Ratingsystem that considers time and activity - math

I'm looking for a rating system that does not only weight the rating on number of votes, but also time and "activity"
To clarify a bit:
Consider a site where users produce something, like a picture.
There is another type of user that can vote on other peoples pictures (on a scale 1-5), but one picture will only recieve one vote.
The rating a productive user gets is derived from the rating his/hers pictures have recieved, but should be affected by:
How long ago the picture was made
How productive the user has been
A user who's getting 3's and 4's and still making 10 pictures per week should get higher rating than a person that have gotten 5's but only made 1 pic per week and stopped a few month ago.
I've been looking at Bayesian estimate, but that only considers the total amount of votes independent of time or productivity.
My math fu is pretty strong, so all I need is a nudge in right direction and I can probably modify something to fit my needs.

There are many things you could do here.
The obvious approach is to have your measure of the scores decay with time in your internal calculations, for example using an exponential decay with a time constant T. For example, use value = initial_score*exp(-t/T) where t is the time that's passed since picture was submitted. So if T is one month, after one month this score will contribute 1/e, or about 0.37 that it originally did. (You can also do this differentially, btw, with value -= (dt/T)*value, if that's more convenient.)
There's probably a way to work this with a Bayesian approach, but it seems forced to me. Bayesian approaches are generally about predicting something new based on a (usually large) set of prior data, which doesn't directly match your model.

Related

Using OptaPlanner to create school time tables with some tricky constraints

I'm going to use OptaPlanner to lay out time tables for a school.
We're laying out the time tables for a full semester and every week could, if necessary, be slightly different.
There are some tricky constraints to take into account:
1. Weekly schedules
The lectures in one subject should be spread out somewhat evenly over the semester.
We can't for example put 20 math lectures the first week and "be done" with math for this semester.
In fact, it's nice to have some weekly predictibility
"Science year 2 have biology on Tuesday mornings"
This constraint must not be carved in stone however. Some weeks have to include work experience sessions, PE excursions, etc, in which case they must deviate from other weeks.
Problem
If I create a constraint that say, gives -1soft for not scheduling a subject the same time as the previous week, then OptaPlanner will waste a lot of time before it "accidentally" finds a good placement for a lecture, and even if it manages to converge so that each subject is scheduled the same time every week, it will never ever manage to move the entire series of lectures by moving them one by one. (That local optimum will never be escaped.)
2. Cross student group subjects
There's a large correlation between student groups and courses; For example, all students in Science year 2 mostly reads the same courses: Chemistry for Science year 2, Biology for Sience year 2, ...
The exception being language courses.
Each student can choose to study French, German or Spanish. So Spanish for year 2 is studied by a cross section of Science year 2 students, and Social Studies year 2 students, etc.
From the experience of previous (manual) scheduling, the optimal solution it's almost guaranteed to schedule all language classes in the same time slots. (If French is scheduled at 9 on Thursdays, then German and Spanish can be scheduled "for free" at 9 on Thursdays.)
Problem
There are many time slots in one semester, and the chances that OptaPlanner will discover a solution where all language lectures are scheduled at the same time by randomly moving individual lectures is small.
Also, similarly to problem 1: If OptaPlanner does manage to schedule French, German and Spanish at the same time, these "blocks" will never be moved elsewhere, since they are individual lectures, and the chances that all lectures will "randomly" move to the same new slot is tiny. Even with a large Tabu history length and so on.
My thoughts so far
As for problem 1 ("Weekly predictability") I'm thinking of doing the following:
In the construction phase for the full-semester-schedule I create a reduced version of the problem, that schedules (a reduced set of lectures) into a single "template week". Let's call it a "single-week-pre-scheduling". This template week is then repeated in the construction of the initial solution of the full semester which is the "real" planning entity.
The local search steps will then only focus on inserting PE excursions etc, and adjusting the schedule for the affected weeks.
As for problem 2 I'm thinking that the solution to problem 1 might solve this. In a 1 week schedule, it seems reasonable to assume that OptaPlaner will realize that language classes should be scheduled at the same time.
Regarding the local optimum settled by the single-week-pre-scheduling ("Biology is scheduled on Tuesday mornings"), I imagine that I could create a custom move operation that "bundles" these lectures into a single move. I have no idea how simple this is. I would really like to keep the code as simple as possible.
Questions
Are my thoughts reasonable? Is there a more clever way to approach these problems? If I have to create custom moves anyways, perhaps I don't need to construct a template-week?
Is there a way to assign hints or weights to moves? If so, I could perhaps generate moves with slightly larger weight that adjusts scheduling to adhere to predictable weeks and language scheduled in the same time slots.
A question well asked!
With regards to your first problem, I suggest you take a look at OptaWeb Employee Rostering and the concept of rotations. A rotation is "how things generally are" and then Planner has the freedom to diverge from the rotation at a penalty. Once you understand the concept of the rotation from the UI, take a look at the planning entity Shift and how the rotation is implemented with the use of employee and rotationEmployee variables. Note that only the employee is an actual #PlanningVariable, with the rotationEmployee being fixed.
That means that you have to define your rotations manually, therefore doing the work of the solver yourself. However, since this operation is only done once a semester I assume, maybe the solution could be to have a simpler solver generate a reasonable general rotation first, and then a second solver would take it and figure out the specific necessary adjustments?
With regards to your second problem, rotations could help there too. But I'm thinking maybe some move filtering and custom moves to help OptaPlanner to either move all language classes, or none? Writing efficient custom moves is not easy, and filtering stock moves is cumbersome. So I would only do it when the potential of other options is exhausted. If you end up doing this, look for MoveIteratorFactory.
My answer is a little vague, as we do not get into the specifics of the domain model, but for the purposes of designing the overall solution, it hopefully gives enough clues.

Choosing a similarity metric for user-scores of television shows

I have a database of user ratings of various television shows on a 1-10 scale. I've been trying to find a good way of determining how similar two user score-lists are two one another for shared shows.
It feels like the most obvious way to do this is just to take the absolute value of the difference. And then sum/average that for all shared shows. But I was reading this does not take into account how users will rate things on different scales. I saw some people saying cosine similarity is better for this sort of thing. Unfortunately, I've run into a lot of cases where that metric doesn't really make sense.
Example:
overall average of user1 = 8.1
overall average of user2 = 5.8
scores for shared shows only:
S1 = [8,8,10,10,10,10,6,8,10,5,6,10]
S2 = [5,6,7,8,9,9,4,5,9,1,2,8]
Obviously, these two people rated the shows they watched pretty differently. When I use the average difference it says they are not very similar (2.3 where 0 is the same). When I use something like the cosine similarity it says they are extremely similar (0.97 where 1 is the same).
Is there a metric that would be better suited for this kind of thing? My ultimate goal is to recommend users shows from other users that have similar tastes to them.

Single-stat percentage change from initial value in graphite/grafana?

Is there a way to simply show the change of a value over the selected time period? All I'm interested in is the offset of the last value compared to the initial one. The values can vary above and below these over the time period, it's not really relevant (and would be exceptions in my case).
For an initial value of 100 and an final value of 105, I'd expect a single stat box displaying 5%.
I have the feeling I'm missing something obvious obvious, but can't find a method to display this deceptively simple task.
Edit:
I'm trying to create a scripted Grafana dashboard that will automatically populate disk consumption growth for all our various volumes. The data is already in Graphite, but for purposes of capacity management and finance planning (which projects/departments gets billed) it would be helpful for managers to have a simple and coarse overview of which volumes grow outside expected parameters.
The idea was to create a list of single-stat values with color coding that could easily be scrolled through to find abnormalities. Disk usage would obviously never be negative, but volatility in usage between the start and end of the time period would be lost in this view. That's not a big concern for us as this is all shared storage and such usage is expected to a certain degree.
The perfect solution would be to have the calculations change dynamically based on the selected time period.
I'm thinking that this is not really possible (at least not easily) to do with just Graphite and Grafana and have started looking for alternative methods. We might have to implement a different reporting system for this purpose.
Edit 2
I've tried implementing the suggested solution from Leonid, and it works after a fashion. The calculations seems somewhat off from what I expected though.
My test dashboard looks like follows:
If I were to calculate the change manually, I'd end up with roughly 24% change between the start (7,23) and end (8.96) value. Graphite calculates this to 19%. It's probably a reason for the discrepancy, probably something to do with it being a time-series and not discreet values?
As a sidenote: The example is only 30 days, even though the most interesting number would be a year. We don't have quite a year of data in Graphite yet and having a 30 day view is also interesting. It seems I have to implement several dashboards with static times.
You certainly can do that for some fixed period. For example following query take absolute difference betweent current metric value and value that metric has one minute ago (i.e. initial value) and then calculate it's percentage of inital value.
asPercent(absolute(diffSeries(my_metric, timeShift(my_metric, '1m'))), timeShift(my_metric, '1m'))
I believe you can't do that for time period selected in Grafana picker.
But is that really what you need? It's seems strange because as you said value can change in both directions. Maybe standard deviation would be more suitable for you? It's available in Graphite as stdev function.

Recommendation systems - converting transaction counts to star ratings

I'm doing some exploratory work on recommendation systems and have been reading about collaborative filtering techniques involving user-based, item-based, and SVD algorithms. I am also trying out R's recommenderlab package.
One apparent assumption in the literature is that the user data has labelled items based on a rating scale, e.g. between 1 and 5 stars. I'm looking at problems where the user data does not have ratings but rather just transactions. For example, if I want to recommend restaurants to a user, the only data I have is how often he has visited other restaurants.
How can I convert these "transaction" counts into ratings that can be used by recommendation algorithms that expect a fixed-scale rating? One approach I thought of is simple binning:
0 stars = 0-1 visits
1 star = 2-3 visits
...
5 stars = 10+ visits
However, that doesn't seem like it would work well. For example, if someone visited a restaurant only once, he may still really love it.
Any help would be appreciated.
I would try different approaches. As you said, only visited once may indicate that the user still loves the restaurant but you don't know for sure. Your goal is not to optimize for one single user rather for all users. So for this, you can split your data into training and test data. Train on the training data with different scales and test on the test data.
The different scales may be
a binary scale (0:never visited, 1: visited). This is mostly used in online shops (bought or not). Would support your assuption with the one time visit.
your presented scale or other ranges for the 5 stars. You can also use more than 5 stars. I would potentially not group 0-1 visits.
The approach with the best accuracy should be chosen.
Here's an idea: restaurants the user has visited zero or one times tell you nothing about what they like. Restaurants they have visited many times tell you lots. Why not just look for restaurants similar to those the customer most regularly frequents? In this way, you're using positive information (what they like) but none of the negative since you don't have access to it anyway.
If you absolutely had to infer some continuous measure, I think it would only be sensible to look at the propensity for another visit given past behaviour. This would start with the prior probability of choosing that restaurant (background frequency, or just uniform over restaurants) with a likelihood term related to the number of visits to that restaurant. In this way the more a user visits a restaurant the more likely they are to visit again.

Determining the popularity of a video with ratings and views

I am about to embark on a new project - a video website. Users will be able to register, and vote on videos by clicking "like" or "dislike", or something to that effect. In any event, it will be a 2-option voting system, not a 5-star system.
Every X number of days, I will be generating a "chart" of the most popular videos. So my question is: how should I determine the popularity of a given video?
If I went the route of tallying up the videos with the most views, this could have the effect of exceptionally bad videos making it to the of the charts (just because they're so bad).
If I go the route of a scoring system based on the amount of "like" and "dislike" votes (eg. 100 like votes, and 50 dislike votes equals a score of 2), videos with few views could appear on the top of the charts.
So, what I need to do is a combination of the two. Barring, of course, spammy views and votes.
What's your guys' thoughts on the subject?
Edit: the following tags were removed: [mysql] [postgresql], to make room for other, more representative tags; the SQL technology used in the intended implementation does not seem to bear much on the considerations regarding the rating model per-se.
You seem to be missing the point that likes and dislikes in movies are anything but objective even within the context of a relatively homogeneous group of "voters". Think how the term "Chix Flix" or the success story called "NetFlix", illustrate this subjectivity...
Yet, if you persist in implementing the model you suggest, there are several hidden variables and system dynamics that need to be acknowledged and possibly taken into account in the rating's formula.
the existence of a third, implicit, value of the vote: "No vote"
i.e. when someone views the movie page and yet doesn't vote, either way.
The problem of dealing with this extra value is its ambiguity: do people not vote because they didn't see the movie or because they neither truly like nor disliked it? Very likely a bit of both, therefore we can/should use the count of the "Page views without vote" in the formula, to boost (somewhat) the rating of movies that do not generate a strong (positive or negative) sentiment (lest the "polarizing" movies will appear more notorious or popular)
the bandwagon effect
Past a certain threshold, and particularly if the rating and/or vote counts is visible before the page view, the rating and vote counts can influence the way people decide to vote (either way) or even decide to abstain from voting. The implication is that the total vote and/or view counts do not relate linearly to the effective rating.
"quality" vs. "notoriety"
Vote ratios in general (eg "likes" / "total" or "likes"/"dislikes" etc.) are indicative of the "quality" of a movie (note the quotes around quality...), whereby the number of votes (and of views) is indicative of the notoriety ("name recognition" etc.) of a movie.
statistical representativity
Very small vote and/or view counts are to be handled carefully because they introduce much volatility in the rating. Phrased otherwise, small samples make for not so statically representative ratings.
trends (the time variable)
At the risk of complicating the model, consider keeping [some] record of when votes/view happened, to allow identifying "hot" (and "cooling") movies in the collection. This info may inform the rating logic, but also may be used to direct the users towards currently hot items. BTW, hence feeding the bandwagon effect mentioned :-( but also, increasing the voting sample size :-).
All these considerations suggest caution in implementing this rating system. It also hints at the likely need of including statistics about the complete set of movies into the rating formula for an individual movie. In other words, do not rate a given movie solely on the basis of the its own vote/view counts but also on say the average vote counts a move receives, the maximum view a movie page gets etc. In fact, an iterative process, whereby movies are [roughly] ranked at first and then the ranking is recalculated by using the statistics of groups of movies similarly rated may provide a better system (provided the formulas are "fair" and somehow converge)
A standard trick is to start with a neutral baseline: say 10 likes and 10 dislikes that gives a score of 1. The first few votes don't change the ratio too much, but as votes accumulate, the baseline is overwhelmed. The exact choice of the baseline values will influence the rating of a new movie (the two values don't have to be equal), and how many votes are needed to change the rating substantially.

Resources