Logfile analysis in R? - r

I know there are other tools around like awstats or splunk, but I wonder whether there is some serious (web)server logfile analysis going on in R. I might not be the first thought to do it in R, but still R has nice visualization capabilities and also nice spatial packages. Do you know of any? Or is there a R package / code that handles the most common log file formats that one could build on? Or is it simply a very bad idea?

In connection with a project to build an analytics toolbox for our Network Ops guys,
i built one of these about two months ago. My employer has no problem if i open source it, so if anyone is interested i can put it up on my github repo. I assume it's most useful to this group if i build an R Package. I won't be able to do that straight away though
because i need to research the docs on package building with non-R code (it might be as simple as tossing the python bytecode files in /exec along with a suitable python runtime, but i have no idea).
I was actually suprised that i needed to undertake a project of this sort. There are at least several excellent open source and free log file parsers/viewers (including the excellent Webalyzer and AWStats) but neither parse server error logs (parsing server access logs is the primary use case for both).
If you are not familiar with error logs or with the difference between them and access
logs, in sum, Apache servers (likewsie, nginx and IIS) record two distinct logs and store them to disk by default next to each other in the same directory. On Mac OS X,
that directory in /var, just below root:
$> pwd
/var/log/apache2
$> ls
access_log error_log
For network diagnostics, error logs are often far more useful than the access logs.
They also happen to be significantly more difficult to process because of the unstructured nature of the data in many of the fields and more significantly, because the data file
you are left with after parsing is an irregular time series--you might have multiple entries keyed to a single timestamp, then the next entry is three seconds later, and so forth.
i wanted an app that i could toss in raw error logs (of any size, but usually several hundred MB at a time) have something useful come out the other end--which in this case, had to be some pre-packaged analytics and also a data cube available inside R for command-line analytics. Given this, i coded the raw-log parser in python, while the processor (e.g., gridding the parser output to create a regular time series) and all analytics and data visualization, i coded in R.
I have been building analytics tools for a long time, but only in the past
four years have i been using R. So my first impression--immediately upon parsing a raw log file and loading the data frame in R is what a pleasure R is to work with and how it is so well suited for tasks of this sort. A few welcome suprises:
Serialization. To persist working data in R is a single command
(save). I knew this, but i didn't know how efficient is this binary
format. Thee actual data: for every 50 MB of raw logfiles parsed, the
.RData representation was about 500 KB--100 : 1 compression. (Note: i
pushed this down further to about 300 : 1 by using the data.table
library and manually setting compression level argument to the save
function);
IO. My Data Warehouse relies heavily on a lightweight datastructure
server that resides entirely in RAM and writes to disk
asynchronously, called redis. The proect itself is only about two
years old, yet there's already a redis client for R in CRAN (by B.W.
Lewis, version 1.6.1 as of this post);
Primary Data Analysis. The purpose of this Project was to build a
Library for our Network Ops guys to use. My goal was a "one command =
one data view" type interface. So for instance, i used the excellent
googleVis Package to create a professional-looking
scrollable/paginated HTML tables with sortable columns, in which i
loaded a data frame of aggregated data (>5,000 lines). Just those few
interactive elments--e.g., sorting a column--delivered useful
descriptive analytics. Another example, i wrote a lot of thin
wrappers over some basic data juggling and table-like functions; each
of these functions i would for instance, bind to a clickable button
on a tabbed web page. Again, this was a pleasure to do in R, in part
becasue quite often the function required no wrapper, the single
command with the arguments supplied was enough to generate a useful
view of the data.
A couple of examples of the last bullet:
# what are the most common issues that cause an error to be logged?
err_order = function(df){
t0 = xtabs(~Issue_Descr, df)
m = cbind( names(t0), t0)
rownames(m) = NULL
colnames(m) = c("Cause", "Count")
x = m[,2]
x = as.numeric(x)
ndx = order(x, decreasing=T)
m = m[ndx,]
m1 = data.frame(Cause=m[,1], Count=as.numeric(m[,2]),
CountAsProp=100*as.numeric(m[,2])/dim(df)[1])
subset(m1, CountAsProp >= 1.)
}
# calling this function, passing in a data frame, returns something like:
Cause Count CountAsProp
1 'connect to unix://var/ failed' 200 40.0
2 'object buffered to temp file' 185 37.0
3 'connection refused' 94 18.8
The Primary Data Cube Displayed for Interactive Analysis Using googleVis:
A contingency table (from an xtab function call) displayed using googleVis)

It is in fact an excellent idea. R also has very good date/time capabilities, can do cluster analysis or use any variety of machine learning alogorithms, has three different regexp engines to parse etc pp.
And it may not be a novel idea. A few years ago I was in brief email contact with someone using R for proactive (rather than reactive) logfile analysis: Read the logs, (in their case) build time-series models, predict hot spots. That is so obviously a good idea. It was one of the Department of Energy labs but I no longer have a URL. Even outside of temporal patterns there is a lot one could do here.

I have used R to load and parse IIS Log files with some success here is my code.
Load IIS Log files
require(data.table)
setwd("Log File Directory")
# get a list of all the log files
log_files <- Sys.glob("*.log")
# This line
# 1) reads each log file
# 2) concatenates them
IIS <- do.call( "rbind", lapply( log_files, read.csv, sep = " ", header = FALSE, comment.char = "#", na.strings = "-" ) )
# Add field names - Copy the "Fields" line from one of the log files :header line
colnames(IIS) <- c("date", "time", "s_ip", "cs_method", "cs_uri_stem", "cs_uri_query", "s_port", "cs_username", "c_ip", "cs_User_Agent", "sc_status", "sc_substatus", "sc_win32_status", "sc_bytes", "cs_bytes", "time-taken")
#Change it to a data.table
IIS <- data.table( IIS )
#Query at will
IIS[, .N, by = list(sc_status,cs_username, cs_uri_stem,sc_win32_status) ]

I did a logfile-analysis recently using R. It was no real komplex thing, mostly descriptive tables. R's build-in functions were sufficient for this job.
The problem was the data storage as my logfiles were about 10 GB. Revolutions R does offer new methods to handle such big data, but I at last decided to use a MySQL-database as a backend (which in fact reduced the size to 2 GB though normalization).
That could also solve your problem in reading logfiles in R.

#!python
import argparse
import csv
import cStringIO as StringIO
class OurDialect:
escapechar = ','
delimiter = ' '
quoting = csv.QUOTE_NONE
parser = argparse.ArgumentParser()
parser.add_argument('-f', '--source', type=str, dest='line', default=[['''54.67.81.141 - - [01/Apr/2015:13:39:22 +0000] "GET / HTTP/1.1" 502 173 "-" "curl/7.41.0" "-"'''], ['''54.67.81.141 - - [01/Apr/2015:13:39:22 +0000] "GET / HTTP/1.1" 502 173 "-" "curl/7.41.0" "-"''']])
arguments = parser.parse_args()
try:
with open(arguments.line, 'wb') as fin:
line = fin.readlines()
except:
pass
finally:
line = arguments.line
header = ['IP', 'Ident', 'User', 'Timestamp', 'Offset', 'HTTP Verb', 'HTTP Endpoint', 'HTTP Version', 'HTTP Return code', 'Size in bytes', 'User-Agent']
lines = [[l[:-1].replace('[', '"').replace(']', '"').replace('"', '') for l in l1] for l1 in line]
out = StringIO.StringIO()
writer = csv.writer(out)
writer.writerow(header)
writer = csv.writer(out,dialect=OurDialect)
writer.writerows([[l1 for l1 in l] for l in lines])
print(out.getvalue())
Demo output:
IP,Ident,User,Timestamp,Offset,HTTP Verb,HTTP Endpoint,HTTP Version,HTTP Return code,Size in bytes,User-Agent
54.67.81.141, -, -, 01/Apr/2015:13:39:22, +0000, GET, /, HTTP/1.1, 502, 173, -, curl/7.41.0, -
54.67.81.141, -, -, 01/Apr/2015:13:39:22, +0000, GET, /, HTTP/1.1, 502, 173, -, curl/7.41.0, -
This format can easily be read into R using read.csv. And, it doesn't require any 3rd party libraries.

Related

RStudio read_delim(): intermittently receive error std::bad_alloc upon opening files with unusual delimeter

I received a series of 100+ files from a client. This client received the files as part of litigation, so they didn't have to be transmitted in a convenient fashion, they just all had to be present. In a single .zip file, all the files are all tracked with names like Folder1.001, Folder1.002, Folder3.001, etc. When unpackaged these files using the 7-Zip program, they don't show up with a .txt, .csv, or any other file extension. Windows incorrectly interprets the unzipped files as a ".001 File" or ".002 File." This is not the issue, because I know that the files are delimited by a ~ and are 118 columns wide. Each file has between 2.5M and 4.9M rows, and each is about 1 GB in size when unzipped.
This is my first ever post here, so please excuse any breach of etiquette.
I am working in a .Rmd file on a virtual machine running Windows. I have R4.2.2 (64-bit), and RStudio 2022.12.0+353. All work is being done within a drive on the virtual machine that has 9+ GB free out of 300 GB total. The size of this virtual drive could be increased, if necessary.
My goal here is examine one variable in each file, to see if cases fall within a given range for that variable, and save those rows that do. I have been saving them as .rds files using write_rds().
I have been bringing in the files using a read_delim() statement specifying 'delim = "~"'. I created a vector of 120 column names which I use because the columns are not labeled. These commands on their own are not an issue. A successful import looks like the below.
work1 <- read_delim("Data\\Folder1\\File1.001"), delim = "~", col_names = vNames1)
Rows: 2577668 Columns: 120── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────────────── Delimiter: "~" chr (16): Press_ZIP, Person1ID, Specialty, PCode, Retailer, ProdType, ProdGroupNo, Unk1, Skip2, Skip3, Skip4, Skip5, Skip6, Skip7... dbl (102): Person2No, ReportNo, DateStr, BucketNo, Bu1, Bu2, Bu3, Bu4, Bu5, Bu6, Bu7, Bu8, Bu9, Bu10, Bu11, Bu12, Bu13, Bu14, Bu15, B... lgl (2): Skip1, Skip9 ℹ Use spec()to retrieve the full column specification for this data. ℹ Specify the column types or setshow_col_types = FALSE to quiet this message.
It mishandles the columns named Skip1 and Skip9 as logical values, but those aren't a necessary part of my analysis.
I then filter and write the file using
work1 <- work1 %>% filter(as.numeric(Press_ZIP) > 78900, as.numeric(Press_ZIP) < 99900)
write_rds(work1, "Data\\Working\\Folder1_001.rds")
I have also done this with the read_delim() and filter() piped into a single command. This is not the issue. NOTE: Before I read in the next file (File1.002), I now have a work1 file that is at most, 4000 cases, down from millions when it was imported.
Since I have over 100 of these files, I have written multiple code chunks to do a few of these at a time. After one to three read_delim() statements in a row, I get the below error.
work2 <- read_delim("Data\\Folder1\\File1.002"), delim = "~", col_names = vNames1)
Error std::bad_alloc
Which I understand has to memory allocation. I can close out RStudio and restart and that will allow me to do one or two more imports, filterings, then writings. Doing that for over 100 files is far too inefficient.
I condensed my code a step further by writing the read_delim() step within the write_rds() step, which looks like the below.
write_rds((read_delim("Data\\Folder1\\File003",
delim = "~", col_names = vNames1) %>%
filter(as.numeric(Press_ZIP) > 78900, as.numeric(Press_ZIP) < 99900)),
"Data\\Working\\Folder1_003.rds")
Rows: 2577668 Columns: 120── Column specification ──────────────────────────────────────────────────────────────────────────────────────────────────────────────── Delimiter: "~" chr (16): Press_ZIP, Person1ID, Specialty, PCode, Retailer, ProdType, ProdGroupNo, Unk1, Skip2, Skip3, Skip4, Skip5, Skip6, Skip7... dbl (102): Person2No, ReportNo, DateStr, BucketNo, Bu1, Bu2, Bu3, Bu4, Bu5, Bu6, Bu7, Bu8, Bu9, Bu10, Bu11, Bu12, Bu13, Bu14, Bu15, B... lgl (2): Skip1, Skip9 ℹ Use spec()to retrieve the full column specification for this data. ℹ Specify the column types or setshow_col_types = FALSE to quiet this message.
Yet after 1 or 2 successful runs, I get the same
Error std::bad_alloc message.
Using traceback(), it seems like it is related to vroom::vroom(), but I'm not sure how to check any further.

AzureML Dataset.File.from_files creation extremely slow even with 4 files

I have a few thousand of video files in my BlobStorage, which I set it as a datastore.
This blob storage receives new files every night and I need to split the data and register each split as a new version of AzureML Dataset.
This is how I do the data split, simply getting the blob paths and splitting them.
container_client = ContainerClient.from_connection_string(AZ_CONN_STR,'keymoments-clips')
blobs = container_client.list_blobs('soccer')
blobs = map(lambda x: Path(x['name']), blobs)
train_set, test_set = get_train_test(blobs, 0.75, 3, class_subset={'goal', 'hitWoodwork', 'penalty', 'redCard', 'contentiousRefereeDecision'})
valid_set, test_set = split_data(test_set, 0.5, 3)
train_set, test_set, valid_set are just nx2 numpy arrays containing blob storage path and class.
Here is when I try to create a new version of my Dataset:
datastore = Datastore.get(workspace, 'clips_datastore')
dataset_train = Dataset.File.from_files([(datastore, b) for b, _ in train_set[:4]], validate=True, partition_format='**/{class_label}/*.mp4')
dataset_train.register(workspace, 'train_video_clips', create_new_version=True)
How is it possible that the Dataset creation seems to hang for an indefinite time even with only 4 paths?
I saw in the doc that providing a list of Tuple[datastore, path] is perfectly fine. Do you know why?
Thanks
Do you have your Azure Machine Learning Workspace and your Azure Storage Account in different Azure Regions? If that's true, latency may be a contributing factor with validate=True.
Another possibility may be slowness in the way datastore paths are resolved. This is an area where improvements are being worked on.
As an experiment, could you try creating the dataset using a url instead of datastore? Let us know if that makes a difference to performance, and whether it can unblock your current issue in the short term.
Something like this:
dataset_train = Dataset.File.from_files(path="https://bloburl/**/*.mp4?accesstoken", validate=True, partition_format='**/{class_label}/*.mp4')
dataset_train.register(workspace, 'train_video_clips', create_new_version=True)
I'd be interested to see what happens if you run the dataset creation code twice in the same notebook/script. Is it faster the second time? I ask because it might be an issue with the .NET core runtime startup (which would only happen on the first time you run the code)
EDIT 9/16/20
While it doesn't seem to make sense that .NET core invoked when not data is moving, is suspect it is the validate=True part of the param that requires that all the data be inspected (which can computationally expensive). I'd be interested to see what happens if that param is False

Scraping string from a large number of URLs with Julia

Happy New Year!
I have just started to learn Julia and my first mini challenge I have set myself is to scrape data from a large list of URLs.
I have ca 50k URLs (which I successfully parsed from a JSON with Julia using Regex) in a CSV file. I want to scrape each one and return a matched string ("/page/12345/view" - where 12345 is any integer).
I managed to do so using HTTP and Queryverse (although had started with CSV and CSVFiles but looking at packages for learning purposes) but the script seems to stop after just under 2k. I can't see an error such as a timeout.
May I ask if anyone can advise what I'm doing wrong or how I can approach it differently? Explanations/links to learning resources would also be great!
using HTTP, Queryverse
URLs = load("urls.csv") |> DataFrame
patternid = r"\/page\/[0-9]+\/view"
touch("ids.txt")
f = open("ids.txt", "a")
for row in eachrow(URLs)
urlResponse = HTTP.get(row[:url])
if Int(urlResponse.status) == 404
continue
end
urlHTML = String(urlResponse.body)
urlIDmatch = match(patternid, urlHTML)
write(f, urlIDmatch.match, "\n")
end
close(f)
There can be always a server that detects your scraper and intentionally takes a very long time to respond.
Basically, since scraping is an IO intensive operations you should do it using a big number of asynchronous tasks. Moreover this should be combined with the readtimeout parameter of the get function. Hence your code will look more or less like this:
asyncmap(1:nrow(URLs);ntasks=50) do n
row = URLs[n, :]
urlResponse = HTTP.get(row[:url], readtimeout=10)
# the rest of your code comes here
end
Even one some servers are delaying transmission, always many connections will be working.

downloading data and saving data to a folder in batches

I have 200,000 links that I am trying to download, I have tried downloading it all in one go but I ran into memory issues.
I am trying to create a function which will download 1000 links at a time and save them in a folder.
Packages:
library(dplyr)
library(purrr)
library(edgarWebR)
A small sample of the data is as follows:
Data 1:
urls_to_parse <- c("https://www.sec.gov/Archives/edgar/data/1750/000104746918004978/a2236183z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746917004528/a2232622z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746916014299/a2228768z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746915006136/a2225345z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746914006243/a2220733z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746913007797/a2216052z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746912007300/a2210166z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746911006302/a2204709z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746910006500/a2199382z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746909006783/a2193700z10-k.htm"
)
I then apply the following function to download these 10 links
parsed_files <- map(urls_to_parse, possibly(parse_filing, otherwise = NA))
Which stores it as a nice list, I can then apply names(parsed_files) <- urls_to_parse to name the lists as the links from where they were downloading them from. I can also use output <- plyr::ldply(parsed_files, data.frame) to store everything in a nice data frame.
Using the below data, how could I create batches to download the data in say batches of 10?
What I have currently:
start = 1
end = 100
output <- NULL
output_fin <- NULL
for(i in start:end){
output[[i]] <- map(urls_to_parse[[i]], possibly(parse_filing, otherwise = NA))
names(output) <- urls_to_parse[start:end]
save(output_fin, file = paste0("C:/Users/Downloads/data/",i, "output.RData"))
}
I am sure there is a better way using a function, since this code breaks for some of the results.
More data: - 100 links
urls_to_parse <- c("https://www.sec.gov/Archives/edgar/data/1750/000104746918004978/a2236183z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746917004528/a2232622z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746916014299/a2228768z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746915006136/a2225345z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746914006243/a2220733z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746913007797/a2216052z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746912007300/a2210166z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746911006302/a2204709z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746910006500/a2199382z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746909006783/a2193700z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746908008126/a2186742z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000110465907055173/a07-18543_110k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000110465906047248/a06-15961_110k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000110465905033688/a05-12324_110k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746904023905/a2140220z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000104746903028005/a2116671z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/1750/000091205702033450/a2087919z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095012310108231/c61492e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095015208010514/n48172e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095013707018659/c22309e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095013707000193/c11187e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000095013406000594/c01109e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000120677405000032/d16006.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000120677404000013/d13773.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000104746903001075/a2097401z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/61478/000091205702001614/a2067550z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/319126/000115752308008030/a5800571.htm",
"https://www.sec.gov/Archives/edgar/data/319126/000115752307009801/a5515869.htm",
"https://www.sec.gov/Archives/edgar/data/319126/000115752306009238/a5227919.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046908000102/alpharmainc_10k.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046907000017/alo10k2006.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046906000027/alo10k2005.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046905000021/alo10k2004final.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046904000058/alo10k2003master.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046903000001/alo10k.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046902000004/alo10k2001.htm",
"https://www.sec.gov/Archives/edgar/data/730469/000073046901500003/alo.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000000620118000009/a10k123117.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000119312517051216/d286458d10k.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000119312516474605/d78287d10k.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000119312515061145/d829913d10k.htm",
"https://www.sec.gov/Archives/edgar/data/4515/000000620114000004/aagaa10k-20131231.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000620113000023/amr-10kx20121231.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000119312512063516/d259681d10k.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095012311014726/d78201e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000620110000006/ar123109.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000620109000009/ar120810k.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000000451508000014/ar022010k.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013407003888/d43815e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013406003715/d33303e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013405003726/d22731e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000095013404002668/d12953e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/6201/000104746903013301/a2108197z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/65695/000095013407003823/h42902e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/65695/000095012906002343/h31028e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/65695/000095012905002955/h22337e10vk.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000156459018005085/cece-10k_20171231.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000156459017004264/cece-10k_20161231.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000156459016015157/cece-10k_20151231.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312515095828/d864880d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312514098407/d661608d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312513109153/d444138d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312512119293/d293768d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312511067373/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312510069639/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312509055504/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312508058939/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312507071909/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312506068031/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312505077739/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/3197/000119312504052176/d10k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000110465910047121/a10-16705_110k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000114420409046933/v159572_10k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000110465906060737/a06-19311_110k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000104746905022854/a2162888z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000104746904028585/a2143353z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/2601/000104746903031974/a2119476z10-k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000143774918010388/avx20180331_10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916317000028/avx-20170331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916316000079/avx-20160331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916315000024/avx-20150331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916314000035/avx-20140331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916313000022/avx-20130331x10k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916312000024/avxform10kfy12.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916311000013/avxform10kfy11.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916310000020/avxform10kfy10.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916309000117/form10kfy09.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916308000192/form10qq1fy09.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916308000101/form10kfy08.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916307000122/form10kfy07.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916306000102/avxfy06form10-k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916305000094/fy0510k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916304000091/fy0410k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916303000020/fy0310k.htm",
"https://www.sec.gov/Archives/edgar/data/859163/000085916302000007/r10k-0302.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462218000018/pnw2017123110-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462217000010/pnw2016123110-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462216000087/pnw2015123110-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000076462215000013/pnw12311410-k.htm",
"https://www.sec.gov/Archives/edgar/data/7286/000110465914012068/a13-25897_110k.htm"
)
Looping over to do batch job as you showed is a bad idea. If you have a 1000s of files to be downloaded, how do you recover from errors?
The performance is not solely depend on your computer's configuration, but the network performance is crucial.
Here are couple of suggestions.
Option 1
partition all URLs in to batches to be able to download them parallelly. The number of files to be downloaded could be equal to number of cores in your computer. Look at this question; reading multiple files quickly in R
store these batches in a queue objects - For ex: using a package like https://cran.r-project.org/web/packages/dequer/dequer.pdf
pop the queue and use the batch of URLs in your parallel file download function.
Use a retryable file download function like in -- HTTP error 400 in R, error handling, How to retry instead of forcing to stop?
Once the queue is completed, move to the next partition.
wrap the whole operation in a retryable loop. For example; How to retry a statement on error?
Why do I use a queue? Because you could retry on error easily.
A pseudo code
file_url_partitions <- partion_as_batches(all_urls, batch_size)
attempts = 3
while( file_url_partitions is not empty && attempt <= 3 ) {
batch = file_url_partitions.pop()
tryCatch({
download_parallel(batch)
}, some_exception = function(se) {
file_url_partitions.push(batch)
attemp = attempt+1
})
}
Note: I don't have access to R studio/environment now hence no way to try.
Option 2
Download files separately using a download manager/similar and use downloaded files.
Some useful resources:
https://www.r-bloggers.com/r-with-parallel-computing-from-user-perspectives/
http://adv-r.had.co.nz/beyond-exception-handling.html

First token could not be read or is not the keyword 'FoamFile' in OpenFOAM

I am a beginner to programming. I am trying to run a simulation of a combustion chamber using reactingFoam.
I have modified the counterflow2D tutorial.
For those who maybe don't know OpenFOAM, it is a programme built in C++ but it does not require C++ programming, just well-defining the variables in the files needed.
In one of my first tries I have made a very simple model but since I wanted to check it very well I set it to 60 seconds with a 1e-6 timestep.
My computer is not very powerful so it took me for a day aprox. (by this I mean I'd like to find a solution rather than repeating the simulation).
I executed the solver reactingFOAM using 4 processors in parallel using
mpirun -np 4 reactingFOAM -parallel > log
The log does not show any evidence of error.
The problem is that when I use reconstructPar it works perfectly but then I try to watch the results with paraFoam and this error is shown:
From function bool Foam::IOobject::readHeader(Foam::Istream&)
in file db/IOobject/IOobjectReadHeader.C at line 88
Reading "mypath/constant/reactions" at line 1
First token could not be read or is not the keyword 'FoamFile'
I have read that maybe some files are empty when they are not supposed to be so, but I have not found that problem.
My 'reactions' file have not been modified from the tutorial and has always worked.
edit:
Sorry for the vague question. I have modified it a bit.
A typical OpenFOAM dictionary file always contains a Foam::Istream named FoamFile. An example from a typical system/controlDict file can be seen below:
FoamFile
{
version 2.0;
format ascii;
class dictionary;
location "system";
object controlDict;
}
During the construction of the dictionary header, if this Istream is absent, OpenFOAM ceases its operation by raising an error message that you have experienced:
First token could not be read or is not the keyword 'FoamFile'
The benefit of the header is possibly to contribute OpenFOAM's abstraction mechanisms, which would be difficult otherwise.
As mentioned in the comments, adding the header entity almost always solves this problem.

Resources