Erlang node connection timeout - networking

I have a bunch of erlang nodes running on a single machine, and they are all connected in a network. Sometimes the machine our application is on will be under extremely heavy load for several minutes. Often, after things return to normal, my erlang nodes think that they were disconnected, and I have to manually call net_adm:ping on each one of them to get them to re-connect to the network.
Any ideas on how I can avoid this situation?

You can increase the value of net_ticktime kernel configuration option so nodes will be pinged more infrequently. See also net_kernel:set_net_ticktime. Note, however, that all communicating nodes should have the same net_ticktime value specified.

Related

How would a parallel convoy orchestration behave in an active active server farm

Had an orchestration following the parallel convoy pattern to receive and wait a bunch of messages before kicking off the flow. Question is we are to move to an high variability environment with multiple active-active biztalk servers, would this be a problem? will the messagebox smart enough to figure out which host instance it should push the message to?
It's no problem at all. Don't even think about it.
An Orchestration can run an any available Host Computer but a specific instance of an Orchestration would only run on one at a time.
It doesn't matter which one.

qsub: not sharing nodes with other users

Is there a way to request full machines? At my department I have the problem that when running a large job, some processes get allocated to shared machines. I am not sure why but it happens that processes on those shared machines are extremely slowed down, possibly because of what the other user is doing.
I want to avoid this and so ideally I would be able to request not to share nodes when invoking qsub, is this possible?
We are using SGE, and different nodes have different number of cores so I can't just use ppn=4.

Scalability issue when using outgoing asynchronous web requests on IIS 7.5

A bit of a long description below, but it is a quite tricky problem. I have tried to cover what we do know about the problem in order to narrow down the search. The question is more of an ongoing investigation than a single-question based one but I think it may help others as well. But please add information in comments or correct me if you think I am wrong about some assumptions below.
UPDATE 19/2, 2013: We have cleared some question marks in this and I have a theory of what the main problem is which I'll update below. Not ready to write a "solved" response to it yet though.
UPDATE 24/4, 2013: Things have been stable in production (though I believe it is temporary) for a while now and I think it is due to two reasons. 1) port increase, and 2) reduced number of outgoing (forwarded) requests. I'll continue this update futher down in the correct context.
We are currently doing an investigation in our production environment to determine why our IIS web server does not scale when too many outgoing asynchronous web service requests are being done (one incoming request may trigger multiple outgoing requests).
CPU is only at 20%, but we receive HTTP 503 errors on incoming requests and many outgoing web requests get the following exception: “SocketException: An operation on a socket could not be performed because the system lacked sufficient buffer space or because a queue was full” Clearly there is a scalability bottleneck somewhere and we need to find out what it is and if it is possible to solve it by configuration.
Application context:
We are running IIS v7.5 integrated managed pipeline using .NET 4.5 on Windows 2008 R2 64 bit operating system. We use only 1 worker process in IIS. Hardware varies slightly but the machine used for examining the error is an Intel Xeon 8 core (16 hyper threaded).
We use both asynchronous and synchronous web requests. Those that are asynchronous are using the new .NET async support to make each incoming request make multiple HTTP requests in the application to other servers on persisted TCP connections (keep-alive). Synchronous request execution time is low 0-32 ms (longer times occur due to thread context switching). For the asynchronous requests, execution time can be up to 120 ms before the requests are aborted.
Normally each server serves up to ~1000 incoming requests. Outgoing requests are ~300 requests/sec up to ~600 requests/sec when problem starts to arise. Problems only occurs when outgoing async. requests are enabled on the server and we go above a certain level of outgoing requests (~600 req./s).
Possible solutions to the problem:
Searching the Internet on this problem reveals a plethora of possible solutions candidates. Though, they are very much dependent upon versions of .NET, IIS and operating system so it takes time to find something in our context (anno 2013).
Below is a list of solution candidates and the conclusions we have come to so far with regards to our configuration context. I have categorised the detected problem areas, so far in the following main categories:
Some queue(s) fill up
Problems with TCP connections and ports (UPDATE 19/2, 2013: This is the problem)
Too slow allocation of resources
Memory problems (UPDATE 19/2, 2013: This is most likely another problem)
1) Some queue(s) fill up
The outgoing asynchronous request exception message does indicate that some queue of buffer has been filled up. But it does not say which queue/buffer. Via the IIS forum (and blog post referenced there) I have been able to distinguish 4 of possibly 6 (or more) different types of queues in the request pipeline labeled A-F below.
Though it should be stated that of all the below defined queues, we see for certain that the 1.B) ThreadPool performance counter Requests Queued gets very full during the problematic load. So it is likely that the cause of the problem is in .NET level and not below this (C-F).
1.A) .NET Framework level queue?
We use the .NET framework class WebClient for issuing the asynchronous call (async support) as opposed to the HttpClient that we experienced had the same issue but with far lower req/s threshold. We do not know if the .NET Framework implementation hides any internal queue(s) or not above the Thread pool. We don’t think this is the case.
1.B) .NET Thread Pool
The Thread pool acts as a natural queue since the .NET Thread (default) Scheduler is picking threads from the thread pool to be executed.
Performance counter: [ASP.NET v4.0.30319].[Requests Queued].
Configuration possibilities:
(ApplicationPool) maxConcurrentRequestsPerCPU should be 5000 (instead of previous 12). So in our case it should be 5000*16=80.000 requests/sec which should be sufficient enough in our scenario.
(processModel) autoConfig = true/false which allows some threadPool related configuration to be set according to machine configuration. We use true which is a potential error candidate since these values may be set erroneously for our (high) need.
1.C) Global, process wide, native queue (IIS integrated mode only)
If the Thread Pool is full, requests starts to pile up in this native (not-managed) queue.
Performance counter:[ASP.NET v4.0.30319].[Requests in Native Queue]
Configuration possibilities: ????
1.D) HTTP.sys queue
This queue is not the same queue as 1.C) above. Here’s an explanation as stated to me “The HTTP.sys kernel queue is essentially a completion port on which user-mode (IIS) receives requests from kernel-mode (HTTP.sys). It has a queue limit, and when that is exceeded you will receive a 503 status code. The HTTPErr log will also indicate that this happened by logging a 503 status and QueueFull“.
Performance counter: I have not been able to find any performance counter for this queue, but by enabling the IIS HTTPErr log, it should be possible to detect if this queue gets flooded.
Configuration possibilities: This is set in IIS on the application pool, advanced setting: Queue Length. Default value is 1000. I have seen recommendations to increase it to 10.000. Though trying this increase has not solved our issue.
1.E) Operating System unknown queue(s)?
Although unlikely, I guess the OS could actually have a queue somewhere in between the network card buffer and the HTTP.sys queue.
1.F) Network card buffer:
As request arrive to the network card, it should be natural that they are placed in some buffer in order to be picked up by some OS kernel thread. Since this is kernel level execution, and thus fast, it is not likely that it is the culprit.
Windows Performance Counter: [Network Interface].[Packets Received Discarded] using the network card instance.
Configuration possibilities: ????
2) Problems with TCP connections and ports
This is a candidate that pops up here and there, though our outgoing (async) TCP requests are made of a persisted (keep-alive) TCP connection. So as the traffic grows, the number of available ephemeral ports should really only grow due to the incoming requests. And we know for sure that the problem only arises when we have outgoing requests enabled.
However, the problem may still arise due to that the port is allocated during a longer timeframe of the request. An outgoing request may take as long as 120 ms to execute (before the .NET Task (thread) is canceled) which might mean that the number of ports get allocated for a longer time period. Analyzing the Windows Performance Counter, verifies this assumption since the number of TCPv4.[Connection Established] goes from normal 2-3000 to peaks up to almost 12.000 in total when the problem occur.
We have verified that the configured maximum amount of TCP connections is set to the default of 16384. In this case, it may not be the problem, although we are dangerously close to the max limit.
When we try using netstat on the server it mostly returns without any output at all, also using TcpView shows very few items in the beginning. If we let TcpView run for a while it soon starts to show new (incoming) connections quite rapidly (say 25 connections/sec). Almost all connections are in TIME_WAIT state from the beginning, suggesting that they have already completed and waiting for clean up. Do those connections use ephemeral ports? The local port is always 80, and the remote port is increasing. We wanted to use TcpView in order to see the outgoing connections, but we can’t see them listed at all, which is very strange. Can’t these two tools handle the amount of connections we are having?
(To be continued.... But please fill in with info if you know it… )
Furhter more, as a side kick here. It was suggested in this blog post "ASP.NET Thread Usage on IIS 7.5, IIS 7.0, and IIS 6.0" that ServicePointManager.DefaultConnectionLimit should be set to int maxValue which otherwise could be a problem. But in .NET 4.5, this is the default already from the start.
UPDATE 19/2, 2013:
It is reasonable to assume that we did in fact hit the max limit of 16.384 ports. We doubled the number of ports on all but one server and only the old server would run into problem when we hit the old peak load of outgoing requests. So why did the TCP.v4.[Connections Established] never show us a higher number than ~12.000 at problem times? MY theory: Most likely, although not established as fact (yet), the Performance Counter TCPv4.[Connections Established] is not equivalent to the number of ports that are currently allocated. I have not had time to catch up on the TCP state studying yet, but I am guessing that there are more TCP states than what the "Connection Established" shows which would render the port as being ccupied. Though since we cannot use the "Connection Established" performance counter as a way to detect the danger of running out of ports, it is important that we find some other way of detecting when reaching this max port range. And as described in the text above, we are not able to use either with NetStat or the application TCPview for this on our production servers. This is a problem! (I'll write more about it in an upcoming response I think to this post)
The number of ports are restricted on windows to some maximum 65.535 (although the first ~1000 should probably not be used). But it should be possible to avoid the problem of running out of ports by decreasing the time for TCP state TIME_WAIT (default to 240 seconds) as described in numerous places.It should free up ports faster. I was first a bit hestitant about this doing this since we use both long running database queries as well as WCF calls on TCP and I wouldn't like to descrease the time constraint. Although not having caught up in my TCP state machine reading yet, I think it might not be a problem after all. The state TIME_WAIT, I think, is only there in order to allow for the handshake of a proper shut down to the client. So the actual data transfer on an existing TCP connection should not time out due to this time limit. Worse case scenario, the client is not shut down properly and it instead neads to time out. I guess all browsers may not be implementing this correctly and it could possibly be a problem on the client side only. Though I am guessing a bit here...
END UPDATE 19/2, 2013
UPDATE 24/4, 2013:
We have increased the number of port to to the maximum value. At the same time we do not get as many forwarded outgoing requests as earlier. These two in combination should be the reason why we have not had any incidents. However, it is only temporary since the number of outgoing requests are bound to increase again in the future on these servers. The problem thus lies in, I think, that port for the incoming requests has to remain open during the time frame for the response of the forwarded requests. In our application, this cancelation limit for these forwarded requests is 120 ms which could be compared with the normal <1ms to handle a non forwarded request. So in essence, I believe the definite number of ports is the major scalability bottleneck on such high throughput servers (>1000 requests/sec on ~16 cores machines) that we are using. This in combination with the GC work on cache reload (se below) makes the server especially vulernable.
END UPDATE 24/4
3) Too slow allocation of resources
Our performance counters show that the number of queued requests in the Thread Pool (1B) fluctuates a lot during the time of the problem. So potentially this means that we have a dynamic situation in which the queue length starts to oscillate due to changes in the environment. For instance, this would be the case if there are flooding protection mechanisms that are activated when traffic is flooding. As it is, we have a number of these mechanisms:
3.A) Web load balancer
When things go really bad and the server responds with a HTTP 503 error, the load balancer will automatically remove the web server from being active in production for a 15 second period. This means that the other servers will take the increased load during the time frame. During the “cooling period”, the server may finish serving its request and it will automatically be reinstated when the load balancer does its next ping. Of course this only is good as long as all servers don’t have a problem at once. Luckily, so far, we have not been in this situation.
3.B) Application specific valve
In the web application, we have our own constructed valve (Yes. It is a "valve". Not a "value") triggered by a Windows Performance Counter for Queued Requests in the thread pool. There is a thread, started in Application_Start, that checks this performance counter value each second. And if the value exceeds 2000, all outgoing traffic ceases to be initiated. The next second, if the queue value is below 2000, outgoing traffic starts again.
The strange thing here is that it has not helped us from reaching the error scenario since we don’t have much logging of this occurring. It may mean that when traffic hits us hard, things goes bad really quickly so that the 1 second time interval check actually is too high.
3.C) Thread pool slow increase (and decrease) of threads
There is another aspect of this as well. When there is a need for more threads in the application pool, these threads gets allocated very slowly. From what I read, 1-2 threads per second. This is so because it is expensive to create threads and since you don’t want too many threads anyways in order to avoid expensive context switching in the synchronous case, I think this is natural. However, it should also mean that if a sudden large burst of traffic hits us, the number of threads are not going to be near enough to satisfy the need in the asynchronous scenario and queuing of requests will start. This is a very likely problem candidate I think. One candidate solution may be then to increase the minimum amount of created threads in the ThreadPool. But I guess this may also effect performance of the synchronously running requests.
4) Memory problems
(Joey Reyes wrote about this here in a blog post)
Since objects get collected later for asynchronous requests (up to 120ms later in our case), memory problem can arise since objects can be promoted to generation 1 and the memory will not be recollected as often as it should. The increased pressure on the Garbage Collector may very well cause extended thread context switching to occur and further weaken capacity of the server.
However, we don’t see an increased GC- nor CPU usage during the time of the problem so we don’t think the suggested CPU throttling mechanism is a solution for us.
UPDATE 19/2, 2013: We use a cache swap mechanism at regular intervalls at which an (almost) full in-memory cache is reload into memory and the old cache can get garbage collected. At these times, the GC will have to work harder and steal resources from the normal request handling. Using Windows Performance counter for thread context switching it shows that the number of context switches decreases significantly from the normal high value at the time of a high GC usage. I think that during such cache reloads, the server is extra vulnernable for queueing up requests and it is necessary to reduce the footprint of the GC. One potential fix to the problem would be to just fill the cache without allocating memory all the time. A bit more work, but it should be doable.
UPDATE 24/4, 2013:
I am still in the middle of the cache reload memory tweak in order to avoid having the GC running as much. But we normally have some 1000 queued requests temporarily when the GC runs. Since it runs on all threads, it is naturall that it steals resources from the normal requests handling. I'll update this status once this tweak has been deployed and we can see a difference.
END UPDATE 24/4
I have implemented a reverse proxy through an Async Http Handler for benchmarking purposes (as a part of my Phd. Thesis) and run into the very same problems as you.
In order to scale it is mandatory to have processModel set to false and fine tune the thread pools. I have found that, contrary to what the documentation regarding processModel defaults says, many of the thread pools are not properly configured when processModel is set to true. The maxConnection setting it is also important as it limits your scalability if the limit is set too low. See http://support.microsoft.com/default.aspx?scid=kb;en-us;821268
Regarding your app running out of ports because of the TIME_WAIT delay on the socket, I have also faced the same problem because I was injecting traffic from a limited set of machines with more than 64k requests in 240 seconds. I lowered the TIME_WAIT to 30 seconds without any problems.
I also mistakenly reused a proxy object to a Web Services endpoint in several threads. Although the proxy doesn't have any state, I found that the GC had a lot of problems collecting the memory associated with its internal buffers (String [] instances) and that caused my app to run out of memory.
Some interesting performance counters that you should monitor are the ones related to Queued requests, requests in execution and request time under the ASP.NET apps category. If you see queued requests or that the execution time is low but the clients see long request times, then you have some sort of contention in your server. Also monitor counters under the LocksAndThreads category looking for contention.
Since asynchronous requests hold up the tcp sockets for longer, maybe you need to look at
maxconnection property within connection management in your web.config?
Please refer to this link: http://support.microsoft.com/default.aspx?scid=kb;en-us;821268
We faced similar problem and tuned this parameter to fix our issue. Maybe this will help you.
Edit: Also, lots of TIME_WAITs indicate a connection leak within the code based on past experience. Possible causes: 1) Not disposing connections used. 2) Incorrect implementation of connection pooling.

{ ProcessName, NodeName } ! Message VS rpc:call/4 VS HTTP/1.1 across Erlang Nodes

I have a setup in which two nodes are going to be communicating a lot. On Node A, there are going to be thousands of processes, which are meant to access services on Node B. There is going to be a massive load of requests and responses across the two nodes. The two Nodes, will be running on two different servers, each on its own hardware server.
I have 3 Options: HTTP/1.1 , rpc:call/4 and Directly sending a message to a registered gen_server on Node B. Let me explain each option.
HTTP/1.1 Suppose that on Node A, i have an HTTP Client like Ibrowse, and on Node B, i have a web server like Yaws-1.95, the web server being able to handle unlimited connections, the operating system settings tweaked to allow yaws to handle all connections. And then make my processes on Node A to communicate using HTTP. In this case each method call, would mean a single HTTP request and a reply. I believe there is an overhead here, but we are evaluating options here. The erlang Built in mechanism called webtool, may be built for this kind of purpose.
rpc:call/4 I could simply make direct rpc calls from Node A to Node B. I am not very susre how the underlying rpc mechanism works , but i think that when two erlang nodes connect via net_adm:ping/1, the created connection is not closed but all rpc calls use this pipe to transmit requests and pass responses. Please correct me on this one.Sending a Message from Node A to Node B I could make my processes on Node A to just send message to a registered process, or a group of processes on Node B. This too seems a clean option.
Q1. Which of the above options would you recommend and why, for an application in which two erlang nodes are going to have enormous communications between them all the time. Imagine a messaging system, in which two erlang nodes are the routers :) ? Q2. Which of the above methods is cleaner, less problematic and is more fault tolerant (i mean here that, the method should NOT have single point of failure, that could lead to all processes on Node A blind) ? Q3. The mechanism of your choice: how would you make it even more fault tolerant, or redundant? Assumptions: The Nodes are always alive and will never go down, the network connection between the nodes will always be available and non-congested (dedicated to the two nodes only) , the operating system have allocated maximum resources to these two nodes. Thank you for your evaluations
HTTP is definitely out. Just the round-trip overhead of creating a new connection is a problem.
As for Erlang connections and using Pids, you have the advantage that you can subscribe to node-down messages and handle the case where a node goes down. A single TCP connection should be able to give you very fast speeds, however, be aware that it works like a long pipe: messages are muxed and demuxed on a pipe which can affect latency on the line. It also means that large messages will block small messages from getting through.
How much bandwidth are you aiming for, and at what latency? What is the 95th and 99th percentile of answering messages? It is better to put up some rough numbers and then try to target these than just having "as fast as possible". Set your success criteria first.
Q1: HTTP will add additional overhead and will give you nothing in my opinion. HTTP would be useful if you were designing a REST API. Directly sending messages and rpc:call look about the same as far as overhead is regarded.
Q2: Sending messages is much much clearer. It's the way erlang is designed. With RPC calls you must always track which call is executed where and under which circumstances which can be a huge issue if the two servers have state. Also RPC calls are synchronous.
Q3: I would use UBF if I can afford minor overhead, otherwise I would directly send messages between the erlang nodes. If the bandwidth is an issue other trickery would be needed as well. Like encoding the messages in same way and then using some compression algorithm to reduce the size of the message, alternatively I may ditch the erlang message passing altogether and use UDP sockets.
It is not obvious that ! is the best way to go. Definitely, it is the easiest and the code will be the most elegant.
In terms of scalability, take under consideration that to use rpc/! you have to maintain an erlang cluster. I found it painful having just 10-20 nodes even in private cloud. I would never recommend bigger deployments on e.g. EC2, where io/latency/network is not deterministic.
I recommend to structure the project in a way that will let you exchange communication engine in the future. Also HTTP is pretty heavy, but there are options:
socket-socket (tcp/udp/sctp)
amqp (many benefits connected to load balancing)
zeromq (even nicer than amqp)
Betting on !/rpc and OTP cluster is risky. You will fight with full mesh overhead, master election algos and quorum/partition detection.

How to retain one million simultaneous TCP connections?

I am to design a server that needs to serve millions of clients that are simultaneously connected with the server via TCP.
The data traffic between the server and the clients will be sparse, so bandwidth issues can be ignored.
One important requirement is that whenever the server needs to send data to any client it should use the existing TCP connection instead of opening a new connection toward the client (because the client may be behind a firewall).
Does anybody know how to do this, and what hardware/software is needed (at the least cost)?
What operating systems are you considering for this?
If using a Windows OS and using something later than Vista then you shouldn't have a problem with many thousands of connections on a single machine. I've run tests (here: http://www.lenholgate.com/blog/2005/11/windows-tcpip-server-performance.html) with a low spec Windows Server 2003 machine and easily achieved more than 70,000 active TCP connections. Some of the resource limits that affect the number of connections possible have been lifted considerably on Vista (see here: http://www.lenholgate.com/blog/2005/11/windows-tcpip-server-performance.html) and so you could probably achieve your goal with a small cluster of machines. I don't know what you'd need in front of those to route the connections.
Windows provides a facility called I/O Completion Ports (see: http://msdn.microsoft.com/en-us/magazine/cc302334.aspx) which allow you to service many thousands of concurrent connections with very few threads (I was running tests yesterday with 5000 connections saturating a link to a server with 2 threads to process the I/O...). Thus the basic architecture is very scalable.
If you want to run some tests then I have some freely available tools on my blog that allow you to thrash a simple echo server using many thousands of connections (1) and (2) and some free code which you could use to get you started (3)
The second part of your question, from your comments, is more tricky. If the client's IP address keeps changing and there's nothing between you and them that is providing NAT to give you a consistent IP address then their connections will, no doubt, be terminated and need to be re-established. If the clients detect this connection tear down when their IP address changes then they can reconnect to the server, if they can't then I would suggest that the clients need to poll the server every so often so that they can detect the connection loss and reconnect. There's nothing the server can do here as it can't predict the new IP address and it will discover that the old connection has failed when it tries to send data.
And remember, your problems are only just beginning once you get your system to scale to this level...
This problem is related to the so-called C10K problem. The C10K page lists a large number of good resources for addressing the problems you will encounter when you try to allow thousands of clients to connect to the same server.
I've come across the APE Project
a while back. It seems like a dream come true. They can support up to 100k concurrent clients on a single node. Spread them across 10 or 20 nodes, and you can serve millions. Perfect for RESTful applications. Might want to look deeper for any shared namespace. One drawback is that this is a standalone server, as in supplementary to a web server. This server is of course Open Source, so any cost is hardware/ISP related.
You cannot use UDP. If the client sends a request and you don't reply immediately, a router is going to forget the reverse route in 30 seconds or less, so your server will never be able to reply to the client.
TCP is the only option, and it, too, will give you headaches. Most routers are going to forget the route and/or drop the connection after a few minutes, so your client/server code is going to have to send "keep alives" fairly often.
I recommend setting up a "sniffer", to see how the phone companies are staying in touch with your smartphone for their "push" technology. Copy whatever they're doing, because that stuff works!
As Greg mentioned, the problem you are describing is C10K (or rather "C1M" in your case )
I recently made a simple TCP echo server on linux that scales very well with the number of sessions (only tested up to 200.000 though), by using the epoll queue. On BSD, you have something similar called kqueue.
You can check out the code if you want to. Hope this helps and good luck!
EDIT: As noted in the comments below, my original assertion that there is a 64K limit based on the number of ports is incorrect, however there is a 32K limit on the number of socket handles, so my suggested design is valid.
With a typical TCP/IP server design, you're limited in the number of simultaneous open connections you can have. The server has one listening port, and when a client connects to it the server makes an accept call, and that creates a new socket on a random port for the rest of the connection.
To handle more than 64K simultaneous connections I think you need to use UDP instead. You only need one port for the server to listen on, and you need to manage the connections using a 32-bit client ID in the packet data instead of having a separate port for each client. The 32-bit client ID could be the client's IP address, and the client can listen on a known UDP port for messages coming back from the server. That port would be the only one that needs to be open on the firewall.
With this approach, your only limitation is how quickly you can handle and respond to UDP messages. With millions of clients, even sparse traffic could give you large spikes, and if you don't read the packets fast enough your input queue will fill up and you'll start dropping packets. The C10K page Greg points to will give you strategies for that.

Resources