I would like some help in combining two or more calibration plots in one plot in R.
I am comparing the calibration of two models and I would like them in one plot.
I am using the calibration_plot function form the predtools package. Is this the correct package or are there more powerful packages for R?
calibration_plot(data = stackoverflow, obs = "event", pred = "model1", x_lim = c(0,1), y_lim = c(0,1),title = "Model1", points_col_list = NULL, data_summary = T)
calibration_plot(data = stackoverflow, obs = "event", pred = "model2", x_lim = c(0,1), y_lim = c(0,1),title = "Model2", points_col_list = NULL, data_summary = T)
dput of stackoverflow
structure(list(model1 = c(0.237760176222135, 0.71546420180643,
0.794432429369465, 0.656363881639676, 0.791708216360907, 0.687126456661465,
0.285599617509653, 0.184137148744874, 0.864448003819623, 0.68633722517368,
0.633141834438598, 0.342033236744753, 0.809527471856904, 0.44709310706345,
0.642309783414134, 0.478634921655348, 0.749205389344258, 0.218507206790561,
0.715674356193537, 0.722136223616077, 0.365559623908335, 0.633141834438598,
0.832424627307168, 0.530368910251955, 0.428880665771525, 0.775641696932919,
0.330128697609423, 0.783171338536037, 0.783793672057888, 0.468355345435376,
0.710245078226952, 0.81648327238482, 0.603693592753907, 0.592283374978545,
0.20507631783337, 0.485882139691015, 0.809455349796892, 0.754732165553727,
0.66377865123304, 0.438721686675472, 0.2709932360314, 0.176381161846607,
0.369232324737991, 0.654900775755287, 0.677447167734547, 0.180268404814802,
0.399419971681492, 0.73438881598655, 0.47646627399175, 0.853704813768205,
0.608974716778207, 0.634887771555211, 0.592291547214112, 0.663813688339367,
0.53943039194057, 0.7145666044468, 0.234543422020881, 0.202729809644918,
0.39672336107067, 0.158096774829406, 0.320329566236219, 0.740201212163183,
0.796777244675989, 0.308199837768449, 0.786598711217149, 0.667179376789805,
0.732390196193263, 0.117181865869223, 0.282712898098667, 0.813513774287869,
0.693399632523288, 0.493475284817971, 0.593983673049009, 0.738452518666474,
0.623275128184214, 0.855655675514564, 0.634887771555211, 0.69907205055215,
0.721513188211345, 0.622910777455488, 0.309031119328554, 0.268184852225134,
0.623816023317224, 0.620180359930797, 0.65607957849868, 0.318748098514039,
0.786138246273698, 0.770147379877078, 0.368364517958795, 0.889787669491316,
0.564862773577324, 0.644936236318243, 0.859568428574226, 0.825393586455367,
0.443267542815971, 0.662158972085537, 0.833393716075399, 0.710245078226952,
0.706450321722432, 0.83195359999601, 0.384551972953433, 0.669445207069002,
0.814471247707942, 0.809263905314706, 0.778049639424727, 0.208123706702556,
0.858117029177706, 0.816715622153779, 0.260468350284386, 0.601943372497283,
0.732426863335112, 0.570001496800709, 0.909610698898771, 0.789637001870557,
0.341839397973598, 0.571752088809212, 0.287188981135642, 0.736473504179658,
0.656363881639676, 0.300022596959034, 0.883593082700905, 0.515709672432742,
0.806949851044393, 0.597577448403585, 0.787642720305032, 0.283398218900544,
0.869505288499405, 0.225857887615281, 0.612365595338034, 0.834203334098187,
0.65572943010048, 0.38504423454054, 0.828390320481501, 0.875166731695581,
0.35145027474754, 0.534808195965384, 0.822411007103645, 0.455010761704292,
0.856585071099577, 0.757934255761915, 0.363235512112777, 0.298988516351143,
0.62357099020229, 0.821536981782977, 0.743740947803668, 0.268184852225134,
0.542172476801765, 0.789637001870557, 0.77057687698505, 0.688781883558654,
0.731975036767798, 0.58841221075051, 0.614992060475678, 0.772927795822135,
0.571844722455543, 0.786598711217149, 0.814236699887853, 0.24632201788091,
0.461305611875743, 0.357877442912028, 0.629777768176522, 0.340708895525214,
0.858328679154275, 0.896374497790043, 0.508117603191322, 0.868395985194952,
0.325391234150186, 0.217666716175776, 0.738651896306012, 0.44896380642455,
0.788773121465437, 0.855280657199334, 0.703134160788728, 0.243986928768584,
0.676029521174355, 0.578073026049121, 0.665893397554917, 0.923993035769077,
0.604501259273048, 0.300669521764063, 0.829237758054682, 0.660669727162949,
0.382885828324256, 0.357034833076844, 0.564862773577324, 0.800651230924735,
0.924025873813848, 0.547345708551748, 0.897415894457121, 0.378769589693012,
0.787320407651021, 0.835350498525985, 0.806949851044393, 0.498678748045157,
0.807549787634665, 0.758667475339789, 0.7145666044468, 0.713417011226846,
0.287188981135642, 0.390819912242695, 0.807549787634665, 0.648880360799679,
0.294317907149489, 0.634353464782934, 0.738303504906273, 0.703614919895444,
0.56018558222595, 0.365559623908335, 0.373744408366516, 0.422142971154104,
0.780393752718648, 0.420192692166099, 0.537551762931482, 0.58841221075051,
0.795977982509655, 0.750581504918475, 0.74077785828739, 0.357391060095084,
0.90335324857881, 0.88512447866342, 0.573593424038461, 0.376636890712417,
0.814471247707942, 0.516728126564283, 0.511769167592521, 0.753160027303678,
0.379974608419567, 0.247151253298088, 0.789834529579229, 0.27119953909381,
0.578282022920176, 0.289890319811112, 0.88870041654423, 0.605378010737711,
0.351803978568917, 0.852843747717878, 0.742703232488038, 0.770147379877078,
0.784056463649842, 0.678270092659001, 0.59309862179546, 0.399457633245555,
0.852843747717878, 0.794010119798579, 0.667825589460395, 0.825212537892541,
0.792966972627726, 0.770106127346002, 0.706404124524996, 0.744885306690795,
0.719123857349234, 0.53519415315944, 0.787668394777512, 0.506672792915601,
0.712945665228562, 0.660440139900567, 0.944906901834028, 0.430863999447529,
0.725700303601332, 0.783434677550229, 0.401698737182868, 0.662322756723675,
0.510386937625764, 0.767961401284267, 0.384551972953433, 0.785396724092888,
0.653104308767684, 0.687730601503667, 0.791984688175846, 0.885437716111375,
0.867068735171316, 0.213182756545354, 0.628989953572443, 0.381845536523953,
0.456595194489821, 0.206497805251196, 0.29389687736639, 0.56562528089224,
0.22423014383975, 0.876624588279104, 0.62948388586649, 0.341057473957848,
0.836726008192051, 0.959077640833203, 0.700380060001825, 0.550565054363783,
0.857986332751831, 0.73606239655555, 0.626958047968868, 0.801665344467059,
0.437818514822793, 0.84172513914277, 0.249938361820059, 0.844698016882311,
0.698481177252194, 0.425091126036881, 0.270744340397641, 0.911317329972866,
0.628317598316906, 0.798858730229755, 0.536048796135506, 0.558330930540637,
0.769744711534908, 0.835724887768629, 0.716896341598601, 0.277571045573504,
0.767928060731326, 0.171725546041467, 0.62357099020229, 0.372575487235624,
0.704787562421115, 0.279904670683375, 0.320055251165285, 0.470719150191045,
0.634353464782934, 0.260468350284386, 0.165380669830666, 0.633502115957914,
0.270438131899591, 0.298663446487892, 0.160383482822362, 0.153892088510337,
0.201934325478114, 0.248088137480339, 0.581594778507714, 0.185982855759208,
0.442026886814123, 0.180184819010326, 0.294941540461375, 0.27916583091498,
0.179726924309564, 0.176381161846607, 0.169591266926947, 0.220985714153048,
0.218292082577411, 0.256088777375909, 0.200434356927467, 0.294697652744116,
0.315059393256192, 0.309483384308751, 0.731559469346124, 0.153818437822602,
0.117181865869223, 0.230597455066238, 0.213538098408414, 0.171703216612226,
0.117342457219404, 0.268154040879572, 0.249203995151824, 0.289135705273671,
0.260767305152473, 0.243986928768584, 0.191193730214216, 0.343771287624594,
0.270744340397641, 0.63744932909826, 0.523368837567113, 0.154394806405882,
0.410858823948176, 0.363235512112777, 0.173279305917588, 0.134889443422701,
0.261718547032863, 0.357391060095084, 0.672111652745064, 0.314724695162023,
0.109741058161593, 0.268184852225134, 0.346565137119793, 0.604872114491051,
0.230805654103775, 0.251721750397117, 0.182834120641036, 0.322972096586922,
0.322746359746767, 0.229914079265902, 0.645775875936576, 0.201934325478114,
0.553545512735033, 0.187303180765189, 0.198028579423478, 0.290364891461295,
0.229265182965244, 0.710032536799647, 0.735760882566064, 0.182834120641036,
0.401191274559514, 0.297035951335436, 0.441177176238355, 0.298988516351143,
0.553928890511863, 0.24317228518234, 0.229914079265902, 0.289890319811112,
0.0624502711689494, 0.162722362310802, 0.169591266926947, 0.642273712916542,
0.169075242884674, 0.25265127289933, 0.165887669057233, 0.235150322065362,
0.589857972739157, 0.338141490381861, 0.125767093771288, 0.373381352261149,
0.362344177990451, 0.25212074667222, 0.256751801775933, 0.187067135355391,
0.216054935520473, 0.238425678298765, 0.141675251821082, 0.392138013572663,
0.267385232516098, 0.255390506596019, 0.186538897906035, 0.310084569356542,
0.214186337707389, 0.154094207815253, 0.209949367371578, 0.260468350284386,
0.340233482715629, 0.205675021254086, 0.212922641652452, 0.169293313540589,
0.237148695480572, 0.252848455583522, 0.359702689379285, 0.092827863257841,
0.554763268477136, 0.136704135686601, 0.162722362310802, 0.350614534717934,
0.269714920758443, 0.208123706702556, 0.309815028457651, 0.171703216612226,
0.487788581673596, 0.187817836035314, 0.320516166012631, 0.205675021254086,
0.310307964614977, 0.16055325992601, 0.338141490381861, 0.261718547032863,
0.277571045573504, 0.570001496800709, 0.638837851776372, 0.273858461205031
), model2 = c(0.287514786741101, 0.750187800029493, 0.988418181061398,
0.838173140408305, 0.645239560308121, 0.677315834518225, 0.158242529420476,
0.125115299019299, 0.730655708202056, 0.650323967533871, 0.46668206957655,
0.477695763474193, 0.517548581264567, 0.777222315964033, 0.710407521182698,
0.265575276954178, 0.712813831748586, 0.536061703578936, 0.799982280979083,
0.82465248790953, 0.304409261779039, 0.532580860681508, 0.663549547438732,
0.525529652068901, 0.438036097303733, 0.500581402303234, 0.340790071460301,
0.6585150480268, 0.764755402974609, 0.495348039833107, 0.936052199799697,
0.86884447627363, 0.64779296673596, 0.729130744413302, 0.212308846717215,
0.921575063542082, 0.896725345760408, 0.908630767579495, 0.552735032621137,
0.333089198076349, 0.411240252256137, 0.210089558407819, 0.73811428745976,
0.598277326712665, 0.812100882633133, 0.553780145134378, 0.285594535525249,
0.976265415980042, 0.479482389182052, 0.884418579477935, 0.675232647472854,
0.549910482547915, 0.503157835462091, 0.665670569303347, 0.468546618084848,
0.568520882937806, 0.270816408384732, 0.221250962981007, 0.326798623488733,
0.731113083904769, 0.264546800699518, 0.637416563146408, 0.612254123798448,
0.137589225529098, 0.973856314310539, 0.57355849354993, 0.795724887855882,
0.207887346031912, 0.315264931197944, 0.570327096970961, 0.821667790125253,
0.34700932633174, 0.700348491487529, 0.917036300698461, 0.499629857729573,
0.945677859174471, 0.734707685742723, 0.793812332967952, 0.770460729642163,
0.527396810927778, 0.288295112916966, 0.425445404428372, 0.483612884217641,
0.675259561878702, 0.592376322434429, 0.179112926596139, 0.91845435860965,
0.559221364493348, 0.2420893235427, 0.987070707204451, 0.47041204527438,
0.561066676064396, 0.979709257022779, 0.97459617254262, 0.493734807579198,
0.633862083931177, 0.984516332934101, 0.740187112417555, 0.766781488979252,
0.97975192431102, 0.33055072207903, 0.533054583463754, 0.790202073936537,
0.680287263575367, 0.660197257135086, 0.265210247355631, 0.635683810747643,
0.929441105581883, 0.200564850844362, 0.624207163066426, 0.677315834518225,
0.576813581489832, 0.870011812596891, 0.784528876996448, 0.349112814763239,
0.713692748225076, 0.246612007341578, 0.851081180574875, 0.687137281881956,
0.341479975901666, 0.877294727463993, 0.345744536252705, 0.813818470175183,
0.559690409480896, 0.621134908742507, 0.278731001691605, 0.982206757909454,
0.202689509120882, 0.607302163137454, 0.851508613763468, 0.649527821417898,
0.296858688986366, 0.637473293434683, 0.861231144697065, 0.754589517375169,
0.963050340651459, 0.796382681438869, 0.321017842587893, 0.548527383260705,
0.440018622160444, 0.40853771801107, 0.26933993698801, 0.520368464701376,
0.7280745989701, 0.471834600908167, 0.204830907885538, 0.506228982219536,
0.731428209461483, 0.776728970181845, 0.722816963684959, 0.877294727463993,
0.479842448557783, 0.576319001528652, 0.74198934756818, 0.712480680225209,
0.704672118556432, 0.98052035986783, 0.217382974876404, 0.367373216386543,
0.307185123289256, 0.512795273384737, 0.260517614803284, 0.968697596752212,
0.749162451797087, 0.68041909739219, 0.79699918505845, 0.238291353978693,
0.219963202913491, 0.618951001840467, 0.580254548293966, 0.818616105457586,
0.942296461590003, 0.666912717900493, 0.332605259941962, 0.651690837935606,
0.50857664168015, 0.90399764992811, 0.846846428061044, 0.799716912284323,
0.181061805447383, 0.767483350924048, 0.384190617749709, 0.381014832615475,
0.286346662970687, 0.415112136598318, 0.871297702675277, 0.904491992447163,
0.691290885733912, 0.883663383425187, 0.218031207659998, 0.845471915435013,
0.851225057418906, 0.974737142979397, 0.304384913954126, 0.809217536951246,
0.673169505573611, 0.587832517321454, 0.690755125022416, 0.22291607285211,
0.179953907381919, 0.970837663453446, 0.738032658514138, 0.164877770046258,
0.559221364493348, 0.737961463367539, 0.574811799071391, 0.823334805691295,
0.397181521409539, 0.450228391674526, 0.388746691319082, 0.610474606608326,
0.614247050968821, 0.233533077961654, 0.513485424702372, 0.645035767493623,
0.764733321673292, 0.635712234455418, 0.321432791509016, 0.980875944753058,
0.930793776634344, 0.515141614894262, 0.267122769086816, 0.742852208475956,
0.353042840393565, 0.747623556575278, 0.568520882937806, 0.336815676156739,
0.294901862001193, 0.795145496446215, 0.249762053766042, 0.780927060658826,
0.799538641669496, 0.736927326640062, 0.560628178989406, 0.277966452045218,
0.955942719184481, 0.99446721952086, 0.806262158705558, 0.622506360194255,
0.599162290212476, 0.911568883259971, 0.919636749455923, 0.755663660003546,
0.786091771573376, 0.663124547545389, 0.728451212871414, 0.915017637389918,
0.540976155120713, 0.966571939655214, 0.944017655309776, 0.769111705432106,
0.730655708202056, 0.793731921435595, 0.672331547859415, 0.954188301697073,
0.771490498213196, 0.759323050904125, 0.371749915918801, 0.896029675337791,
0.806875130512909, 0.428847795602538, 0.879100543795116, 0.683667479610655,
0.652853497164203, 0.322424456351873, 0.63223630618384, 0.739111324425798,
0.842480963836762, 0.656399746538259, 0.650393771706781, 0.811904090325055,
0.232195146241057, 0.475599646446869, 0.262723383404926, 0.375875902973021,
0.121452811688801, 0.267495498619919, 0.48738518650336, 0.145570737158047,
0.836295028297079, 0.866323236416769, 0.339370978784442, 0.950244949336958,
0.932430555794746, 0.553175128755609, 0.581965592354742, 0.894949559660516,
0.576843540774841, 0.87024074399061, 0.894254944829874, 0.439366370246273,
0.701519570518178, 0.283657063015796, 0.93318279804328, 0.805782242770265,
0.992222214238406, 0.394450834972146, 0.901654917225723, 0.933970824223853,
0.768817215838203, 0.651466105934146, 0.501057173441579, 0.892777201339042,
0.858754977433982, 0.695586052629751, 0.248716707595335, 0.856898191452172,
0.158303873916073, 0.619956780913837, 0.226391315408489, 0.558313224726938,
0.298026108292324, 0.234215057380327, 0.428383617689134, 0.549439406197447,
0.220289907919949, 0.286164787814256, 0.803010050278043, 0.170897787205529,
0.250118826376969, 0.169329123235089, 0.105169643729422, 0.230818986882482,
0.18870738933734, 0.643086595448451, 0.351739919456562, 0.346870221210139,
0.170151016814197, 0.293716098173589, 0.178851307909495, 0.164354353678441,
0.137152736940256, 0.162048818603576, 0.215166581519086, 0.187007449141651,
0.237439972839634, 0.14258798699763, 0.330156871723161, 0.237946098901768,
0.194887699919184, 0.890822417716102, 0.14467963257714, 0.158733788855624,
0.315702415553601, 0.205141048154358, 0.186429463355873, 0.157989199214296,
0.271192384689673, 0.176903209875729, 0.268965581092294, 0.235561057229909,
0.168828874843123, 0.212308846717215, 0.570545224925858, 0.218680833334588,
0.520812798555289, 0.570357173420229, 0.148201635635738, 0.252266585477661,
0.370890047542259, 0.14213825397019, 0.112490591448769, 0.214524529099719,
0.21837679510844, 0.6077559310819, 0.295668356350065, 0.193398997617611,
0.188167557710595, 0.236590688745572, 0.608692142201058, 0.136927677224389,
0.203613730295902, 0.182193295757089, 0.182761098473245, 0.212627281905761,
0.210109927239357, 0.629520107298525, 0.162566320963278, 0.465261364100146,
0.241020865363341, 0.187877013216933, 0.210961933060156, 0.320603176249504,
0.557843871658153, 0.590069216234008, 0.17636750730924, 0.359238412133482,
0.228170276870657, 0.476807428925973, 0.249072482719156, 0.480317465811968,
0.329288559790918, 0.183045514601816, 0.265264079554823, 0.1192496449915,
0.188458447253358, 0.14328740848045, 0.558313224726938, 0.179673238503788,
0.199063071112044, 0.217080239755128, 0.168828874843123, 0.62158265253597,
0.441681318415537, 0.0992888953767996, 0.2825232763026, 0.251191180467748,
0.197248787997729, 0.174714952234069, 0.138494990579275, 0.26635431665589,
0.297256081297999, 0.135360948278321, 0.291010824664818, 0.166192163105498,
0.436117818696803, 0.25871219982226, 0.296090406042039, 0.295297734909279,
0.108413551555087, 0.237256621439176, 0.190192131110892, 0.650196567547233,
0.188167557710595, 0.262699610356166, 0.182761098473245, 0.209773911216204,
0.188458447253358, 0.274945653887741, 0.125323762673128, 0.435395196228578,
0.0971197191841969, 0.194589266165696, 0.199082640326805, 0.200870163474221,
0.164894670499535, 0.276441228444482, 0.160008586958398, 0.747010603204249,
0.15649233284349, 0.374808964328024, 0.18476385704053, 0.248716707595335,
0.150361187732168, 0.224878905369068, 0.235218536432899, 0.231856035256552,
0.49592350798512, 0.761359026335127, 0.417676219153237), event = c(1,
1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0,
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1,
1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1,
0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1,
1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0)), row.names = c(NA, -450L), class = "data.frame")
Thank you in advance!
I have a .mat file containing a matrix of 41 columns and 83 rows of binary values. I have imported it using library('R.matlab') such that ag <- readMat(file.choose(), header = TRUE). I am trying to plot this file like a raster/heatmap, but having no success. I have tried with ggplot2, plot.matrix, and raster.
ggplot(ag) +
+ geom_raster(x = ncol(ag), y = nrow(ag)
gives me
Error in `$<-.data.frame`(`*tmp*`, "xmin", value = numeric(0)) :
replacement has 0 rows, data has 83
I have also tried
ggplot(data.frame(ag)) +
+ geom_tile(x = ncol(ag), y = nrow(ag))
which gives me
Error in eval(substitute(list(...)), `_data`, parent.frame()) :
object 'x' not found
In addition: Warning messages:
1: In min(x, na.rm = na.rm) :
no non-missing arguments to min; returning Inf
2: In max(x, na.rm = na.rm) :
no non-missing arguments to max; returning -Inf
3: In min(diff(sort(x))) : no non-missing arguments to min; returning Inf
4: In min(x, na.rm = na.rm) :
no non-missing arguments to min; returning Inf
5: In max(x, na.rm = na.rm) :
no non-missing arguments to max; returning -Inf
6: In min(diff(sort(x))) : no non-missing arguments to min; returning Inf
with plot.matrix I have tried
ag = as.data.frame(ag)
plot(ag)
which shows
Error in plot.new() : figure margins too large
even when I type
par(mar=c(1,1,1,1))
Is there an error with how I am reading in the file? How can I get the data to behave for visualizations? I have worked with matrices in R before and not encountered issues like this, but have no experience with matlab. The data was provided by a professor. Here is a dump of the data
ag <- structure(list(mat.agr = structure(c(0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), .Dim = c(83L, 41L))), header = list(
description = "MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Tue Aug 11 11:44:30 2020 ",
version = "5", endian = "little"))
The class of the ag object is list, with a single element (the matrix mat.agr).
library('R.matlab')
ag <- readMat("Matrix_Agriculture.mat", header = TRUE)
str(ag)
List of 1
$ mat.agr: num [1:83, 1:41] 0 0 0 0 0 0 0 0 0 0 ...
- attr(*, "header")=List of 3
..$ description: chr "MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Tue Aug 11 11:44:30 2020 "
..$ version : chr "5"
..$ endian : chr "little"
Thus, is you want to plot your Matlab matrix, you can use the image command
mtx <- ag$mat.agr
image(mtx)
or, if you want to use the library ggplot2
library(tidyr)
# From wide to long format
ag_long <- mtx %>%
as.data.frame() %>%
mutate(x=1:n()) %>%
gather(y, z, V1:V41, factor_key=TRUE)
ggplot(data=ag_long, aes(x,y)) +
geom_raster(aes(fill=z)) +
theme_void()
I want to calculate the margins for an independent variable at the values of another independent variable. All variables (including the dependent variable) are binary.
model1 <- glm(data = TrialDF, formula = dep ~ indep1*indep2, family=binomial)
margins::margins(model1, data = TrialDF, variables = "indep1",
at = list("indep2" =c(0,1)))
However, I get the following error:
Error in dat[, not_numeric, drop = FALSE] :
incorrect number of dimensions
I also tried variations of this command by using factor variables or list("indep2" = 0:1), but I always get the same error messages. What does that mean?
The data is:
TrialDF <-structure(list(dep = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0,
1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1,
0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), indep1 = c(1,
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1,
0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,
1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1,
0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,
0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1,
1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1,
1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,
0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0,
1, 0, 0, 1, 1, 1, 1, 1), indep2 = c(1, 0, 1, 1, 1, 0, 1, 0, 0,
0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0,
0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,
0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1,
0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,
0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1,
0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0,
1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1,
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1
)), row.names = c(NA, -240L), class = c("data.table", "data.frame"
))
This error is related to the problem described in https://github.com/leeper/prediction/pull/34. You can get past it by coercing the data to a data frame with data=data.frame(TrialDF):
> margins(model1, data=data.frame(TrialDF), variables="indep1", at=list("indep2"=c(0,1)))
Average marginal effects at specified values
glm(formula = dep ~ indep1 * indep2, family = binomial, data = TrialDF)
at(indep2) indep1
0 0.6776
1 0.1496
I have three categorical vectors that represent symptoms. And I would like plot a venn diagram that show how many people have one two or three of them.
I tryed do
library(gplots)
venn(list(sym1, sym2, sym3))
but didn't work
Thank you
sym1=c(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0,
0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0,
0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1,
0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0,
1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0,
1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,
1, 0, 0, 1, 1, 0)
sym2=c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1,
1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1,
0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1,
0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1,
0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,
0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 1, 0, 1, 0)
sym3=c(0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0,
0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1,
0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1,
0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1,
0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1,
0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,
1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,
1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0,
0, 0, 0, 0, 1, 0)
Here is an example on how to achieve this with the library eulerr which provides much better looking (at least in my opinion) diagrams:
library(eulerr)
library(tidyverse)
set.seed(123) #for reproducible plot
data.frame(sym1, sym2, sym3)%>% #combine the vectors to a data frame
mutate_at(1:3, as.logical) %>% #convert to logical
euler(shape = "ellipse", input = "disjoint") %>% #calculate euler object, plot as ellipse
plot(quantities = T) plot it
with venn from gplots:
library(gplots)
data.frame(sym1, sym2, sym3)%>%
mutate_at(1:3, as.logical) %>%
venn()
From the help of venn:
Either a list list containing vectors of names or indices of group
intersections, or a data frame containing boolean indicators of group
intersectionship (see below)
In your case I trust the second options is desired.