Graphing results of dbscan in R - r

Your comments, suggestions, or solutions are/will be greatly appreciated, thank you.
I'm using the fpc package in R to do a dbscan analysis of some very dense data (3 sets of 40,000 points between the range -3, 6).
I've found some clusters, and I need to graph just the significant ones. The problem is that I have a single cluster (the first) with about 39,000 points in it. I need to graph all other clusters but this one.
The dbscan() creates a special data type to store all of this cluster data in. It's not indexed like a data frame would be (but maybe there is a way to represent it as such?).
I can graph the dbscan type using a basic plot() call. But, like I said, this will graph the irrelevant 39,000 points.
tl;dr:
how do I graph only specific clusters of a dbscan data type?

If you look at the help page (?dbscan) it is organized like all others into sections labeled Description, Usage, Arguments, Details and Value. The Value section describes what the function dbscan returns. In this case it is simply a list (a standard R data type) with a few components.
The cluster component is simply an integer vector whose length it equal to the number of rows in your data that indicates which cluster each observation is a member of. So you can use this vector to subset your data to extract only those clusters you'd like and then plot just those data points.
For example, if we use the first example from the help page:
set.seed(665544)
n <- 600
x <- cbind(runif(10, 0, 10)+rnorm(n, sd=0.2), runif(10, 0, 10)+rnorm(n,
sd=0.2))
ds <- dbscan(x, 0.2)
we can then use the result, ds to plot only the points in clusters 1-3:
#Plot only clusters 1, 2 and 3
plot(x[ds$cluster %in% 1:3,])

Without knowing the specifics of dbscan, I can recommend that you look at the function smoothScatter. It it very useful for examining the main patterns in a scatterplot when you otherwise would have too many points to make sense of the data.

The probably most sensible way of plotting DBSCAN results is using alpha shapes, with the radius set to the epsilon value. Alpha shapes are closely related to convex hulls, but they are not necessarily convex. The alpha radius controls the amount of non-convexity allowed.
This is quite closely related to the DBSCAN cluster model of density connected objects, and as such will give you a useful interpretation of the set.
As I'm not using R, I don't know about the alpha shape capabilities of R. There supposedly is a package called alphahull, from a quick check on Google.

Related

DBSCAN Clustering returning single cluster with noise points

I am trying to perform DBSCAN clustering on the data https://www.kaggle.com/arjunbhasin2013/ccdata. I have cleaned the data and applied the algorithm.
data1 <- read.csv('C:\\Users\\write\\Documents\\R\\data\\Project\\Clustering\\CC GENERAL.csv')
head(data1)
data1 <- data1[,2:18]
dim(data1)
colnames(data1)
head(data1,2)
#to check if data has empty col or rows
library(purrr)
is_empty(data1)
#to check if data has duplicates
library(dplyr)
any(duplicated(data1))
#to check if data has NA values
any(is.na(data1))
data1 <- na.omit(data1)
any(is.na(data1))
dim(data1)
Algorithm was applied as follows.
#DBSCAN
data1 <- scale(data1)
library(fpc)
library(dbscan)
set.seed(500)
#to find optimal eps
kNNdistplot(data1, k = 34)
abline(h = 4, lty = 3)
The figure shows the 'knee' to identify the 'eps' value. Since there are 17 attributes to be considered for clustering, I have taken k=17*2 =34.
db <- dbscan(data1,eps = 4,minPts = 34)
db
The result I obtained is "The clustering contains 1 cluster(s) and 147 noise points."
No matter whatever values I change for eps and minPts the result is same.
Can anyone tell where I have gone wrong?
Thanks in advance.
You have two options:
Increase the radius of your center points (given by the epsilon parameter)
Decrease the minimum number of points (minPts) to define a center point.
I would start by decreasing the minPts parameter, since I think it is very high and since it does not find points within that radius, it does not group more points within a group
A typical problem with using DBSCAN (and clustering in general) is that real data typically does not fall into nice clusters, but forms one connected point cloud. In this case, DBSCAN will always find only a single cluster. You can check this with several methods. The most direct method would be to use a pairs plot (a scatterplot matrix):
plot(as.data.frame(data1))
Since you have many variables, the scatterplot pannels are very small, but you can see that the points are very close together in almost all pannels. DBSCAN will connect all points in these dense areas into a single cluster. k-means will just partition the dense area.
Another option is to check for clusterability with methods like VAT or iVAT (https://link.springer.com/chapter/10.1007/978-3-642-13657-3_5).
library("seriation")
## calculate distances for a small sample
d <- dist(data1[sample(seq(nrow(data1)), size = 1000), ])
iVAT(d)
You will see that the plot shows no block structure around the diagonal indicating that clustering will not find much.
To improve clustering, you need to work on the data. You can remove irrelevant variables, you may have very skewed variables that should be transformed first. You could also try non-linear embedding before clustering.

How do I produce a probability histogram?

I've just started learning R, and was wondering, say I have the dataset quake, and I want to generate the probability histogram of quakes near Fiji, would the code simply be hist(quakes$lat,freq=F)?
A histogram shows the frequency or proportion of a given value out of all the values in a data set. You need a numeric vector as the x argument for hist(). There is no flat variable in quakes, but there is a lat variable. hist(quakes$lat, freq = F) would show the following:
This shows the north/south geographical distribution of earthquakes, centering around -20, and, since it is approximately normal (with a left skew) suggests that there is a mechanism for earthquake generation that centers around a specific latitude.
The best way to learn is to try. If you wonder if that would be the way to do it, try it.
You might also want to look at this tutorial on creating kernel density plots with ggplot.

options to allow heavily-weighted points on a map to overwhelm other points with low weights

what are some good kriging/interpolation idea/options that will allow heavily-weighted points to bleed over lightly-weighted points on a plotted R map?
the state of connecticut has eight counties. i found the centroid and want to plot poverty rates of each of these eight counties. three of the counties are very populated (about 1 million people) and the other five counties are sparsely populated (about 100,000 people). since the three densely-populated counties have more than 90% of the total state population, i would like those the three densely-populated counties to completely "overwhelm" the map and impact other points across the county borders.
the Krig function in the R fields package has a lot of parameters and also covariance functions that can be called, but i'm not sure where to start?
here is reproducible code to quickly produce a hard-bordered map and then three differently-weighted maps. hopefully i can just make changes to this code, but perhaps it requires something more complex like the geoRglm package? two of the three weighted maps look almost identical, despite one being 10x as weighted as the other..
https://raw.githubusercontent.com/davidbrae/swmap/master/20141001%20how%20to%20modify%20the%20Krig%20function%20so%20a%20huge%20weight%20overwhelms%20nearby%20points.R
thanks!!
edit: here's a picture example of the behavior i want-
disclaimer - I am not an expert on Krigging. Krigging is complex and takes a good understanding of the underlying data, the method and the purpose to achieve the correct result. You may wish to try to get input from #whuber [on the GIS Stack Exchange or contact him through his website (http://www.quantdec.com/quals/quals.htm)] or another expert you know.
That said, if you just want to achieve the visual effect you requested and are not using this for some sort of statistical analysis, I think there are some relatively simple solutions.
EDIT:
As you commented, though the suggestions below to use theta and smoothness arguments do even out the prediction surface, they apply equally to all measurements and thus do not extend the "sphere of influence" of more densely populated counties relative to less-densely populated. After further consideration, I think there are two ways to achieve this: by altering the covariance function to depend on population density or by using weights, as you have. Your weighting approach, as I wrote below, alters the error term of the krigging function. That is, it inversely scales the nugget variance.
As you can see in the semivariogram image, the nugget is essentially the y-intercept, or the error between measurements at the same location. Weights affect the nugget variance (sigma2) as sigma2/weight. Thus, greater weights mean less error at small-scale distances. This does not, however, change the shape of the semivariance function or have much effect on the range or sill.
I think that the best solution would be to have your covariance function depend on population. however, I'm not sure how to accomplish that and I don't see any arguments to Krig to do so. I tried playing with defining my own covariance function as in the Krig example, but only got errors.
Sorry I couldn't help more!
Another great resource to help understand Krigging is: http://www.epa.gov/airtrends/specialstudies/dsisurfaces.pdf
As I said in my comment, the sill and nugget values as well as the range of the semivariogram are things you can alter to affect the smoothing. By specifying weights in the call to Krig, you are altering the variance of the measurement errors. That is, in a normal use, weights are expected to be proportional to the accuracy of the measurement value so that higher weights represent more accurate measurements, essentially. This isn't actually true with your data, but it may be giving you the effect you desire.
To alter the way your data is interpolated, you can adjust two (and many more) parameters in the simple Krig call you are using: theta and smoothness. theta adjusts the semivariance range, meaning that measured points farther away contribute more to the estimates as you increase theta. Your data range is
range <- data.frame(lon=range(ct.data$lon),lat=range(ct.data$lat))
range[2,]-range[1,]
lon lat
2 1.383717 0.6300484
so, your measurement points vary by ~1.4 degrees lon and ~0.6 degrees lat. Thus, you can play with specifying your theta value in that range to see how that affects your result. In general, a larger theta leads to more smoothing since you are drawing from more values for each prediction.
Krig.output.wt <- Krig( cbind(ct.data$lon,ct.data$lat) , ct.data$county.poverty.rate ,
weights=c( size , 1 , 1 , 1 , 1 , size , size , 1 ),Covariance="Matern", theta=.8)
r <- interpolate(ras, Krig.output.wt)
r <- mask(r, ct.map)
plot(r, col=colRamp(100) ,axes=FALSE,legend=FALSE)
title(main="Theta = 0.8", outer = FALSE)
points(cbind(ct.data$lon,ct.data$lat))
text(ct.data$lon, ct.data$lat-0.05, ct.data$NAME, cex=0.5)
Gives:
Krig.output.wt <- Krig( cbind(ct.data$lon,ct.data$lat) , ct.data$county.poverty.rate ,
weights=c( size , 1 , 1 , 1 , 1 , size , size , 1 ),Covariance="Matern", theta=1.6)
r <- interpolate(ras, Krig.output.wt)
r <- mask(r, ct.map)
plot(r, col=colRamp(100) ,axes=FALSE,legend=FALSE)
title(main="Theta = 1.6", outer = FALSE)
points(cbind(ct.data$lon,ct.data$lat))
text(ct.data$lon, ct.data$lat-0.05, ct.data$NAME, cex=0.5)
Gives:
Adding the smoothness argument, will change the order of the function used to smooth your predictions. The default is 0.5 leading to a second-order polynomial.
Krig.output.wt <- Krig( cbind(ct.data$lon,ct.data$lat) , ct.data$county.poverty.rate ,
weights=c( size , 1 , 1 , 1 , 1 , size , size , 1 ),
Covariance="Matern", smoothness = 0.6)
r <- interpolate(ras, Krig.output.wt)
r <- mask(r, ct.map)
plot(r, col=colRamp(100) ,axes=FALSE,legend=FALSE)
title(main="Theta unspecified; Smoothness = 0.6", outer = FALSE)
points(cbind(ct.data$lon,ct.data$lat))
text(ct.data$lon, ct.data$lat-0.05, ct.data$NAME, cex=0.5)
Gives:
This should give you a start and some options, but you should look at the manual for fields. It is pretty well-written and explains the arguments well.
Also, if this is in any way quantitative, I would highly recommend talking to someone with significant spatial statistics know how!
Kriging is not what you want. (It is a statistical method for accurate--not distorted!--interpolation of data. It requires preliminary analysis of the data--of which you do not have anywhere near enough for this purpose--and cannot accomplish the desired map distortion.)
The example and the references to "bleed over" suggest considering an anamorph or area cartogram. This is a map which will expand and shrink the areas of the county polygons so that they reflect their relative population while retaining their shapes. The link (to the SE GIS site) explains and illustrates this idea. Although its answers are less than satisfying, a search of that site will reveal some effective solutions.
lot's of interesting comments and leads above.
I took a look at the Harvard dialect survey to get a sense for what you are trying to do first. I must say really cool maps. And before I start in on what I came up with...I've looked at your work on survey analysis before and have learned quite a few tricks. Thanks.
So my first take pretty quickly was that if you wanted to do spatial smoothing by way of kernel density estimation then you need to be thinking in terms of point process models. I'm sure there are other ways, but that's where I went.
So what I do below is grab a very generic US map and convert it into something I can use as a sampling window. Then I create random samples of points within that region, just pretend those are your centroids. After I attach random values to those points and plot it up.
I just wanted to test this conceptually, which is why I didn't go through the extra steps to grab cbsa's and also sorry for not projecting, but I think these are the fundamentals. Oh and the smoothing in the dialect study is being done over the whole country. I think. That is the author is not stratifying his smoothing procedure within polygons....so I just added states at the end.
code:
library(sp)
library(spatstat)
library(RColorBrewer)
library(maps)
library(maptools)
# grab us map from R maps package
usMap <- map("usa")
usIds <- usMap$names
# convert to spatial polygons so this can be used as a windo below
usMapPoly <- map2SpatialPolygons(usMap,IDs=usIds)
# just select us with no islands
usMapPoly <- usMapPoly[names(usMapPoly)=="main",]
# create a random sample of points on which to smooth over within the map
pts <- spsample(usMapPoly, n=250, type='random')
# just for a quick check of the map and sampling locations
plot(usMapPoly)
points(pts)
# create values associated with points, be sure to play aroud with
# these after you get the map it's fun
vals <-rnorm(250,100,25)
valWeights <- vals/sum(vals)
ptsCords <- data.frame(pts#coords)
# create window for the point pattern object (ppp) created below
usWindow <- as.owin(usMapPoly)
# create spatial point pattern object
usPPP <- ppp(ptsCords$x,ptsCords$y,marks=vals,window=usWindow)
# create colour ramp
col <- colorRampPalette(brewer.pal(9,"Reds"))(20)
# the plots, here is where the gausian kernal density estimation magic happens
# if you want a continuous legend on one of the sides get rid of ribbon=FALSE
# and be sure to play around with sigma
plot(Smooth(usPPP,sigma=3,weights=valWeights),col=col,main=NA,ribbon=FALSE)
map("state",add=TRUE,fill=FALSE)
example no weights:
example with my trivial weights
There is obviously a lot of work in between this and your goal of making this type of map reproducible at various levels of spatial aggregation and sample data, but good luck it seems like a cool project.
p.s. initially I did not use any weighting, but I suppose you could provide weights directly to the Smooth function. Two example maps above.

How to generate medoid plots

Hi I am using partitioning around medoids algorithm for clustering using the pam function in clustering package. I have 4 attributes in the dataset that I clustered and they seem to give me around 6 clusters and I want to generate a a plot of these clusters across those 4 attributes like this 1: http://www.flickr.com/photos/52099123#N06/7036003411/in/photostream/lightbox/ "Centroid plot"
But the only way I can draw the clustering result is either using a dendrogram or using
plot (data, col = result$clustering) command which seems to generate a plot similar to this
[2] : http://www.flickr.com/photos/52099123#N06/7036003777/in/photostream "pam results".
Although the first image is a centroid plot I am wondering if there are any tools available in R to do the same with a medoid plot Note that it also prints the size of each cluster in the plot. It would be great to know if there are any packages/solutions available in R that facilitate to do this or if not what should be a good starting point in order to achieve plots similar to that in Image 1.
Thanks
Hi All,I was trying to work out the problem the way Joran told but I think I did not understand it correctly and have not done it the right way as it is supposed to be done. Anyway this is what I have done so far. Following is how the file looks like that I tried to cluster
geneID RPKM-base RPKM-1cm RPKM+4cm RPKMtip
GRMZM2G181227 3.412444267 3.16437442 1.287909035 0.037320722
GRMZM2G146885 14.17287135 11.3577013 2.778514642 2.226818648
GRMZM2G139463 6.866752401 5.373925806 1.388843962 1.062745344
GRMZM2G015295 1349.446347 447.4635291 29.43627879 29.2643755
GRMZM2G111909 47.95903081 27.5256729 1.656555758 0.949824883
GRMZM2G078097 4.433627458 0.928492841 0.063329249 0.034255945
GRMZM2G450498 36.15941083 9.45235616 0.700105077 0.194759794
GRMZM2G413652 25.06985426 15.91342458 5.372151214 3.618914949
GRMZM2G090087 21.00891969 18.02318412 17.49531186 10.74302155
following is the Pam clustering output
GRMZM2G181227
1
GRMZM2G146885
2
GRMZM2G139463
2
GRMZM2G015295
2
GRMZM2G111909
2
GRMZM2G078097
3
GRMZM2G450498
3
GRMZM2G413652
2
GRMZM2G090087
2
AC217811.3_FG003
2
Using the above two files I generated a third file that somewhat looks like this and has cluster information in the form of cluster type K1,K2,etc
geneID RPKM-base RPKM-1cm RPKM+4cm RPKMtip Cluster_type
GRMZM2G181227 3.412444267 3.16437442 1.287909035 0.037320722 K1
GRMZM2G146885 14.17287135 11.3577013 2.778514642 2.226818648 K2
GRMZM2G139463 6.866752401 5.373925806 1.388843962 1.062745344 K2
GRMZM2G015295 1349.446347 447.4635291 29.43627879 29.2643755 K2
GRMZM2G111909 47.95903081 27.5256729 1.656555758 0.949824883 K2
GRMZM2G078097 4.433627458 0.928492841 0.063329249 0.034255945 K3
GRMZM2G450498 36.15941083 9.45235616 0.700105077 0.194759794 K3
GRMZM2G413652 25.06985426 15.91342458 5.372151214 3.618914949 K2
GRMZM2G090087 21.00891969 18.02318412 17.49531186 10.74302155 K2
I certainly don't think that this is the file that joran would have wanted me to create but I could not think of anything else thus I ran lattice on the above file using the following code.
clusres<- read.table("clusinput.txt",header=TRUE,sep="\t");
jpeg(filename = "clusplot.jpeg", width = 800, height = 1078,
pointsize = 12, quality = 100, bg = "white",res=100);
parallel(~clusres[2:5]|Cluster_type,clusres,horizontal.axis=FALSE);
dev.off();
and I get a picture like this
Since I want one single line as the representative of the whole cluster at four different points this output is wrong moreover I tried playing with lattice but I can not figure out how to make it accept the Rpkm values as the X coordinate It always seems to plot so many lines against a maximum or minimum value at the Y coordinate which I don't understand what it is.
It will be great if anybody can help me out. Sorry If my question still seems absurd to you.
I do not know of any pre-built functions that generate the plot you indicate, which looks to me like a sort of parallel coordinates plot.
But generating such a plot would be a fairly trivial exercise.
Add a column of cluster labels (K1,K2, etc.) to your original data set, based on your clustering algorithm's output.
Use one of the many, many tools in R for aggregating data (plyr, aggregate, etc.) to calculate the relevant summary statistics by cluster on each of the four variables. (You haven't said what the first graph is actually plotting. Mean and sd? Median and MAD?)
Since you want the plots split into six separate panels, or facets, you will probably want to plot the data using either ggplot or lattice, both of which provide excellent support for creating the same plot, split across a single grouping vector (i.e. the clusters in your case).
But that's about as specific as anyone can get, given that you've provided so little information (i.e. no minimal runnable example, as recommended here).
How about using clusplot from package cluster with partitioning around medoids? Here is a simple example (from the example section):
require(cluster)
#generate 25 objects, divided into 2 clusters.
x <- rbind(cbind(rnorm(10,0,0.5), rnorm(10,0,0.5)),
cbind(rnorm(15,5,0.5), rnorm(15,5,0.5)))
clusplot(pam(x, 2)) #`pam` does you partitioning

Difference between two density plots

Is there a simple way to plot the difference between two probability density functions?
I can plot the pdfs of my data sets (both are one-dimensional vectors with roughly 11000 values) on the same plot together to get an idea of the overlap/difference but it would be more useful to me if I could see a plot of the difference.
something along the lines of the following (though this obviously doesn't work):
> plot(density(data1)-density(data2))
I'm relatively new to R and have been unable to find what I'm looking for on any of the forums.
Thanks in advance
This should work:
plot(x =density(data1, from= range(c(data1, data2))[1],
to=range(c(data1, data2))[2] )$x,
y= density(data1, from= range(c(data1, data2))[1],
to=range(c(data1, data2))[2] )$y-
density(data2, from= range(c(data1, data2))[1],
to=range(c(data1, data2))[2] )$y )
The trick is to make sure the densities have the same limits. Then you can plot their differences at the same locations.My understanding of the need for the identical limits comes from having made the error of not taking that step in answering a similar question on Rhelp several years ago. Too bad I couldn't remember the right arguments.
It looks like you need to spend a little time learning how to use R (or any other language, for that matter). Help files are your friend.
From the output of ?density :
Value [i.e. the data returned by the function]
If give.Rkern is true, the number R(K), otherwise an object with class
"density" whose underlying structure is a list containing the
following components.
x the n coordinates of the points where the density is estimated.
y the estimated density values. These will be non-negative, but can
be zero [remainder of "value" deleted for brevity]
So, do:
foo<- density(data1)
bar<- density(data2)
plot(foo$y-bar$y)

Resources