Calling Classic ASP from C# ASP.Net - asp.net

I need to call a VBscript function on a classic asp page from some server-side c#.net code - does anyone know of a clean way to do this? Rewriting the function in .net is not an option.
I'll explain a bit more about the problem...
The client side function in question is an MD5 implementation written in VBScript & used to hash passwords. I'm redeloping the site in .Net, and want to move the password encryption across to SHA, in order to do this I need to catch the users on the first logon with the old mechanism (legacy MD5 implementation), hash their passwords using SHA & store the new hashes for future use.
The problem I'm having is that I'm not able to authenticate the users on the new .Net site using the old MD5 implementation.
I've tried the suggestions posted, but for some strange reason when I call the function from a 'foo.asp' page (which only serves to call the function) it gives me different results to the legacy site!
Going a bit crazy with this one - perhaps it's an encoding thing?
I've also tried to convert the Legacy MD5 algorithm to .Net, but to no avail.
Any help would be much appreciated.
Here is the legacy script:
<%
' Derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm,
' as set out in the memo RFC1321.
Private Const BITS_TO_A_BYTE = 8
Private Const BYTES_TO_A_WORD = 4
Private Const BITS_TO_A_WORD = 32
Private m_lOnBits(30)
Private m_l2Power(30)
m_lOnBits(0) = CLng(1)
m_lOnBits(1) = CLng(3)
m_lOnBits(2) = CLng(7)
m_lOnBits(3) = CLng(15)
m_lOnBits(4) = CLng(31)
m_lOnBits(5) = CLng(63)
m_lOnBits(6) = CLng(127)
m_lOnBits(7) = CLng(255)
m_lOnBits(8) = CLng(511)
m_lOnBits(9) = CLng(1023)
m_lOnBits(10) = CLng(2047)
m_lOnBits(11) = CLng(4095)
m_lOnBits(12) = CLng(8191)
m_lOnBits(13) = CLng(16383)
m_lOnBits(14) = CLng(32767)
m_lOnBits(15) = CLng(65535)
m_lOnBits(16) = CLng(131071)
m_lOnBits(17) = CLng(262143)
m_lOnBits(18) = CLng(524287)
m_lOnBits(19) = CLng(1048575)
m_lOnBits(20) = CLng(2097151)
m_lOnBits(21) = CLng(4194303)
m_lOnBits(22) = CLng(8388607)
m_lOnBits(23) = CLng(16777215)
m_lOnBits(24) = CLng(33554431)
m_lOnBits(25) = CLng(67108863)
m_lOnBits(26) = CLng(134217727)
m_lOnBits(27) = CLng(268435455)
m_lOnBits(28) = CLng(536870911)
m_lOnBits(29) = CLng(1073741823)
m_lOnBits(30) = CLng(2147483647)
m_l2Power(0) = CLng(1)
m_l2Power(1) = CLng(2)
m_l2Power(2) = CLng(4)
m_l2Power(3) = CLng(8)
m_l2Power(4) = CLng(16)
m_l2Power(5) = CLng(32)
m_l2Power(6) = CLng(64)
m_l2Power(7) = CLng(128)
m_l2Power(8) = CLng(256)
m_l2Power(9) = CLng(512)
m_l2Power(10) = CLng(1024)
m_l2Power(11) = CLng(2048)
m_l2Power(12) = CLng(4096)
m_l2Power(13) = CLng(8192)
m_l2Power(14) = CLng(16384)
m_l2Power(15) = CLng(32768)
m_l2Power(16) = CLng(65536)
m_l2Power(17) = CLng(131072)
m_l2Power(18) = CLng(262144)
m_l2Power(19) = CLng(524288)
m_l2Power(20) = CLng(1048576)
m_l2Power(21) = CLng(2097152)
m_l2Power(22) = CLng(4194304)
m_l2Power(23) = CLng(8388608)
m_l2Power(24) = CLng(16777216)
m_l2Power(25) = CLng(33554432)
m_l2Power(26) = CLng(67108864)
m_l2Power(27) = CLng(134217728)
m_l2Power(28) = CLng(268435456)
m_l2Power(29) = CLng(536870912)
m_l2Power(30) = CLng(1073741824)
Private Function LShift(lValue, iShiftBits)
If iShiftBits = 0 Then
LShift = lValue
Exit Function
ElseIf iShiftBits = 31 Then
If lValue And 1 Then
LShift = &H80000000
Else
LShift = 0
End If
Exit Function
ElseIf iShiftBits < 0 Or iShiftBits > 31 Then
Err.Raise 6
End If
If (lValue And m_l2Power(31 - iShiftBits)) Then
LShift = ((lValue And m_lOnBits(31 - (iShiftBits + 1))) * m_l2Power(iShiftBits)) Or &H80000000
Else
LShift = ((lValue And m_lOnBits(31 - iShiftBits)) * m_l2Power(iShiftBits))
End If
End Function
Private Function RShift(lValue, iShiftBits)
If iShiftBits = 0 Then
RShift = lValue
Exit Function
ElseIf iShiftBits = 31 Then
If lValue And &H80000000 Then
RShift = 1
Else
RShift = 0
End If
Exit Function
ElseIf iShiftBits < 0 Or iShiftBits > 31 Then
Err.Raise 6
End If
RShift = (lValue And &H7FFFFFFE) \ m_l2Power(iShiftBits)
If (lValue And &H80000000) Then
RShift = (RShift Or (&H40000000 \ m_l2Power(iShiftBits - 1)))
End If
End Function
Private Function RotateLeft(lValue, iShiftBits)
RotateLeft = LShift(lValue, iShiftBits) Or RShift(lValue, (32 - iShiftBits))
End Function
Private Function AddUnsigned(lX, lY)
Dim lX4
Dim lY4
Dim lX8
Dim lY8
Dim lResult
lX8 = lX And &H80000000
lY8 = lY And &H80000000
lX4 = lX And &H40000000
lY4 = lY And &H40000000
lResult = (lX And &H3FFFFFFF) + (lY And &H3FFFFFFF)
If lX4 And lY4 Then
lResult = lResult Xor &H80000000 Xor lX8 Xor lY8
ElseIf lX4 Or lY4 Then
If lResult And &H40000000 Then
lResult = lResult Xor &HC0000000 Xor lX8 Xor lY8
Else
lResult = lResult Xor &H40000000 Xor lX8 Xor lY8
End If
Else
lResult = lResult Xor lX8 Xor lY8
End If
AddUnsigned = lResult
End Function
Private Function F(x, y, z)
F = (x And y) Or ((Not x) And z)
End Function
Private Function G(x, y, z)
G = (x And z) Or (y And (Not z))
End Function
Private Function H(x, y, z)
H = (x Xor y Xor z)
End Function
Private Function I(x, y, z)
I = (y Xor (x Or (Not z)))
End Function
Private Sub FF(a, b, c, d, x, s, ac)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(F(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
Private Sub GG(a, b, c, d, x, s, ac)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(G(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
Private Sub HH(a, b, c, d, x, s, ac)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(H(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
Private Sub II(a, b, c, d, x, s, ac)
a = AddUnsigned(a, AddUnsigned(AddUnsigned(I(b, c, d), x), ac))
a = RotateLeft(a, s)
a = AddUnsigned(a, b)
End Sub
Private Function ConvertToWordArray(sMessage)
Dim lMessageLength
Dim lNumberOfWords
Dim lWordArray()
Dim lBytePosition
Dim lByteCount
Dim lWordCount
Const MODULUS_BITS = 512
Const CONGRUENT_BITS = 448
lMessageLength = Len(sMessage)
lNumberOfWords = (((lMessageLength + ((MODULUS_BITS - CONGRUENT_BITS) \ BITS_TO_A_BYTE)) \ (MODULUS_BITS \ BITS_TO_A_BYTE)) + 1) * (MODULUS_BITS \ BITS_TO_A_WORD)
ReDim lWordArray(lNumberOfWords - 1)
lBytePosition = 0
lByteCount = 0
Do Until lByteCount >= lMessageLength
lWordCount = lByteCount \ BYTES_TO_A_WORD
lBytePosition = (lByteCount Mod BYTES_TO_A_WORD) * BITS_TO_A_BYTE
lWordArray(lWordCount) = lWordArray(lWordCount) Or LShift(Asc(Mid(sMessage, lByteCount + 1, 1)), lBytePosition)
lByteCount = lByteCount + 1
Loop
lWordCount = lByteCount \ BYTES_TO_A_WORD
lBytePosition = (lByteCount Mod BYTES_TO_A_WORD) * BITS_TO_A_BYTE
lWordArray(lWordCount) = lWordArray(lWordCount) Or LShift(&H80, lBytePosition)
lWordArray(lNumberOfWords - 2) = LShift(lMessageLength, 3)
lWordArray(lNumberOfWords - 1) = RShift(lMessageLength, 29)
ConvertToWordArray = lWordArray
End Function
Private Function WordToHex(lValue)
Dim lByte
Dim lCount
For lCount = 0 To 3
lByte = RShift(lValue, lCount * BITS_TO_A_BYTE) And m_lOnBits(BITS_TO_A_BYTE - 1)
WordToHex = WordToHex & Right("0" & Hex(lByte), 2)
Next
End Function
Public Function MD5(sMessage)
Dim x
Dim k
Dim AA
Dim BB
Dim CC
Dim DD
Dim a
Dim b
Dim c
Dim d
Const S11 = 7
Const S12 = 12
Const S13 = 17
Const S14 = 22
Const S21 = 5
Const S22 = 9
Const S23 = 14
Const S24 = 20
Const S31 = 4
Const S32 = 11
Const S33 = 16
Const S34 = 23
Const S41 = 6
Const S42 = 10
Const S43 = 15
Const S44 = 21
x = ConvertToWordArray(sMessage)
a = &H67452301
b = &HEFCDAB89
c = &H98BADCFE
d = &H10325476
For k = 0 To UBound(x) Step 16
AA = a
BB = b
CC = c
DD = d
FF a, b, c, d, x(k + 0), S11, &HD76AA478
FF d, a, b, c, x(k + 1), S12, &HE8C7B756
FF c, d, a, b, x(k + 2), S13, &H242070DB
FF b, c, d, a, x(k + 3), S14, &HC1BDCEEE
FF a, b, c, d, x(k + 4), S11, &HF57C0FAF
FF d, a, b, c, x(k + 5), S12, &H4787C62A
FF c, d, a, b, x(k + 6), S13, &HA8304613
FF b, c, d, a, x(k + 7), S14, &HFD469501
FF a, b, c, d, x(k + 8), S11, &H698098D8
FF d, a, b, c, x(k + 9), S12, &H8B44F7AF
FF c, d, a, b, x(k + 10), S13, &HFFFF5BB1
FF b, c, d, a, x(k + 11), S14, &H895CD7BE
FF a, b, c, d, x(k + 12), S11, &H6B901122
FF d, a, b, c, x(k + 13), S12, &HFD987193
FF c, d, a, b, x(k + 14), S13, &HA679438E
FF b, c, d, a, x(k + 15), S14, &H49B40821
GG a, b, c, d, x(k + 1), S21, &HF61E2562
GG d, a, b, c, x(k + 6), S22, &HC040B340
GG c, d, a, b, x(k + 11), S23, &H265E5A51
GG b, c, d, a, x(k + 0), S24, &HE9B6C7AA
GG a, b, c, d, x(k + 5), S21, &HD62F105D
GG d, a, b, c, x(k + 10), S22, &H2441453
GG c, d, a, b, x(k + 15), S23, &HD8A1E681
GG b, c, d, a, x(k + 4), S24, &HE7D3FBC8
GG a, b, c, d, x(k + 9), S21, &H21E1CDE6
GG d, a, b, c, x(k + 14), S22, &HC33707D6
GG c, d, a, b, x(k + 3), S23, &HF4D50D87
GG b, c, d, a, x(k + 8), S24, &H455A14ED
GG a, b, c, d, x(k + 13), S21, &HA9E3E905
GG d, a, b, c, x(k + 2), S22, &HFCEFA3F8
GG c, d, a, b, x(k + 7), S23, &H676F02D9
GG b, c, d, a, x(k + 12), S24, &H8D2A4C8A
HH a, b, c, d, x(k + 5), S31, &HFFFA3942
HH d, a, b, c, x(k + 8), S32, &H8771F681
HH c, d, a, b, x(k + 11), S33, &H6D9D6122
HH b, c, d, a, x(k + 14), S34, &HFDE5380C
HH a, b, c, d, x(k + 1), S31, &HA4BEEA44
HH d, a, b, c, x(k + 4), S32, &H4BDECFA9
HH c, d, a, b, x(k + 7), S33, &HF6BB4B60
HH b, c, d, a, x(k + 10), S34, &HBEBFBC70
HH a, b, c, d, x(k + 13), S31, &H289B7EC6
HH d, a, b, c, x(k + 0), S32, &HEAA127FA
HH c, d, a, b, x(k + 3), S33, &HD4EF3085
HH b, c, d, a, x(k + 6), S34, &H4881D05
HH a, b, c, d, x(k + 9), S31, &HD9D4D039
HH d, a, b, c, x(k + 12), S32, &HE6DB99E5
HH c, d, a, b, x(k + 15), S33, &H1FA27CF8
HH b, c, d, a, x(k + 2), S34, &HC4AC5665
II a, b, c, d, x(k + 0), S41, &HF4292244
II d, a, b, c, x(k + 7), S42, &H432AFF97
II c, d, a, b, x(k + 14), S43, &HAB9423A7
II b, c, d, a, x(k + 5), S44, &HFC93A039
II a, b, c, d, x(k + 12), S41, &H655B59C3
II d, a, b, c, x(k + 3), S42, &H8F0CCC92
II c, d, a, b, x(k + 10), S43, &HFFEFF47D
II b, c, d, a, x(k + 1), S44, &H85845DD1
II a, b, c, d, x(k + 8), S41, &H6FA87E4F
II d, a, b, c, x(k + 15), S42, &HFE2CE6E0
II c, d, a, b, x(k + 6), S43, &HA3014314
II b, c, d, a, x(k + 13), S44, &H4E0811A1
II a, b, c, d, x(k + 4), S41, &HF7537E82
II d, a, b, c, x(k + 11), S42, &HBD3AF235
II c, d, a, b, x(k + 2), S43, &H2AD7D2BB
II b, c, d, a, x(k + 9), S44, &HEB86D391
a = AddUnsigned(a, AA)
b = AddUnsigned(b, BB)
c = AddUnsigned(c, CC)
d = AddUnsigned(d, DD)
Next
MD5 = LCase(WordToHex(a) & WordToHex(b) & WordToHex(c) & WordToHex(d))
End Function
%>

Sounds like your VBScript function is accessible via HTTP. If it's not, go expose it by making a new page like foo.asp where all it does is call into MyFunction().
If this is the case, then your code-behind can use the WebClient class to call:
WebClient client = new WebClient ();
Stream data = client.OpenRead ("http://server/foo.asp?bar=baz");
StreamReader reader = new StreamReader (data);
string s = reader.ReadToEnd ();
data.Close ();
reader.Close ();

You can't do it directly.
One way will be to change the classic ASP to something like this:
If Request("execute_func")="true" Then
Response.Clear()
Response.Write(MyFunc())
Response.End()
End If
Then consume the page using HttpWebRequest or something similar (WebClient might be option as well) and passing the flag on the URL e.g:
string sURL = "http://www.yoursite.com/mypage.asp?execute_func=true;
Then read the response and this is the function return value.

Related

Prolog: making a 4-argument add function

I am trying to code a 4-argument function myadd(A, B, C, D) which holds true when A + B + C = D in prolog.
I am completely new to prolog and had no clue what to do, so what I did was some extention from a similar function but with 3 arguments:
add(0, Y, Y).
add(s(X), Y, s(Z)) :- add(X, Y, Z).
myadd(0, B, C, D) :- add(B, C, D).
myadd(s(A), B, C, s(D)) :- myadd(A, B, C, D).
Then when I execute this code, it starts to list what is untrue from some point:
?- myadd(A, B, C, s(s(0))).
A = B, B = 0,
C = s(s(0)) ;
A = 0,
B = C, C = s(0) ;
A = C, C = 0,
B = s(s(0)) ;
A = s(0),
B = 0,
C = s(s(0)) ; <- obviously this should not be true since s(0) + s(s(0)) != s(s(0))
A = B, B = C, C = s(0) ;
A = s(0),
B = s(s(0)),
C = 0 ;
A = C, C = s(s(0)),
B = 0 ;
A = s(s(0)),
B = C, C = s(0) ;
A = B, B = s(s(0)),
C = 0 ;
A = s(s(s(0))),
B = 0,
C = s(s(0)) ;
...
I have no idea why this (1. the code works until some point, 2. and then it doesn't) happens, I highly appreciate it if someone kindly points out the flaw.
Or, I'd be really grateful if you could tell me where to start.
I cannot reproduce the answers you are getting.
Using SWI-Prolog 8.4.3:
?- myadd(A, B, C, s(s(0))). % A + B + C = 2
A = B, B = 0, C = s(s(0)) % 0 + 0 + 2 = 2
; A = 0, B = C, C = s(0) % 0 + 1 + 1 = 2
; A = C, C = 0, B = s(s(0)) % 0 + 2 + 0 = 2
; A = C, C = s(0), B = 0 % 1 + 0 + 1 = 2
; A = B, B = s(0), C = 0 % 1 + 1 + 0 = 2
; A = s(s(0)), B = C, C = 0 % 2 + 0 + 0 = 2
; false.
This part of your program seems to work properly!

How to change The Ring of the polynomial in Julia

Main
using AbstractAlgebra
include("./lib.jl");
S, (a,b,c) = PolynomialRing(QQ,["a","b","c"])
RR = AbstractAlgebra.RealField
s1 = S(b^2*a + c*a - 1)
s2 = S(c*a^2 + -b*a - c^4*a)
s3 = S(b*a + a + b)
poly_list = [s1,s2,s3]
resultant_system(poly_list,a)
function that has to change ring of the polynomial
using AbstractAlgebra;
function resultant_system(poly_list, eliminationVar)
parentRing = parent(poly_list[1])
# println("parentRing: ", parentRing, "\n")
# println("eliminationVar: ", eliminationVar)
arr = gens(parentRing)
LIST_SIZE = size(poly_list)[1]
parentVars = String[]
for i = gens(parentRing)
if i != eliminationVar
push!(parentVars, string(i))
end
end
println("parentVars: ", parentVars)
X, p = PolynomialRing(QQ, parentVars)
U, u = PolynomialRing(X, LIST_SIZE, "u")
V, v = PolynomialRing(U, LIST_SIZE, "v")
R, a = PolynomialRing(V, string(eliminationVar))
println("R:", R)
u_list = gens(U)
v_list = gens(V)
# poly_list[1] = b^2*a + c*a - 1 BUT
println(R(poly_list[1])) # this line not working
println(R(b^2*a + c*a - 1)) # this line works
end
I need to convert Multivariate Polynomial Ring in a, b, c over Rationals to
Univariate Polynomial Ring in a over Multivariate Polynomial Ring in v1, v2, v3 over Multivariate Polynomial Ring in u1, u2, u3 over Multivariate Polynomial Ring in b, c over Rationals
# poly_list[1] = b^2*a + c*a - 1 BUT
println(R(poly_list[1])) # this line not working
println(R(b^2*a + c*a - 1)) # this line works

MethodError: MethodError: objects of type Vector{Float64} are not callable

mutable struct ConjugateGradientDescent <: DescentMethod
d
g
end
function bracket_minimum(f, x=0; s=1e-2, k=2.0)
a, ya = x, f(x)
b, yb = a + s, f(a + s)
if yb > ya
a, b = b, a
ya, yb = yb, ya
s = -s
end
while true
c, yc = b + s, f(b + s)
if yc > yb
return a < c ? (a, c) : (c, a)
end
a, ya, b, yb = b, yb, c, yc
s *= k
end
end
function line_search(f, x, d)
objective = α -> f(x + α*d)
a, b = bracket_minimum(objective)
α = minimize(objective, a, b)
return x + α*d
end
function init!(M::ConjugateGradientDescent, f, ∇f, x)
M.g = ∇f(x)
M.d = -M.g
return M
end
function step!(M::ConjugateGradientDescent, f, ∇f, x)
d, g = M.d, M.g
g′ = ∇f(x)
β = max(0, dot(g′, g′-g)/(g⋅g))
d′ = -g′ + β*d
x′ = line_search(f, x, d′)
M.d, M.g = d′, g′
return x′
end
function conjugate_gradients(f, g, x0)
xʼ = x0
d = 0.01
n = 10000
CGD = ConjugateGradientDescent(d, g)
init!(CGD, f, g, xʼ)
i = 0
prev = 0
while i <= n
i += 1
xʼ = step!(CGD, f, g, xʼ)
if prev == xʼ
break
else
prev = xʼ
end
end
return xʼ, rosenbrock(xʼ), i
end
x = rand(10)
g(x) = derivative(rosenbrock, x)
x_final, f_final, iter = conjugate_gradients(rosenbrock(x), g, -5.0)
There are multiple lines for this particular Error:
MethodError: MethodError: objects of type Vector{Float64} are not callable
Use square brackets [] for indexing an Array.
In the function line_search, objective = α -> f(x + α*d) shows the error and in the bracket_minimum function, a, ya = x, f(x) b, yb = a + s, f(a + s) shows the error.
Why am I getting this error? I'm confused. Is it because function inside another function i.e. f is a function inside line_search function.

GA-Algorithm returning "non-numeric argument to binary operator" when parallel computing

For some reason the GA algorithm returns "non-numeric argument to binary operator" when I use the option parallel = TRUE.
The optimization algorithm seems to works without that option or when setting parallel = FALSE.
I have installed all the neccessary packages and they are all up to date. The R Version that I work with is 3.3.2 on a 64Bit machine.
I am basically calling a function within the function that I try to optimize. The code below is a very simple example of the general structure of the problem that returns the same error code.
fun_in <- function(a, b, c, d, e)
{
return(a + b + c + d + e)
}
fun_out <- function(a, b, c, d, e, f, g)
{
x <- f +g
y <- fun_in(a = a, b = b, c = c, d = d, e = e)
z <- x + y
return(z)
}
library('GA')
a <- 1
b <- 1
c <- 1
d <- 1
e <- 1
f <- 1
g <- 1
fitness <- function(x) -fun_out(a, b, c, d, e, f, g)
lower_bound <- c(1,1,1,1,1,1,1)
upper_bound <- c(5,5,5,5,5,5,5)
coef_names <- c('a', 'b', 'b', 'd', 'e', 'f', 'g')
GA <- ga(type = "real-valued",
fitness = fitness,
min = lower_bound,
max = upper_bound,
popSize = 100,
maxiter = 1000,
pmutation = 0.8,
pcrossover = 0.8,
maxFitness = 1e-5,
names = coef_names,
parallel = TRUE
)
Thank you for your help.
Simple fix for argument name in fitness()
--- fitness <- function(x) -fun_out(a, b, c, d, e, f, g)
+++ fitness <- function(x) -fun_out(x[1], x[2], x[3], x[4], x[5], x[6], x[7])

Can't integrate the subtraction of two Gaussian CDFs [Wolfram Mathematica]

I have a function which is a product composed by three (k) factors . Each factor is a subtraction of two Gaussian CDF with random variables R and L. These random variables are defined according to 4 parameters.
The code below shows how I plot the main function (according to two independent variables d and e) and how the random variables are calculated
sigma = 1;
k = 3;
priors = {};
AppendTo[priors, 1/k + e];
Do[AppendTo[priors, 1/k - e/(k - 1)], {c, 2, k}];
L[priors_, sigma_, d_, i_] := Do[
maxVal = -Infinity;
Do[
val = (2*sigma^2*Log[priors[[i]]/priors[[j]]] + d^2 (j^2 - i^2 + 2 (i - j)))/(2 (j - i) d);
If[val > maxVal, maxVal = val, Null];
, {j, 1, i - 1}];
Return[maxVal];
, {1}];
R[priors_, sigma_, d_, i_] := Do[
minVal = Infinity;
Do[
val = (2*sigma^2*Log[priors[[j]]/priors[[i]]] + d^2 (i^2 - j^2 + 2 (j - i)))/(2 (i - j) d);
If[val < minVal, minVal = val, Null];
, {j, i + 1, k}];
Return[minVal];
, {1}];
Print[
Plot3D[
Product[
If[R[priors, sigma, d, c] < L[priors, sigma, d, c], 0,
(CDF[NormalDistribution[(c - 1) d, sigma], R[priors, sigma, d, c]] -
CDF[NormalDistribution[(c - 1) d, sigma], L[priors, sigma, d, c]])]
, {c, 1, k}]
, {d, 0.01, 5}
, {e, -1/k, 1 - 1/k}, PlotRange -> {All, All, All}, AxesLabel -> Automatic]];
Now, I want to integrate the function over d (in the same region as the Plot3D, d=0.01-5) and to plot the results according to just the independent variable e.
Below is the code I've used.
Print[
Plot[
Integrate[
Product[
If[R[priors, sigma, d, c] < L[priors, sigma, d, c], 0,
(CDF[NormalDistribution[(c - 1) d, sigma], R[priors, sigma, d, c]] -
CDF[NormalDistribution[(c - 1) d, sigma], L[priors, sigma, d, c]])]
, {c, 1, k}]
, {d, 0.01, 5}]
, {e, -1/k, 1 - 1/k}, PlotRange -> {All, All}, AxesLabel -> Automatic]];
However, the resulting plot is not what I expect. It's constant and in the 3D plot it can be seen that this cannot happen. Does anyone know what is happening and what to do to obtain the real integration of the function? Thanks in advance.
When you compute val inside the functions L and R the result is symbolic (because e is not defined ). The logical val < minVal is thus indeterminate, and as a result minVal is never set (so that L and R return infinity every time )
(cleaned up a couple of other things as well.. )
sigma = 1;
k = 3;
priors = Join[ {1/k + e} , Table[1/k - e/(k - 1) , {c, 2, k} ] ];
L[priors0_, sigma_, d_, i_, e0_] := Module[{priors, maxVal, val, e},
Do[maxVal = -Infinity;
priors = priors0 /. e -> e0 ;
Do[val = (2*sigma^2*Log[priors[[i]]/priors[[j]]] +
d^2 (j^2 - i^2 + 2 (i - j)))/(2 (j - i) d);
If[val > maxVal, maxVal = val];, {j, 1, i - 1}];, {1}]; maxVal];
R[priors0_, sigma_, d_, i_, e0_] := Module[{priors, maxVal, val, e},
priors = priors0 /. e -> e0;
Min[Table[(2*sigma^2*Log[priors[[j]]/priors[[i]]] +
d^2 (i^2 - j^2 + 2 (j - i)))/(2 (i - j) d), {j, i + 1, k}]]];
g[d_?NumericQ, c_, e_] :=
Product[If[R[priors, sigma, d, c, e] < L[priors, sigma, d, c, e],
0,
(CDF[NormalDistribution[(c - 1) d, sigma], R[priors, sigma, d, c, e]] -
CDF[NormalDistribution[(c - 1) d, sigma], L[priors, sigma, d, c, e]])],
{c, 1, k}];
Plot[NIntegrate[g[d, c, e], {d, 0.01, 5}], {e, -1/k, 1 - 1/k},
PlotRange -> {All, All}, AxesLabel -> Automatic]

Resources