It is not advisable to store email addresses in databases in plain text, so I would like to find out the best algorithm to do this. Options are:
(From the documentation)
CFMX_COMPAT: the algorithm used in ColdFusion MX and prior releases. This algorithm is the least secure option (default).
AES: the Advanced Encryption Standard specified by the National Institute of Standards and Technology (NIST) FIPS-197.
BLOWFISH: the Blowfish algorithm defined by Bruce Schneier.
DES: the Data Encryption Standard algorithm defined by NIST FIPS-46-3.
DESEDE: the "Triple DES" algorithm defined by NIST FIPS-46-3.
Another questions is where should the key be stored? In the database or in the source code? Will it be encrypted or not? If it will be encrypted, then the question raises of how the key that will encrypt the key be stored.
Should it be stored in the source code, will sourceless distribution be good?
I would use AES. it's the fastest of those listed and the strongest.
As for where to store the key, that is the $64,000 question. You should not put it in the DB (At least not in the same DB as the data it is being used to encipher) or in your source code.
Key management is a beast of a topic. NIST has hundreds of pages of documentation on ways to do it.
http://csrc.nist.gov/groups/ST/toolkit/key_management.html
Key Management involves proper generaton, exchange, storage, rotation, and destruction of keys. You should not use the same key forever (a very common mistake) nor store it improperly.
You should take a look at the NIST guidelines and determine a strategy that works for you and adequately protects your data based on its sensitivity.
Use AES or DESEDE - they're strong and in my experience have a lot of wide compatibility should you need to port this information for some reason.
As for the key, this isn't REAL critical data. Typically you would create a compsite key out of a unique piece of information for that data (like the userId) and a private key (salt) such as a constant in the code base:
Somewhere in your global settings / constants :
<cfset myCodeBaseKey = "NateIsAwesome">
Then when you're ready to encrypt:
<cfset myKey = hash(myCodeBaseKey & user.userId, "SHA")>
P.s. it works better if you use that exact salt phrase I hear. :P~
Related
can we utilise a general purpose HSM for EMV related work ? like ARQC/ARPC ? PCI guidelines do not specifically prohibit general purpose HSM from being used. There are certain constraints (e.g. disallow trnslation of ISO Type 0 to Type 1), etc.
But im generally curious - has anyone passed certification of a EMV switch using a general purpose HSM ?
Here's why I think it is possible:
ISO 9564 and TR-31 standards mandate that a few common things like
b) It must prevent the determination of key length for variable length
keys.
c) It must ensure that the key can only be used for a specific
algorithm (such as TDES or AES, but not both).
d) It must ensure a modified key or key block can be rejected prior to use, regardless of the utility of the key after modification. Modification includes changing any bits of the key, as well as the reordering or manipulation of individual single DES keys within a TDES key block
In forthcoming TR-31 regulations, I see that AWS KMS is compliant at the "at-rest integrity checks" using stuff like EncryptionContext and Policy Constraints
so im generally wondering what prevents us from using KMS for this purpose ?
For
`BDK = "0123456789ABCDEFFEDCBA9876543210"` `KSN = "FFFF9876543210E00008"`
The ciphertext generated was below
"C25C1D1197D31CAA87285D59A892047426D9182EC11353C051ADD6D0F072A6CB3436560B3071FC1FD11D9F7E74886742D9BEE0CFD1EA1064C213BB55278B2F12"`
which I found here. I know this cipher-text is based on BDK and KSN but how this 128 length cipher text was generated? What are steps involved in it or algorithm used for this? Could someone explain in simple steps. I found it hard to understand the documents I got while googled.
Regarding DUKPT , there are some explanations given on Wiki. If that doesn't suffice you, here goes some brief explanation.
Quoting http://www.maravis.com/library/derived-unique-key-per-transaction-dukpt/
What is DUKPT?
Derived Unique Key Per Transaction (DUKPT) is a key management scheme. It uses one time encryption keys that are derived from a secret master key that is shared by the entity (or device) that encrypts and the entity (or device) that decrypts the data.
Why DUKPT?
Any encryption algorithm is only as secure as its keys. The strongest algorithm is useless if the keys used to encrypt the data with the algorithm are not secure. This is like locking your door with the biggest and strongest lock, but if you hid the key under the doormat, the lock itself is useless. When we talk about encryption, we also need to keep in mind that the data has to be decrypted at the other end.
Typically, the weakest link in any encryption scheme is the sharing of the keys between the encrypting and decrypting parties. DUKPT is an attempt to ensure that both the parties can encrypt and decrypt data without having to pass the encryption/decryption keys around.
The Cryptographic Best Practices document that VISA has published also recommends the use of DUKPT for PCI DSS compliance.
How DUKPT Works
DUKPT uses one time keys that are generated for every transaction and then discarded. The advantage is that if one of these keys is compromised, only one transaction will be compromised. With DUKPT, the originating (say, a Pin Entry Device or PED) and the receiving (processor, gateway, etc) parties share a key. This key is not actually used for encryption. Instead, another one time key that is derived from this master key is used for encrypting and decrypting the data. It is important to note that the master key should not be recoverable from the derived one time key.
To decrypt data, the receiving end has to know which master key was used to generate the one time key. This means that the receiving end has to store and keep track of a master key for each device. This can be a lot of work for someone that supports a lot of devices. A better way is required to deal with this.
This is how it works in real-life: The receiver has a master key called the Base Derivation Key (BDK). The BDK is supposed to be secret and will never be shared with anyone. This key is used to generate keys called the Initial Pin Encryption Key (IPEK). From this a set of keys called Future Keys is generated and the IPEK discarded. Each of the Future keys is embedded into a PED by the device manufacturer, with whom these are shared. This additional derivation step means that the receiver does not have to keep track of each and every key that goes into the PEDs. They can be re-generated when required.
The receiver shares the Future keys with the PED manufacturer, who embeds one key into each PED. If one of these keys is compromised, the PED can be rekeyed with a new Future key that is derived from the BDK, since the BDK is still safe.
Encryption and Decryption
When data needs to be sent from the PED to the receiver, the Future key within that device is used to generate a one time key and then this key is used with an encryption algorithm to encrypt the data. This data is then sent to the receiver along with the Key Serial Number (KSN) which consists of the Device ID and the device transaction counter.
Based on the KSN, the receiver then generates the IPEK and from that generates the Future Key that was used by the device and then the actual key that was used to encrypt the data. With this key, the receiver will be able to decrypt the data.
Source
First, let me quote the complete sourcecode you linked and of which you provided only 3 lines...
require 'bundler/setup'
require 'test/unit'
require 'dukpt'
class DUKPT::DecrypterTest < Test::Unit::TestCase
def test_decrypt_track_data
bdk = "0123456789ABCDEFFEDCBA9876543210"
ksn = "FFFF9876543210E00008"
ciphertext = "C25C1D1197D31CAA87285D59A892047426D9182EC11353C051ADD6D0F072A6CB3436560B3071FC1FD11D9F7E74886742D9BEE0CFD1EA1064C213BB55278B2F12"
plaintext = "%B5452300551227189^HOGAN/PAUL ^08043210000000725000000?\x00\x00\x00\x00"
decrypter = DUKPT::Decrypter.new(bdk, "cbc")
assert_equal plaintext, decrypter.decrypt(ciphertext, ksn)
end
end
Now, you're asking is how the "ciphertext" was created...
Well, first thing we know is that it is based on "plaintext", which is used in the code to verify if decryption works.
The plaintext is 0-padded - which fits the encryption that is being tested by verifying decryption with this DecrypterTest TestCase.
Let's look at the encoding code then...
I found the related encryption code at https://github.com/Shopify/dukpt/blob/master/lib/dukpt/encryption.rb.
As the DecrypterTEst uses "cbc", it becomes apparent that the encrypting uses:
#cipher_type_des = "des-cbc"
#cipher_type_tdes = "des-ede-cbc"
A bit more down that encryption code, the following solves our quest for an answer:
ciphertext = des_encrypt(...
Which shows we're indeed looking at the result of a DES encryption.
Now, DES has a block size of 64 bits. That's (64/8=) 8 bytes binary, or - as the "ciphertext" is a hex-encoded text representation of the bytes - 16 chars hex.
The "ciphertext" is 128 hex chars long, which means it holds (128 hex chars/16 hex chars=) 8 DES blocks with each 64 bits of encrypted information.
Wrapping all this up in a simple answer:
When looking at "ciphertext", you are looking at (8 blocks of) DES encrypted data, which is being represented using a human-readable, hexadecimal (2 hex chars = 1 byte) notation instead of the original binary bytes that DES encryption would produce.
As for the steps involved in "recreating" the ciphertext, I tend to tell you to simply use the relevant parts of the ruby project where you based your question upon. Simply have to look at the sourcecode. The file at "https://github.com/Shopify/dukpt/blob/master/lib/dukpt/encryption.rb" pretty much explains it all and I'm pretty sure all functionality you need can be found at the project's GitHub repository. Alternatively, you can try to recreate it yourself - using the preferred programming language of your choice. You only need to handle 2 things: DES encryption/decryption and bin-to-hex/hex-to-bin translation.
Since this is one of the first topics that come up regarding this I figured I'd share how I was able to encode the ciphertext. This is the first time I've worked with Ruby and it was specifically to work with DUKPT
First I had to get the ipek and pek (same as in the decrypt) method. Then unpack the plaintext string. Convert the unpacked string to a 72 byte array (again, forgive me if my terminology is incorrect).
I noticed in the dukpt gem author example he used the following plain text string
"%B5452300551227189^HOGAN/PAUL ^08043210000000725000000?\x00\x00\x00\x00"
I feel this string is incorrect as there shouldn't be a space after the name (AFAIK).. so it should be
"%B5452300551227189^HOGAN/PAUL^08043210000000725000000?\x00\x00\x00\x00"
All in all, this is the solution I ended up on that can encrypt a string and then decrypt it using DUKPT
class Encrypt
include DUKPT::Encryption
attr_reader :bdk
def initialize(bdk, mode=nil)
#bdk = bdk
self.cipher_mode = mode.nil? ? 'cbc' : mode
end
def encrypt(plaintext, ksn)
ipek = derive_IPEK(bdk, ksn)
pek = derive_PEK(ipek, ksn)
message = plaintext.unpack("H*").first
message = hex_string_from_unpacked(message, 72)
encrypted_cryptogram = triple_des_encrypt(pek,message).upcase
encrypted_cryptogram
end
def hex_string_from_unpacked val, bytes
val.ljust(bytes * 2, "0")
end
end
boomedukpt FFFF9876543210E00008 "%B5452300551227189^HOGAN/PAUL^08043210000000725000000?"
(my ruby gem, the KSN and the plain text string)
2542353435323330303535313232373138395e484f47414e2f5041554c5e30383034333231303030303030303732353030303030303f000000000000000000000000000000000000
(my ruby gem doing a puts on the unpacked string after calling hex_string_from_unpacked)
C25C1D1197D31CAA87285D59A892047426D9182EC11353C0B82D407291CED53DA14FB107DC0AAB9974DB6E5943735BFFE7D72062708FB389E65A38C444432A6421B7F7EDD559AF11
(my ruby gem doing a puts on the encrypted string)
%B5452300551227189^HOGAN/PAUL^08043210000000725000000?
(my ruby gem doing a puts after calling decrypt on the dukpt gem)
Look at this: https://github.com/sgbj/Dukpt.NET, I was in a similar situation where i wondered how to implement dukpt on the terminal when the terminal has its own function calls which take the INIT and KSN to create the first key, so my only problem was to make sure the INIT key was generated the same way on the terminal as it is in the above mentioned repo's code, which was simple enough using ossl encryption library for 3des with ebc and applying the appropriate masks.
I have an AES256 key that I use for encrypting SSNs in my application. Now I need to encrypt the security answer.
Is it advisable to use different keys to encrypt each field or can I use the same key to encrypt multiple fields?
We have one key for most encrypted fields and another for a few extra sensitive fields. The thought behind it is if someone gets the common key, they still would not have access to the most sensitive information.
I have no idea how this fits in "best practices", but it has worked well for us so far.
Regardless of what you do, someone determined to hack it will find a way. You just need to find the balance and level required for the type of information you are storing. When it comes to SSN and other personal information like that, it is hard to be "overly secure".
As long as you keep to best practices it is possible to use the same key for encrypting multiple fields. With best practices I mean that you need to use a random IV if you are using AES CBC encryption.
Note that the key size of AES is not that important. Having a good key infrastructure, good server security and a cryptographically secure protocol is much more important. AES-128 or even triple DES is almost infinitely safer than AES-256 if the latter is deployed improperly.
I've an idea in my mind but I've no idea what the magic words are to use in Google - I'm hoping to describe the idea here and maybe someone will know what I'm looking for.
Imagine you have a database. Lots of data. It's encrypted. What I'm looking for is an encryption whereby to decrypt, a variable N must at a given time hold the value M (obtained from a third party, like a hardware token) or it failed to decrypt.
So imagine AES - well, AES is just a single key. If you have the key, you're in. Now imagine AES modified in such a way that the algorithm itself requires an extra fact, above and beyond the key - this extra datum from an external source, and where that datum varies over time.
Does this exist? does it have a name?
This is easy to do with the help of a trusted third party. Yeah, I know, you probably want a solution that doesn't need one, but bear with me — we'll get to that, or at least close to that.
Anyway, if you have a suitable trusted third party, this is easy: after encrypting your file with AES, you just send your AES key to the third party, ask them to encrypt it with their own key, to send the result back to you, and to publish their key at some specific time in the future. At that point (but no sooner), anyone who has the encrypted AES key can now decrypt it and use it to decrypt the file.
Of course, the third party may need a lot of key-encryption keys, each to be published at a different time. Rather than storing them all on a disk or something, an easier way is for them to generate each key-encryption key from a secret master key and the designated release time, e.g. by applying a suitable key-derivation function to them. That way, a distinct and (apparently) independent key can be generated for any desired release date or time.
In some cases, this solution might actually be practical. For example, the "trusted third party" might be a tamper-resistant hardware security module with a built-in real time clock and a secure external interface that allows keys to be encrypted for any release date, but to be decrypted only for dates that have passed.
However, if the trusted third party is a remote entity providing a global service, sending each AES key to them for encryption may be impractical, not to mention a potential security risk. In that case, public-key cryptography can provide a solution: instead of using symmetric encryption to encrypt the file encryption keys (which would require them either to know the file encryption key or to release the key-encryption key), the trusted third party can instead generate a public/private key pair for each release date and publish the public half of the key pair immediately, but refuse to disclose the private half until the specified release date. Anyone else holding the public key may encrypt their own keys with it, but nobody can decrypt them until the corresponding private key has been disclosed.
(Another partial solution would be to use secret sharing to split the AES key into the shares and to send only one share to the third party for encryption. Like the public-key solution described above, this would avoid disclosing the AES key to the third party, but unlike the public-key solution, it would still require two-way communication between the encryptor and the trusted third party.)
The obvious problem with both of the solutions above is that you (and everyone else involved) do need to trust the third party generating the keys: if the third party is dishonest or compromised by an attacker, they can easily disclose the private keys ahead of time.
There is, however, a clever method published in 2006 by Michael Rabin and Christopher Thorpe (and mentioned in this answer on crypto.SE by one of the authors) that gets at least partially around the problem. The trick is to distribute the key generation among a network of several more or less trustworthy third parties in such a way that, even if a limited number of the parties are dishonest or compromised, none of them can learn the private keys until a sufficient majority of the parties agree that it is indeed time to release them.
The Rabin & Thorpe protocol also protects against a variety of other possible attacks by compromised parties, such as attempts to prevent the disclosure of private keys at the designated time or to cause the generated private or public keys not to match. I don't claim to understand their protocol entirely, but, given that it's based on a combination of existing and well studies cryptographic techniques, I see no reason why it shouldn't meet its stated security specifications.
Of course, the major difficulty here is that, for those security specifications to actually amount to anything useful, you do need a distributed network of key generators large enough that no single attacker can plausibly compromise a sufficient majority of them. Establishing and maintaining such a network is not a trivial exercise.
Yes, the kind of encrpytion you are looking for exists. It is called timed-release encryption, or abbreviated TRE. Here is a paper about it: http://cs.brown.edu/~foteini/papers/MathTRE.pdf
The following is an excerpt from the abstract of the above paper:
There are nowdays various e-business applications, such as sealedbid auctions and electronic voting, that require time-delayed decryption of encrypted data. The literature oers at least three main categories of protocols that provide such timed-release encryption (TRE).
They rely either on forcing the recipient of a message to solve some time-consuming, non-paralellizable problem before being able to decrypt, or on the use of a trusted entity responsible for providing a piece of information which is necessary for decryption.
I personally like another name, which is "time capsule cryptography", probably coined at crypto.stackoverflow.com: Time Capsule cryptography?.
A quick answer is no: the key used to decrypt the data cannot change in time, unless you decrypt and re-encrypt all the database periodically (I suppose it is not feasible).
The solution suggested by #Ilmari Karonen is the only one feasible but it needs a trusted third party, furthermore, once obtained the master AES key it is reusable in the future: you cannot use 'one time pads' with that solution.
If you want your token to be time-based you can use TOTP algorithm
TOTP can help you generate a value for variable N (token) at a given time M. So the service requesting the access to your database would attach a token which was generated using TOTP. During validation of token at access provider end, you'll validate if the token holds the correct value based on the current time. You'll need to have a Shared Key at both the ends to generate same TOTP.
The advantage of TOTP is that the value changes with time and one token cannot be reused.
I have implemented a similar thing for two factor authentication.
"One time Password" could be your google words.
I believe what you are looking for is called Public Key Cryptography or Public Key Encryption.
Another good word to google is "asymmetric key encryption scheme".
Google that and I'm quite sure you'll find what you're looking for.
For more information Wikipedia's article
An example of this is : Diffie–Hellman key exchange
Edit (putting things into perspective)
The second key can be determined by an algorithm that uses a specific time (for example at the insert of data) to generate the second key which can be stored in another location.
As other guys pointed out One Time Password may be a good solution for the scenario you proposed.
There's an OTP implemented in C# that you might take a look https://code.google.com/p/otpnet/.
Ideally, we want a generator that depends on the time, but I don't know any algorithm that can do that today.
More generally, if Alice wants to let Bob know about something at a specific point in time, you can consider this setup:
Assume we have a public algorithm that has two parameters: a very large random seed number and the expected number of seconds the algorithm will take to find the unique solution of the problem.
Alice generates a large seed.
Alice runs it first on her computer and computes the solution to the problem. It is the key. She encrypts the message with this key and sends it to Bob along with the seed.
As soon as Bob receives the message, Bob runs the algorithm with the correct seed and finds the solution. He then decrypts the message with this key.
Three flaws exist with this approach:
Some computers can be faster than others, so the algorithm has to be made in such a way as to minimize the discrepancies between two different computers.
It requires a proof of work which may be OK in most scenarios (hello Bitcoin!).
If Bob has some delay, then it will take him more time to see this message.
However, if the algorithm is independent of the machine it runs on, and the seed is large enough, it is guaranteed that Bob will not see the content of the message before the deadline.
First off, I would like to ask if any of you know of an encryption algorithm that uses a key to encrypt the data, but no key to decrypt the data. This seems highly unlikely, if not impossible to me, so sorry if it's a stupid question.
My final question is, say you have access to the plain text data before it is encrypted, the key used to encrypt the plain text data, and the resulting encrypted data, would figuring out which algorithm used to encrypt the data be feasible?
First off, I would like to ask
if any of you know of an encryption
algorithm that uses a key to encrypt
the data, but no key to decrypt the
data.
No. There are algorithms that use a different key to decrypt than to encrypt, but a keyless method would rely on secrecy of the algorithm, generally regarded as a poor idea.
My final question is, say you have
access to the plain text data before
it is encrypted, the key used to
encrypt the plain text data, and the
resulting encrypted data, would
figuring out which algorithm used to
encrypt the data be feasible?
Most likely yes, especially given the key. A good crypto algorithm relies on the secrecy of the key, and the key alone. See kerckhoff's principle.
Also if a common algorithm is used it would be a simple matter of trial and error, and besides cryptotext often is accompanied by metadata which tells you algorithm details.
edit: as per comments, you may be thinking of digital signature (which requires a secret only on the sender side), a hash algorithm (which requires no key but isn't encryption), or a zero-knowledge proof (which can prove knowledge of a secret without revealing it).
Abstractly, we can think of the encryption system this way:
-------------------
plaintext ---> | algorithm & key | ---> ciphertext
-------------------
The system must guarantee the following:
decrypt(encrypt(plaintext, algorithm, key), algorithm, key) = plaintext
First off, I would like to ask
if any of you know of an encryption
algorithm that uses a key to encrypt
the data, but no key to decrypt the
data.
Yes, in such a system the key is redundant; all the "secrecy" lies in the algorithm.
My final question
is, say you have access to the plain
text data before it is encrypted, the
key used to encrypt the plain text
data, and the resulting encrypted
data, would figuring out which
algorithm used to encrypt the data be
feasible?
In practice, you'll probably have a small space of algorithms, so a simple brute-force search is feasible. However, there may be more than one algorithm that fits the given information. Consider the following example:
We define the following encryption and decryption operations, where plaintext, ciphertext, algorithm, and key are real numbers (assume algorithm is nonzero):
encrypt(plaintext, algorithm, key) = algorithm x (plaintext + key) = ciphertext
decrypt(ciphertext, algorithm, key) = ciphertext/algorithm - key = plaintext
Now, suppose that plaintext + key = 0. We have ciphertext = 0 for any choice of algorithm. Hence, we cannot deduce the algorithm used.
First off, I would like to ask if any of you know of an encryption algorithm that uses a key to encrypt the data, but no key to decrypt the data.
What are you getting at? It's trivial to come up with a pair of functions that fits the letter of the specification, but without knowing the intent it's hard to give a more helpful answer.
say you have access to the plain text data before it is encrypted, the key used to encrypt the plain text data, and the resulting encrypted data, would figuring out which algorithm used to encrypt the data be feasible?
If the algorithm is any good the output will be indistinguishable from random noise, so there is no analytic solution to this. As a practical matter, there are only so many trusted algorithms in wide use. Trying each one in turn would be quick, but would be complicated by the fact that an implementation has some freedom with regard to things like byte order (little-endian vs big-endian), key derivation (if you had a pass-phrase instead of the actual cryptographic key itself), encryption modes and padding.
As frankodwyer points out, this situation is not part of usual threat models. This would work in your favor, as it makes it more likely that the algorithm is a well-known one.
The best you could do without a known key in the decoder would be to add a bit of obscurity. For example, if the first step of the decode algorythm is to strip out everything except for every tenth character, then your encode key may be used to seed some random garbage for nine out of every ten characters. Thus, with different keys you could achieve different encoded results which would be decoded to the same message, with no key necessary for the decoder.
However, this does not add much real security and should not be solely relied on to protect crucial data. I'm just thinking of a case where it would be possible to do so yes I suppose it could - if you were just trying to prove a point or add one more level of security.
I don't believe that there is such an algorithm that would use a key to encrypt, but not to decrypt. (Silly answers like a 26 character Caesar cipher aside...)
To your second question, yes; it just depends on how much time you're willing to spend on it. In theoretical cryptography it is assumed that the algorithm can always be determined. Whether that be through theft of the algorithm or a physical machine, or as in your case having a plain text and cipher text pair.