Not sure if I formulate the correct answer but basically I need to know how to calculate the average size of a stretch quad, or something like taking the 2 diagonals AC and BD how can I calculate the average of them
The blue square show its original size and the pink lines shows when its deform, I need to calculate some sort of average so I can change its color in relation to how is deform if expands change to a lighter color if contracts change to darker color, hope that makes sense
Not quite sure what the question here is.
If you're asking how to find the average diagonal length, just find the length of each diagonal, add them together and divide by two.
If you're asking how to determine the area of the resultant shape, here are several formulas for finding the area of an arbitrary quadrilateral. They are all equivalent to the formula
Area = 1/2 * |AC x BD|
Where x means the cross-product.
A quadrilateral will have a 2nd order symmetric strain tensor:
| Exx Exy |
| Exy Eyy |
Exx is the strain in the x-direction; Eyy is the strain in the y-direction; Exy is the shear strain that occurs when one of the angles that is originally 90 degrees changes its value.
If you have large strains, you'll need a Lagrangian point of a view and a Green-Lagrange large strain measure.
See Malvern's Continuum Mechanics for definitions of each term. I'd give you the formulas, but I don't have LaTeX available here.
Related
I'm trying to determine whether a set of points are uniformly distributed in a 1 x 1 x 1 cube. Each point comes with an x, y, and z coordinate that corresponds to their location in the cube.
A trivial way that I can think of is to flatten the set of points into 2 graphs and check how normally distributed both are however I do not know whether that's a correct way of doing so.
Anyone else has any idea?
I would compute point density map and then check for anomalies in it:
definitions
let assume we have N points to test. If the points are uniformly distributed then they should form "uniform grid" of mmm points:
m * m * m = N
m = N^(1/3)
To account for disturbances from uniform grid and asses statistics you need to divide your cube to grid of cubes where each cube will hold several points (so statistical properties could be computed) let assume k>=5 points per grid cube so:
cubes = m/k
create a 3D array of counters
simply we need integer counter per each grid cube so:
int map[cubes][cubes][cubes];
fill it with zeroes.
process all points p(x,y,z) and update map[][][]
Simply loop through all of your points, and compute grid cube position they belong to and update their counter by incrementing it.
map[x*(cubes-1)][y*(cubes-1)][z*(cubes-1)]++;
compute average count of the map[][][]
simple average like this will do:
avg=0;
for (xx=0;xx<cubes;xx++)
for (yy=0;yy<cubes;yy++)
for (zz=0;zz<cubes;zz++)
avg+=map[xx][yy][zz];
avg/=cubes*cubes*cubes;
now just compute abs distance to this average
d=0;
for (xx=0;xx<cubes;xx++)
for (yy=0;yy<cubes;yy++)
for (zz=0;zz<cubes;zz++)
d+=fabs(map[xx][yy][zz]-avg);
d/=cubes*cubes*cubes;
the d will hold a metric telling how far are the points from uniform density. Where 0 means uniform distribution. So just threshold it ... the d is also depending on the number of points and my intuition tells me d>=k means totally not uniform so if you want to make it more robust you can do something like this (the threshold might need tweaking):
d/=k;
if (d<0.25) uniform;
else nonuniform;
As you can see all this is O(N) time so it should be fast enough for you. If it isn't you can evaluate every 10th point by skipping points however that can be done only if the order of points is random. If not you would need to pick N/10 random points instead. The 10 might be any constant but you need to take in mind you still need enough points to process so the statistic results are representing your set so I would not go below 250 points (but that depends on what exactly you need)
Here few of my answers using density map technique:
Finding holes in 2d point sets?
Location of highest density on a sphere
I'm working on some gridded temperature data, which I have categorised into a matrix where each cell can be one of two classes - let's say 0 or 1 for simplicity. For each class I want to calculate patch statistics, taking inspiration from FRAGSTATS, which is used in landscape ecology to characterise the shape and size of habitat patches.
For my purposes, a patch is a cluster of adjacent cells of the same class. Here's an example matrix, mat:
mat <-
matrix(c(0,1,0,
1,1,1,
1,0,1), nrow = 3, ncol = 3,
byrow = TRUE)
0 1 0
1 1 1
1 0 1
All the 1s in mat form a single patch (we'll ignore the 0s), and in order to calculate various different shape metrics I need to be able to calculate the perimeter (i.e. number of outside edges).
EDIT
Sorry I apparently can't post an image because I don't have enough reputation, but you can see in the black lines of G5W's answer below that the outside borders of 1's represent the outside edges I'm referring to.
Manually I can count that the patch of 1s has 14 outside edges and I know the area (i.e. number of cells) is 6. Based on a paper by He et al. and this other question I've figured out how to calculate the number of inside edges (5 in this example), but I'm really struggling to do the same for the outside edges! I think it's something to do with how the patch shape compares to the largest integer square that has a smaller area (in this case, a 2 x 2 square), but so far my research and pondering have been to no avail.
N.B. I am aware of the package SDMTools, which can calculate various FRAGSTATS metrics. Unfortunately the metrics returned are too processed e.g. instead of just Aggregation Index, I need to know the actual numbers used to calculate it (number of observed shared edges / maximum number of shared edges).
This is my first post on here so I hope it's detailed enough! Thanks in advance :)
If you know the area and the number of inside edges, it is simple to calculate the number of outside edges. Every patch has four edges so in some way, the total number of edges is 4 * area. But that is not quite right because every inside edge is shared between two patches. So the right number of total edges is
4*area - inside
The number of outside edges is the total edges minus the inside edges, so
outside = total - inside = (4*area- inside) - inside = 4*area - 2*inside.
You can see that the area is made up of 6 squares each of which has 4 sides. The inside edges (the red ones) are shared by two adjacent squares.
I am new to this forum and not a native english speaker, so please be nice! :)
Here is the challenge I face at the moment:
I want to calculate the (approximate) relative coordinates of yet unknown points in a 3D euclidean space based on a set of given distances between 2 points.
In my first approach I want to ignore possible multiple solutions, just taking the first one by random.
e.g.:
given set of distances: (I think its creating a pyramid with a right-angled triangle as a base)
P1-P2-Distance
1-2-30
2-3-40
1-3-50
1-4-60
2-4-60
3-4-60
Step1:
Now, how do I calculate the relative coordinates for those points?
I figured that the first point goes to 0,0,0 so the second one is 30,0,0.
After that the third points can be calculated by finding the crossing of the 2 circles from points 1 and 2 with their distances to point 3 (50 and 40 respectively). How do I do that mathematically? (though I took these simple numbers for an easy representation of the situation in my mind). Besides I do not know how to get to the answer in a correct mathematical way the third point is at 30,40,0 (or 30,0,40 but i will ignore that).
But getting the fourth point is not as easy as that. I thought I have to use 3 spheres in calculate the crossing to get the point, but how do I do that?
Step2:
After I figured out how to calculate this "simple" example I want to use more unknown points... For each point there is minimum 1 given distance to another point to "link" it to the others. If the coords can not be calculated because of its degrees of freedom I want to ignore all possibilities except one I choose randomly, but with respect to the known distances.
Step3:
Now the final stage should be this: Each measured distance is a bit incorrect due to real life situation. So if there are more then 1 distances for a given pair of points the distances are averaged. But due to the imprecise distances there can be a difficulty when determining the exact (relative) location of a point. So I want to average the different possible locations to the "optimal" one.
Can you help me going through my challenge step by step?
You need to use trigonometry - specifically, the 'cosine rule'. This will give you the angles of the triangle, which lets you solve the 3rd and 4th points.
The rules states that
c^2 = a^2 + b^2 - 2abCosC
where a, b and c are the lengths of the sides, and C is the angle opposite side c.
In your case, we want the angle between 1-2 and 1-3 - the angle between the two lines crossing at (0,0,0). It's going to be 90 degrees because you have the 3-4-5 triangle, but let's prove:
50^2 = 30^2 + 40^2 - 2*30*40*CosC
CosC = 0
C = 90 degrees
This is the angle between the lines (0,0,0)-(30,0,0) and (0,0,0)- point 3; extend along that line the length of side 1-3 (which is 50) and you'll get your second point (0,50,0).
Finding your 4th point is slightly trickier. The most straightforward algorithm that I can think of is to firstly find the (x,y) component of the point, and from there the z component is straightforward using Pythagoras'.
Consider that there is a point on the (x,y,0) plane which sits directly 'below' your point 4 - call this point 5. You can now create 3 right-angled triangles 1-5-4, 2-5-4, and 3-5-4.
You know the lengths of 1-4, 2-4 and 3-4. Because these are right triangles, the ratio 1-4 : 2-4 : 3-4 is equal to 1-5 : 2-5 : 3-5. Find the point 5 using trigonometric methods - the 'sine rule' will give you the angles between 1-2 & 1-4, 2-1 and 2-4 etc.
The 'sine rule' states that (in a right triangle)
a / SinA = b / SinB = c / SinC
So for triangle 1-2-4, although you don't know lengths 1-4 and 2-4, you do know the ratio 1-4 : 2-4. Similarly you know the ratios 2-4 : 3-4 and 1-4 : 3-4 in the other triangles.
I'll leave you to solve point 4. Once you have this point, you can easily solve the z component of 4 using pythagoras' - you'll have the sides 1-4, 1-5 and the length 4-5 will be the z component.
I'll initially assume you know the distances between all pairs of points.
As you say, you can choose one point (A) as the origin, orient a second point (B) along the x-axis, and place a third point (C) along the xy-plane. You can solve for the coordinates of C as follows:
given: distances ab, ac, bc
assume
A = (0,0)
B = (ab,0)
C = (x,y) <- solve for x and y, where:
ac^2 = (A-C)^2 = (0-x)^2 + (0-y)^2 = x^2 + y^2
bc^2 = (B-C)^2 = (ab-x)^2 + (0-y)^2 = ab^2 - 2*ab*x + x^2 + y^2
-> bc^2 - ac^2 = ab^2 - 2*ab*x
-> x = (ab^2 + ac^2 - bc^2)/2*ab
-> y = +/- sqrt(ac^2 - x^2)
For this to work accurately, you will want to avoid cases where the points {A,B,C} are in a straight line, or close to it.
Solving for additional points in 3-space is similar -- you can expand the Pythagorean formula for the distance, cancel the quadratic elements, and solve the resulting linear system. However, this does not directly help you with your steps 2 and 3...
Unfortunately, I don't know a well-behaved exact solution for steps 2 and 3, either. Your overall problem will generally be both over-constrained (due to conflicting noisy distances) and under-constrained (due to missing distances).
You could try an iterative solver: start with a random placement of all your points, compare the current distances with the given ones, and use that to adjust your points in such a way as to improve the match. This is an optimization technique, so I would look up books on numerical optimization.
If you know the distance between the nodes (fixed part of system) and the distance to the tag (mobile) you can use trilateration to find the x,y postion.
I have done this using the Nanotron radio modules which have a ranging capability.
Problem: Suppose you have a collection of points in the 2D plane. I want to know if this set of points sits on a regular grid (if they are a subset of a 2D lattice). I would like some ideas on how to do this.
For now, let's say I'm only interested in whether these points form an axis-aligned rectangular grid (that the underlying lattice is rectangular, aligned with the x and y axes), and that it is a complete rectangle (the subset of the lattice has a rectangular boundary with no holes). Any solutions must be quite efficient (better than O(N^2)), since N can be hundreds of thousands or millions.
Context: I wrote a 2D vector field plot generator which works for an arbitrarily sampled vector field. In the case that the sampling is on a regular grid, there are simpler/more efficient interpolation schemes for generating the plot, and I would like to know when I can use this special case. The special case is sufficiently better that it merits doing. The program is written in C.
This might be dumb but if your points were to lie on a regular grid, then wouldn't peaks in the Fourier transform of the coordinates all be exact multiples of the grid resolution? You could do a separate Fourier transform the X and Y coordinates. If theres no holes on grid then the FT would be a delta function I think. FFT is O(nlog(n)).
p.s. I would have left this as a comment but my rep is too low..
Not quite sure if this is what you are after but for a collection of 2d points on a plane you can always fit them on a rectangular grid (down to the precision of your points anyway), the problem may be the grid they fit to may be too sparsly populated by the points to provide any benefit to your algorithm.
to find a rectangular grid that fits a set of points you essentially need to find the GCD of all the x coordinates and the GCD of all the y coordinates with the origin at xmin,ymin this should be O( n (log n)^2) I think.
How you decide if this grid is then too sparse is not clear however
If the points all come only from intersections on the grid then the hough transform of your set of points might help you. If you find that two mutually perpendicular sets of lines occur most often (meaning you find peaks at four values of theta all 90 degrees apart) and you find repeating peaks in gamma space then you have a grid. Otherwise not.
Here's a solution that works in O(ND log N), where N is the number of points and D is the number of dimensions (2 in your case).
Allocate D arrays with space for N numbers: X, Y, Z, etc. (Time: O(ND))
Iterate through your point list and add the x-coordinate to list X, the y-coordinate to list Y, etc. (Time: O(ND))
Sort each of the new lists. (Time: O(ND log N))
Count the number of unique values in each list and make sure the difference between successive unique values is the same across the whole list. (Time: O(ND))
If
the unique values in each dimension are equally spaced, and
if the product of the number of unique values of each coordinate is equal to the number of original points (length(uniq(X))*length(uniq(Y))* ... == N,
then the points are in a regular rectangular grid.
Let's say a grid is defined by an orientation Or (within 0 and 90 deg) and a resolution Res. You could compute a cost function that evaluate if a grid (Or, Res) sticks to your points. For example, you could compute the average distance of each point to its closest point of the grid.
Your problem is then to find the (Or, Res) pair that minimize the cost function. In order to narrow the search space and improve the , some a heuristic to test "good" candidate grids could be used.
This approach is the same as the one used in the Hough transform proposed by jilles. The (Or, Res) space is comparable to the Hough's gamma space.
Hi well I got a problem about scaling shapes.Well I m trying to scale two similar shapes.It is in 2d and each shape has n points .I found a statement like this from a paper I read
"The size of a shape is the root mean square distance between the shape points and
it's centroid."
So from this point if I calculate the size of both shapes S1 and S2 and lets say S1=xS2 so if I create scaling matrix like this
[x 0]
[0 x]
(i just wrote 2x2 matrix i know it should be different) and if I mulitply it with S2 are their shapes aligned? Thx
Well I think I found a solution .It is done using a scale metric instead of real scale value.
if the shape 3 points (x1,y1) (x2,y2) (x3,y3) a scale metric S is square root of sum of each points squared values like
mean x=(x1+x2+x3)/3
mean y=(y1+y2+y3)/3
S=((x1-x)^2 +(y1-y)^2+(x2-x)^2 +(y2-y)^2+(x3-x)^2 +(y3-y)^2)^1/2
and if this scale metric is calculated for both shapes there will be an equation like this S1=AS2
and if all points of shape 2 is multiplied with value of A they will have similar shapes.
It reminds me of Fant's Resampling Algorithm, smooth...
Not sure it fits your question.
If I'm understanding what you wrote, then multiplying your matrix by a shape, (say, S2) will scale Each of S2's points by a factor of x.
This says nothing about their alignment. this paper might help your understanding if you want to do it efficiently