
At the same time, update.packages() will update the files in /usr/lib/R/site-library and usr/lib/R/library directories, as well as usr/local/lib/R/site-library
(As for usr/lib/R/ division, it looks like /library/ has the core packages, while /site-library/ holds anything added, assuming they were installed by apt...)
Any packages previously installed and in the wrong place can be moved to the /usr/local/lib/R/site-library directory (assuming you are sudoing it) just by moving the directories (thanks #Tommy), but as usr/lib/R/ is controlled by apt - best not add or subtract anything from there...
Whew. Anyway - simple enough, and in simple language. Thanks everyone for the help.

Resources