Moving a Sphere so its Z-Axis faces a direction - math

Firstly - Z is Up in this problem.
Context: Top down 2D Game using 3D objects.
The player and all enemies are Spheres that can move in any direction on a 2D Plane (XY). They rotate as you would expect when they move. Their velocity is a 3D vector in world space and this is how I influence them. They aren't allowed to rotate on the spot.
I need to find a formula to determine the direction one of these spheres should move in order to get their Z-Axis (or any axis really) pointing a specified direction in world space.
Some examples may be in order:
X
|
Z--Y
This one is simple: The Spheres local axes matches the world so if I want the Spheres Z-Axis to point along 1,0,0 then I can move the sphere along 1,0,0.
The one that gives me trouble is this:
X
|
Y--Z
Now I know that to get the Z-Axis to point along 1,0,0 in world space I have to tell the sphere to move along 1,1,0 but I don't know/understand WHY that is the case.
I've been programming for ten years but I absolutely suck at vector maths so assume I'm an idiot when trying to explain :)

All right, I think I see what you mean.
Take a ball-- you must have one lying around. Mark a spot on it to indicate an axis of interest. Now pick a direction in which you want the axis to point. The trick is to rotate the ball in place to bring the axis to the right direction-- we'll get to the rolling in a minute.
The obvious way is to move "directly", and if you do this a few times you'll notice that the axis around which you are rotating the ball is perpendicular to the axis you're trying to move. It's as if the spot is on the equator and you're rotating around the North-South axis. Every time you pick a new direction, that direction and your marked axis determine the new equator. Also notice (this may be tricky) that you can draw a great circle (that's a circle that goes right around the sphere and divides it into equal halves) that goes between the mark and the destination, so that they're on opposite hemispheres, like mirror images. The poles are always on that circle.
Now suppose you're not free to choose the poles like that. You have a mark, you have a desired direction, so you have the great circle, and the north pole will be somewhere on the circle, but it could be anywhere. Imagine that someone else gets to choose it. The mark will still rotate to the destination, but they won't be on the equator any more, they'll be at some other latitude.
Now put the ball on the floor and roll it -- don't worry about the mark for now. Notice that it rotates around a horizontal axis, the poles, and touches the floor along a circle, the equator (which is now vertical). The poles must be somewhere on the "waist" of the sphere, halfway up from the floor (don't call it the equator). If you pick the poles on that circle, you choose the direction of rolling.
Now look at the marks, and draw the great circle that divides them. The poles must be on that circle. Look where that circle crosses the "waist"; that's where your poles must be.
Tell me if this makes sense, and we can put in the math.

Related

Weird phenomenon with three.js plane

This is the first question I've ever asked on here! Apologies in advance if I've done it wrong somehow.
I have written a program which stacks up spheres in three.js.
Each sphere starts with randomly generated (within certain bounds) x and z co-ordinates, and a y co-ordinate high above the ground plane. I casts rays from each of the sphere's vertices to see how far down it can fall before it intersects with an existing mesh.
For each sphere, I test it in 80 different random xz positions, see where it can fall the furthest, and then 'drop' it into that position.
This is intended to create bubble towers like this one:
However, I have noticed that when I make the bubble radius very small and the base dimensions of the tower large, this happens:
If I turn the recursions down from 80, this effect is less apparent. For some reason, three.js seems to think that the spheres can fall further at the corners of the base square. The origin is exactly at the center of the base square - perhaps this is relevant.
When I console log all the fall-distances I'm receiving from the raycaster, they are indeed larger the further away you get from the center of the square... but only at the 11th or 12th decimal place.
This is not so much a problem I am trying to solve (I could just round fall distances to the nearest 10th decimal place before I pick the largest one), but something I am very curious about. Does anyone know why this is happening? Has anybody come across something similar to this before?
EDIT:
I edited my code to shift everything so that the origin is no longer at the center of the base square:
So am I correct in thinking... this phenomenon is something to do with distance from the origin, rather than anything relating to the surface onto which the balls are falling?
Indeed, the pattern you are seeing is exactly because the corners and edges of the bottom of your tower are furthest from the origin where you are dropping the balls. You are creating a right triangle (see image below) in which the vertical "leg" is the line from the origin from which you are dropping the balls down to the point directly below on mesh floor (at a right angle to the floor - thus the name, right triangle). The hypotenuse is always the longest leg of a right triangle, and the futher out your rays cast from the point just below the origin, the longer the hypotenuse will be, and the more your algorithm will favor that longer distance (no matter how fractional).
Increasing the size of the tower base would exaggerate this effect as the hypotenuse measurements can now grow even larger. Reducing the size of the balls would also favor the pattern you are seeing, as now each ball is not taking up as much space, and so the distant measurments to the corners won't fill in as quickly as they would with larger balls so that now more balls will congregate at the edges before filling in the rest of the space.
Moving your dropping origin to one side or another creates longer distances (hypotenuses) to the opposites sides and corners, so that the balls will fill in those distant locations first.
The reason you see less of an effect when you reduce the sample size from 80 to say, 20, is that there are simply fewer chances to detect these more distant locations to which the balls could fall (an odds game).
A right triangle:
A back-of-the-napkin sketch:

How to calculate a random point inside a cube

I'm trying to figure out the math to find a random point inside a cube.
I have something small but it can't take into account the rotation of the cube.
Here are some images of my results.
Here you can see the cube is rotated to some degree but when I generate some points it retains the shape as if the cube was normal (I think the term is called axis aligned but I'm not sure).
I'm using a Vector to represent the extent of the cube but for the life of me I can't figure out how to get the points to follow it when it's rotated.
Can someone point me in the right direction as to how I would do this?
EDIT1:
Now its misaligned and it goes even weirder when I rotate it sideways.
Can someone walk me through it from the beginning? I think my base line math is all wrong to begin with.
Generate the points in the straight position then apply the rotation (also check the origin of the coordinates).

Find point in 3D plane

I have four points in a 3D space, example:
(0,0,1)
(1,0,1)
(1,0,2)
(0,0,2)
Then I have a 2D position on that square plane:
x = 0.5
y = 0.5
I need to find out the 3D space point of that position in the plane. In this example it's easy: (0.5,0,1.5), because Y is zero. But imagine that Y was not zero (and not all the same), that the plane is leaning in some direction. How would I calculate the point in that case?
I imagine this should be a pretty easy thing to solve, but I can't figure it out. Please answer in programming terms and not in straight math terms, if possible.
Update with image: The gray plane (made out of two triangles) are the real one actually existing. I create a non-existing plane on top of this, the ABCD corners are exactly the same, however it doesn't slope. What I need to do is project a pixel (blue one in example) from the non-existing plane to the existing plane. It will be in the exact same location, except that it has gained a Y value from the sloping plane.
(couldn't actually make the image appear because i need 10 reputation to show it, wtf?)
What I've been able to work out so far on my own is which one of the two triangles to use in the gray plane and the normal of triangle. I basically just need to figure out how I can project the pixel.
Figured it out mostly thanks to http://gamedeveloperjourney.blogspot.com/2009/04/point-plane-collision-detection.html
Made me realize I had to verify the normal a bit closer, turns out my plane's grid was being rendered a little different than the actual coordinates for the verticles. No wonder this was so hard to get right! The pixel was projected correctly but rendered incorrectly.

Math/Calculations for infinite/repeating world with rotation

How do I make a infinite/repeating world that handles rotation, just like in this game:
http://bloodfromastone.co.uk/retaliation.html
I have coded my rotating moving world by having a hierarchy like this:
Scene
- mainLayer (CCLayer)
- rotationLayer(CCNode)
- positionLayer(CCNode)
The rotationLayer and positionLayer have the same size (4000x4000 px right now).
I rotate the whole world by rotating the rotationLayer, and I move the whole world by moving the positionLayer, so that the player always stays centered on the device screen and it is the world that moves and rotates.
Now I would like to make it so that if the player reaches the bounds of the world (the world is moved so that the worlds bounds gets in to contact with the device screen bounds), then the world is "wrapped" to the opposite bounds so that the world is infinite. If the world did not rotate that would be easy, but now that it does I have no idea how to do this. I am a fool at math and in thinking mathematically, so I need some help here.
Now I do not think I need any cocos2d-iphone related help here. What I need is some way to calculate if my player is outside the bounds of the world, and then some way to calculate what new position I must give the world to wrap the world.
I think I have to calculate a radius for a circle that will be my foundry inside the square world, that no matter what angle the square world is in, will ensure that the visible rectangle (the screen) will always be inside the bounds of the world square. And then I need a way to calculate if the visible rectangle bounds are outside the bounds circle, and if so I need a way to calculate the new opposite position in the bounds circle to move the world to. So to illustrate I have added 5 images.
Visible rectangle well inside bounds circle inside a rotated square world:
Top of visible rectangle hitting bounds circle inside a rotated square world:
Rotated square world moved to opposite vertical position so that bottom of visible rectangle now hitting bounds circle inside rotated world:
Another example of top of visible rectangle hitting bounds circle inside a rotated square world to illustrate a different scenario:
And again rotated square world moved to opposite vertical position so that bottom of visible rectangle now hitting bounds circle inside rotated world:
Moving the positionLayer in a non-rotated situation is the math that I did figure out, as I said I can figure this one out as long as the world does not get rotate, but it does. The world/CCNode (positionLayer) that gets moved/positioned is inside a world/CCNode (rotationLayer) that gets rotated. The anchor point for the rotationLayer that rotates is on the center of screen always, but as the positionLayer that gets moved is inside the rotating rotationLayer it gets rotated around the rotationLayer's anchor point. And then I am lost... When I e.g. move the positionLayer down enough so that its top border hits the top of the screen I need to wrap that positionLayer as JohnPS describes but not so simple, I need it to wrap in a vector based on the rotation of the rotationLayer CCNode. This I do not know how to do.
Thank you
Søren
Like John said, the easiest thing to do is to build a torus world. Imagine that your ship is a point on the surface of the donut and it can only move on the surface. Say you are located at the point where the two circles (red and purple in the picture) intersect:
.
If you follow those circles you'll end up where you started. Also, notice that, no matter how you move on the surface, there is no way you're going to reach an "edge". The surface of the torus has no such thing, which is why it's useful to use as an infinite 2D world. The other reason it's useful is because the equations are quite simple. You specify where on the torus you are by two angles: the angle you travel from the "origin" on the purple circle to find the red circle and the angle you travel on the red circle to find the point you are interested in. Both those angles wrap at 360 degrees. Let's call the two angles theta and phi. They are your ship's coordinates in the world, and what you change when you change velocities, etc. You basically use them as your x and y, except you have to make sure to always use the modulus when you change them (your world will only be 360 degrees in each direction, it will then wrap around).
Suppose now that your ship is at coordinates (theta_ship,phi_ship) and has orientation gamma_ship. You want to draw a square window with the ship at its center and length/width equal to some percentage n of the whole world (say you only want to see a quarter of the world at a time, then you'd set n = sqrt(1/4) = 1/2 and have the length and width of the window set to n*2*pi = pi). To do this you need a function that takes a point represented in the screen coordinates (x and y) and spits out a point in the world coordinates (theta and phi). For example, if you asked it what part of the world corresponds to (0,0) it should return back the coordinates of the ship (theta_ship,phi_ship). If the orientation of the ship is zero (x and y will be aligned with theta and phi) then some coordinate (x_0,y_0) will correspond to (theta_ship+k*x_0, phi_ship+k*y_0), where k is some scaling factor related to how much of the world one can see in a screen and the boundaries on x and y. The rotation by gamma_ship introduces a little bit of trig, detailed in the function below. See the picture for exact definitions of the quantities.
!Blue is the screen coordinate system, red is the world coordinate system and the configuration variables (the things that describe where in the world the ship is). The object
represented in world coordinates is green.
The coordinate transformation function might look something like this:
# takes a screen coordinate and returns a world coordinate
function screen2world(x,y)
# this is the angle between the (x,y) vector and the center of the screen
alpha = atan2(x,y);
radius = sqrt(x^2 + y^2); # and the distance to the center of the screen
# this takes into account the rotation of the ship with respect to the torus coords
beta = alpha - pi/2 + gamma_ship;
# find the coordinates
theta = theta_ship + n*radius*cos(beta)/(2*pi);
phi = phi_ship + n*radius*sin(beta)/(2*pi));
# return the answer, making sure it is between 0 and 2pi
return (theta%(2*pi),phi%(2*pi))
and that's pretty much it, I think. The math is just some relatively easy trig, you should make a little drawing to convince yourself that it's right. Alternatively you can get the same answer in a somewhat more automated fashion by using rotations matrices and their bigger brother, rigid body transformations (the special Euclidian group SE(2)). For the latter, I suggest reading the first few chapters of Murray, Li, Sastry, which is free online.
If you want to do the opposite (go from world coordinates to screen coordinates) you'd have to do more or less the same thing, but in reverse:
beta = atan2(phi-phi_ship, theta-theta_ship);
radius = 2*pi*(theta-theta_ship)/(n*cos(beta));
alpha = beta + pi/2 - gamma_ship;
x = radius*cos(alpha);
y = radius*sin(alpha);
You need to define what you want "opposite bounds" to mean. For 2-dimensional examples see Fundamental polygon. There are 4 ways that you can map the sides of a square to the other sides, and you get a sphere, real projective plane, Klein bottle, or torus. The classic arcade game Asteroids actually has a torus playing surface.
The idea is you need glue each of your boundary points to some other boundary point that will make sense and be consistent.
If your world is truly 3-dimensional (not just 3-D on a 2-D surface map), then I think your task becomes considerably more difficult to determine how you want to glue your edges together--your edges are now surfaces embedded in the 3-D world.
Edit:
Say you have a 2-D map and want to wrap around like in Asteroids.
If the map is 1000x1000 units, x=0 is the left border of the map, x=999 the right border, and you are looking to the right and see 20 units ahead. Then at x=995 you want to see up to 1015, but this is off the right side of the map, so 1015 should become 15.
If you are at x=5 and look to the left 20 units, then you see x=-15 which you really want to be 985.
To get these numbers (always between 0 and 999) when you are looking past the border of your map you need to use the modulo operator.
new_x = x % 1000; // in many programming languages
When x is negative each programming language handles the result of x % 1000 differently. It can even be implementation defined. i.e. it will not always be positive (between 0 and 999), so using this would be safer:
new_x = (x + 1000) % 1000; // result 0 to 999, when x >= -1000
So every time you move or change view you need to recompute the coordinates of your position and coordinates of anything in your view. You apply this operation to get back a coordinate on the map for both x and y coordinates.
I'm new to Cocos2d, but I think I can give it a try on helping you with the geometry calculation issue, since, as you said, it's not a framework question.
I'd start off by setting the anchor point of every layer you're using in the visual center of them all.
Then let's agree on the assumption that the first part to touch the edge will always be a corner.
In case you just want to check IF it's inside the circle, just check if all the four edges are inside the circle.
In case you want to know which edge is touching the circumference of the circle, just check for the one that is the furthest from point x=0 y=0, since the anchor will be at the center.
If you have a reason for not putting the anchor in the middle, you can use the same logic, just as long as you include half of the width of each object on everything.

Calculating 2D angles for 3D objects in perspective

Imagine a photo, with the face of a building marked out.
Its given that the face of the building is a rectangle, with 90 degree corners. However, because its a photo, perspective will be involved and the parallel edges of the face will converge on the horizon.
With such a rectangle, how do you calculate the angle in 2D of the vectors of the edges of a face that is at right angles to it?
In the image below, the blue is the face marked on the photo, and I'm wondering how to calculate the 2D vector of the red lines of the other face:
example http://img689.imageshack.us/img689/2060/leslievillestarbuckscor.jpg
So if you ignore the picture for a moment, and concentrate on the lines, is there enough information in one of the face outlines - the interior angles and such - to know the path of the face on the other side of the corner? What would the formula be?
We know that both are rectangles - that is that each corner is a right angle - and that they are at right angles to each other. So how do you determine the vector of the second face using only knowledge of the position of the first?
It's quite easy, you should use basic 2 point perspective rules.
First of all you need 2 vanishing points, one to the left and one to the right of your object. They'll both stay on the same horizon line.
alt text http://img62.imageshack.us/img62/9669/perspectiveh.png
After having placed the horizon (that chooses the sight heigh) and the vanishing points (the positions of the points will change field of view) you can easily calculate where your lines go (of course you need to be able to calculate the line that crosses two points: i think you can do it)
Honestly, what I'd do is a Hough Transform on the image and determine a way to identify the red lines from the image. To find the red lines, I'd find any lines in the transform that touch your blue ones. The good thing about the transform is that you get angle information for free.
Since you know that you're looking at lines, you could also do a Radon Transform and look for peaks at particular angles; it's essentially the same thing.
Matlab has some nice functionality for this kind of work.

Resources