Finding percentage? - math

Im making a calculator and its already finished and released but now i want to update it and give it an percentage button and i want it to work.. But i have damn no idea how i will count the percentage of 2 variables..
i did try the % operator but that seemed to be something totaly else.. Didn't realy workthe way i wanted..
Anyone know how i would do this?
And let say how would the user work on a calculator? When you type on a calculator i want to count 20 out of 100% percent.. How would this work in an application.?

The language you are using would be helpful, but 99% of the time the % operator is the modulus operator which finds the remainder of a division of the 2 values.
http://en.wikipedia.org/wiki/Modulo_operation
I think you might be making this harder than it has to be. How would you figure out a percentage on paper? Now write an algorithm that follows the steps you just completed. I'll leave that as an exercise for the poster.

I'd think you want to divide the two values and then multiply by 100 to get the percent. For example, let's take 5 out of 10 as an example:
100*5/10 = 500/10 = 50 which is 50% or half of the value.

% is for modulo, which is the remainder after division. For example
5 % 3 == 2
You want / unless your language is really esoteric.

If you want x% of y, just multiple y by (x/100).
Also, the other answers are spot on about % being the modulo operator, which returns the remainder of a division operation.

The % operator is actually mod (i.e. remainder after division). You could always try:
int result = var * 0.2 (20% of your variable)
Let me know if this answers your question.

Related

Is there a more efficient way of nesting logarithms?

This is a continuation of the two questions posted here,
Declaring a functional recursive sequence in Matlab
Nesting a specific recursion in Pari-GP
To make a long story short, I've constructed a family of functions which solve the tetration functional equation. I've proven these things are holomorphic. And now it's time to make the graphs, or at least, somewhat passable code to evaluate these things. I've managed to get to about 13 significant digits in my precision, but if I try to get more, I encounter a specific error. That error is really nothing more than an overflow error. But it's a peculiar overflow error; Pari-GP doesn't seem to like nesting the logarithm.
My particular mathematical function is approximated by taking something large (think of the order e^e^e^e^e^e^e) to produce something small (of the order e^(-n)). The math inherently requires samples of large values to produce these small values. And strangely, as we get closer to numerically approximating (at about 13 significant digits or so), we also get closer to overflowing because we need such large values to get those 13 significant digits. I am a god awful programmer; and I'm wondering if there could be some work around I'm not seeing.
/*
This function constructs the approximate Abel function
The variable z is the main variable we care about; values of z where real(z)>3 almost surely produces overflow errors
The variable l is the multiplier of the approximate Abel function
The variable n is the depth of iteration required
n can be set to 100, but produces enough accuracy for about 15
The functional equation this satisfies is exp(beta_function(z,l,n))/(1+exp(-l*z)) = beta_function(z+1,l,n); and this program approaches the solution for n to infinity
*/
beta_function(z,l,n) =
{
my(out = 0);
for(i=0,n-1,
out = exp(out)/(exp(l*(n-i-z)) +1));
out;
}
/*
This function is the error term between the approximate Abel function and the actual Abel function
The variable z is the main variable we care about
The variable l is the multiplier
The variable n is the depth of iteration inherited from beta_function
The variable k is the new depth of iteration for this function
n can be set about 100, still; but 15 or 20 is more optimal.
Setting the variable k above 10 will usually produce overflow errors unless the complex arguments of l and z are large.
Precision of about 10 digits is acquired at k = 5 or 6 for real z, for complex z less precision is acquired. k should be set to large values for complex z and l with large imaginary arguments.
*/
tau_K(z,l,n,k)={
if(k == 1,
-log(1+exp(-l*z)),
log(1 + tau_K(z+1,l,n,k-1)/beta_function(z+1,l,n)) - log(1+exp(-l*z))
)
}
/*
This is the actual Abel function
The variable z is the main variable we care about
The variable l is the multiplier
The variable n is the depth of iteration inherited from beta_function
The variable k is the depth of iteration inherited from tau_K
The functional equation this satisfies is exp(Abl_L(z,l,n,k)) = Abl_L(z+1,l,n,k); and this function approaches that solution for n,k to infinity
*/
Abl_L(z,l,n,k) ={
beta_function(z,l,n) + tau_K(z,l,n,k);
}
This is the code for approximating the functions I've proven are holomorphic; but sadly, my code is just horrible. Here, is attached some expected output, where you can see the functional equation being satisfied for about 10 - 13 significant digits.
Abl_L(1,log(2),100,5)
%52 = 0.1520155156321416705967746811
exp(Abl_L(0,log(2),100,5))
%53 = 0.1520155156321485241351294757
Abl_L(1+I,0.3 + 0.3*I,100,14)
%59 = 0.3353395055605129001249035662 + 1.113155080425616717814647305*I
exp(Abl_L(0+I,0.3 + 0.3*I,100,14))
%61 = 0.3353395055605136611147422467 + 1.113155080425614418399986325*I
Abl_L(0.5+5*I, 0.2+3*I,100,60)
%68 = -0.2622549204469267170737985296 + 1.453935357725113433325798650*I
exp(Abl_L(-0.5+5*I, 0.2+3*I,100,60))
%69 = -0.2622549205108654273925182635 + 1.453935357685525635276573253*I
Now, you'll notice I have to change the k value for different values. When the arguments z,l are further away from the real axis, we can make k very large (and we have to to get good accuracy), but it'll still overflow eventually; typically once we've achieved about 13-15 significant digits, is when the functions will start to blow up. You'll note, that setting k =60, means we're taking 60 logarithms. This already sounds like a bad idea, lol. Mathematically though, the value Abl_L(z,l,infinity,infinity) is precisely the function I want. I know that must be odd; nested infinite for-loops sounds like nonsense, lol.
I'm wondering if anyone can think of a way to avoid these overflow errors and obtaining a higher degree of accuracy. In a perfect world, this object most definitely converges, and this code is flawless (albeit, it may be a little slow); but we'd probably need to increase the stacksize indefinitely. In theory this is perfectly fine; but in reality, it's more than impractical. Is there anyway, as a programmer, one can work around this?
The only other option I have at this point is to try and create a bruteforce algorithm to discover the Taylor series of this function; but I'm having less than no luck at doing this. The process is very unique, and trying to solve this problem using Taylor series kind of takes us back to square one. Unless, someone here can think of a fancy way of recovering Taylor series from this expression.
I'm open to all suggestions, any comments, honestly. I'm at my wits end; and I'm wondering if this is just one of those things where the only solution is to increase the stacksize indefinitely (which will absolutely work). It's not just that I'm dealing with large numbers. It's that I need larger and larger values to compute a small value. For that reason, I wonder if there's some kind of quick work around I'm not seeing. The error Pari-GP spits out is always with tau_K, so I'm wondering if this has been coded suboptimally; and that I should add something to it to reduce stacksize as it iterates. Or, if that's even possible. Again, I'm a horrible programmer. I need someone to explain this to me like I'm in kindergarten.
Any help, comments, questions for clarification, are more than welcome. I'm like a dog chasing his tail at this point; wondering why he can't take 1000 logarithms, lol.
Regards.
EDIT:
I thought I'd add in that I can produce arbitrary precision but we have to keep the argument of z way off in the left half plane. If the variables n,k = -real(z) then we can produce arbitrary accuracy by making n as large as we want. Here's some output to explain this, where I've used \p 200 and we pretty much have equality at this level (minus some digits).
Abl_L(-1000,1+I,1000,1000)
%16 = -0.29532276871494189936534470547577975723321944770194434340228137221059739121428422475938130544369331383702421911689967920679087535009910425871326862226131457477211238400580694414163545689138863426335946 + 1.5986481048938885384507658431034702033660039263036525275298731995537068062017849201570422126715147679264813047746465919488794895784667843154275008585688490133825421586142532469402244721785671947462053*I
exp(Abl_L(-1001,1+I,1000,1000))
%17 = -0.29532276871494189936534470547577975723321944770194434340228137221059739121428422475938130544369331383702421911689967920679087535009910425871326862226131457477211238400580694414163545689138863426335945 + 1.5986481048938885384507658431034702033660039263036525275298731995537068062017849201570422126715147679264813047746465919488794895784667843154275008585688490133825421586142532469402244721785671947462053*I
Abl_L(-900 + 2*I, log(2) + 3*I,900,900)
%18 = 0.20353875452777667678084511743583613390002687634123569448354843781494362200997943624836883436552749978073278597542986537166527005507457802227019178454911106220050245899257485038491446550396897420145640 - 5.0331931122239257925629364016676903584393129868620886431850253696250415005420068629776255235599535892051199267683839967636562292529054669236477082528566454129529102224074017515566663538666679347982267*I
exp(Abl_L(-901+2*I,log(2) + 3*I,900,900))
%19 = 0.20353875452777667678084511743583613390002687634123569448354843781494362200997943624836883436552749978073278597542986537166527005507457802227019178454911106220050245980468697844651953381258310669530583 - 5.0331931122239257925629364016676903584393129868620886431850253696250415005420068629776255235599535892051199267683839967636562292529054669236477082528566454129529102221938340371793896394856865112060084*I
Abl_L(-967 -200*I,12 + 5*I,600,600)
%20 = -0.27654907399026253909314469851908124578844308887705076177457491260312326399816915518145788812138543930757803667195961206089367474489771076618495231437711085298551748942104123736438439579713006923910623 - 1.6112686617153127854042520499848670075221756090591592745779176831161238110695974282839335636124974589920150876805977093815716044137123254329208112200116893459086654166069454464903158662028146092983832*I
exp(Abl_L(-968 -200*I,12 + 5*I,600,600))
%21 = -0.27654907399026253909314469851908124578844308887705076177457491260312326399816915518145788812138543930757803667195961206089367474489771076618495231437711085298551748942104123731995533634133194224880928 - 1.6112686617153127854042520499848670075221756090591592745779176831161238110695974282839335636124974589920150876805977093815716044137123254329208112200116893459086654166069454464833417170799085356582884*I
The trouble is, we can't just apply exp over and over to go forward and expect to keep the same precision. The trouble is with exp, which displays so much chaotic behaviour as you iterate it in the complex plane, that this is doomed to work.
Well, I answered my own question. #user207421 posted a comment, and I'm not sure if it meant what I thought it meant, but I think it got me to where I want. I sort of assumed that exp wouldn't inherit the precision of its argument, but apparently that's true. So all I needed was to define,
Abl_L(z,l,n,k) ={
if(real(z) <= -max(n,k),
beta_function(z,l,n) + tau_K(z,l,n,k),
exp(Abl_L(z-1,l,n,k)));
}
Everything works perfectly fine from here; of course, for what I need it for. So, I answered my own question, and it was pretty simple. I just needed an if statement.
Thanks anyway, to anyone who read this.

Finding all permutations for a given number of football games in ocaml

I have to write the function series : int -> int -> result list list, so the first int for the number of games and the second int for the points to earn.
I already thought about an empirical solution by creating all permutations and filtering the list, but I think this would be in ocaml very dirty solution with many lines of code. And I cant find another way to solve this problem.
The following types are given
type result = Win (* 3 points *)
| Draw (* 1 point *)
| Loss (* 0 points *)
so if i call
series 3 4
the solution should be:
[[Win ;Draw ;Loss]; [Win ;Loss ;Draw]; [Draw ;Win ;Loss];
[Draw ;Loss ;Win]; [Loss ;Win ;Draw]; [Loss ;Draw ;Win]]
Maybe someone can give me a hint or a code example how to start.
Consider calls of the form series n (n / 2), and consider cases where all the games were Draw or Loss. Under these restrictions the number of answers is proportional to 2^n/sqrt(n). (Guys online get this from Stirling's approximation.)
This doesn't include any series where anybody wins a game. So the actual result lists will be longer than this in general.
I conclude that the number of possible answers is gigantic, and hence that your actual cases are going to be small.
If your actual cases are small, there might be no problem with using a brute-force approach.
Contrary to your claim, brute-force code is usually quite short and easy to understand.
You can easily write a function to list all possible sequences of length n taken from Win, Lose, Draw. You can then filter them for the correct sum. Asymptotically this is probably only a little worse than the fastest algorithm, due to the near-exponential behavior described above.
A simple recursive solution would go along this way:
if there's 0 game to play and 0 point to earn, then there is exactly one (empty) solution
if there's 0 game to play and 1 or more points to earn, there is no solution.
otherwise, p points must be earned in g games: any solution for p points in g-1 game can be extended to a solution by adding a Loss in front of it. If p>=1, you can similarly add a Draw to any solution for p-1 in g-1 games, and if p>=3, there might also be possibilities starting with a Win.

Benefits of starting arrays at 0?

What's the purpose of array indices starting at 0 in most programming languages, in contrast to the ordinal way in which we refer to most things IRL (first, second, third, etc.)? What's the logic or utility behind that?
I'm completely used to it by now, but never stopped to think about the reason behind it.
Update: One benefit I read about from Googling is that for loops can have i < n if you want to go up to n.
Dijkstra lays out the reasoning in Why numbering should start at zero.
When dealing with a sequence of length N, the elements of which we wish to distinguish by subscript, the next vexing question is what subscript value to assign to its starting element...
when starting with subscript 1, the subscript range 1 ≤ i < N+1; starting with 0, however, gives the nicer range 0 ≤ i < N. So let us let our ordinals start at zero: an element's ordinal (subscript) equals the number of elements preceding it in the sequence. And the moral of the story is that we had better regard —after all those centuries!— zero as a most natural number.
When we're accessing item by index like a[i] the compiler converts it to [a+i]. So the index of first element is zero because [a+0] will give us 'a' that points to the first item in array. This is quite obviously for, say, C++ but not for more recent languages such as C#.
Dijkstra wrote a really interesting paper about this, in 1982: Why numbering should start at zero.
You may google for it, there's been a lot of discussions about it. I'd say that the fact that the offset of the first element from the beginning (which it is) is zero certainly makes sense.
Because Dijkstra said so.
In my old assembler days it was natural for the offset to start at zero.
dcl foo(9)
ldx0 0 'offset to index register 0
lda foo,x0 'get first element
adx0 1,du 'get 2nd
ldq foo,x0
When looking at it from the perspective of the hardware it makes more sense.

Big O Log problem solving

I have question that comes from a algorithms book I'm reading and I am stumped on how to solve it (it's been a long time since I've done log or exponent math). The problem is as follows:
Suppose we are comparing implementations of insertion sort and merge sort on the same
machine. For inputs of size n, insertion sort runs in 8n^2 steps, while merge sort runs in 64n log n steps. For which values of n does insertion sort beat merge sort?
Log is base 2. I've started out trying to solve for equality, but get stuck around n = 8 log n.
I would like the answer to discuss how to solve this mathematically (brute force with excel not admissible sorry ;) ). Any links to the description of log math would be very helpful in my understanding your answer as well.
Thank you in advance!
http://www.wolframalpha.com/input/?i=solve%288+log%282%2Cn%29%3Dn%2Cn%29
(edited since old link stopped working)
Your best bet is to use Newton;s method.
http://en.wikipedia.org/wiki/Newton%27s_method
One technique to solving this would be to simply grab a graphing calculator and graph both functions (see the Wolfram link in another answer). Find the intersection that interests you (in case there are multiple intersections, as there are in your example).
In any case, there isn't a simple expression to solve n = 8 log₂ n (as far as I know). It may be simpler to rephrase the question as: "Find a zero of f(n) = n - 8 log₂ n". First, find a region containing the intersection you're interested in, and keep shrinking that region. For instance, suppose you know your target n is greater than 42, but less than 44. f(42) is less than 0, and f(44) is greater than 0. Try f(43). It's less than 0, so try 43.5. It's still less than 0, so try 43.75. It's greater than 0, so try 43.625. It's greater than 0, so keep going down, and so on. This technique is called binary search.
Sorry, that's just a variation of "brute force with excel" :-)
Edit:
For the fun of it, I made a spreadsheet that solves this problem with binary search: binary‑search.xls . The binary search logic is in the second data column, and I just auto-extended that.

Do you have a better idea to simulate coin flip?

Right now i have
return 'Heads' if Math.random() < 0.5
Is there a better way to do this?
Thanks
edit: please ignore the return value and "better" means exact 50-50 probability.
there's always the dead simple
coin = rand(1);
in many scripting languages this will give you a random int between 0 and your arg, so passing 1 gives you 0 or 1 (heads or tails).
a wee homage to xkcd:
string getHeadsOrTails {
return "heads"; //chosen by fair coin toss,
//guaranteed to be random
}
Numerical Recipes in C says not to trust the built in random number generators when it matters. You could probably implement the algorithm shown in the book as the function ran1(), which it claims passes all known statistical tests of randomness (in 1992) for less than around 108 calls.
The basic idea behind the ran1() algorithm is to add a shuffle to the output of the random number generator to reduce low order serial correlations. They use the Bays-Durham shuffle from section 3.2-3.3 in The Art of Computer Programming Volume 2, but I'd guess you could use the Fisher-Yates shuffle too.
If you need more random values than that, the same document also provides a generator (ran2) that should be good for at least 1017 values (my guess based on a period of 2.3 x 1018). The also provide a function (ran3) that uses a different method to generate random numbers, should linear congruential generators give you some sort of problem.
You can use any of these functions with your < 0.5 test to be more confident that you are getting a uniform distribution.
What you have is the way I would do it. If 0.0 <= Math.random() < 1.0, as is standard, then (Math.random() < 0.5) is going to give you heads when Math.random() is between 0.0 and 0.4999..., and tails when it's between 0.5 and 0.999... That's as fair a coin flip as you can get.
Of course I'm assuming a good implementation of Math.random().
On a linux system you could read bits in from /dev/random to get "better" random data, but an almost random method like Math.Random() is going to be fine for almost every application you can think of, short of serious cryptography work.
Try differentiating between odd and even numbers. Also, return an enumeration value (or a boolean), rather than a string.
I can't comment on people's posts because I don't have the reputation, but just an FYI about the whole <= vs. < topic addressed in Bill The Lizard's comment: Because it can be effectively assumed that random is generating any number between 0-1 (which isn't technically the case due to limitations on the size of a floating point number, but is more or less true in practice) there won't be a difference in num <= .5 or num < .5 because the probability of getting any one particular number in any continuous range is 0. IE: P(X=.5) = 0 when X = a random variable between 0 and 1.
The only real answer to this question is that you cannot "guarantee" probability. If you think about it, a real coin flip is not guaranteed 50/50 probability, it depends on the coin, the person flipping it, and if the coin is dropped and rolls across the floor. ;)
The point is that it's "random enough". If you're simulating a coin flip then the code you posted is more than fine.
Try
return 'Heads' if Math.random() * 100 mod 2 = 0
I don't really know what language you are using but if the random number is dividable by two then it is heads if it is not then it is tails.

Resources