Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 11 years ago.
Improve this question
the question is:
x dy/dx = 2y ; y(0)=0
because when i solve this problem the integration constant 'c' gets zero... and i have to find its value in order to calculate a solution to given IVP
Unless I'm mistaken, this question gives c = 0 for y(0) = 0
x*dy/dx = 2y
x*dy = 2y*dx
dy / 2y = dx / x
ln(2y) = ln(x) + c
e^(ln(2y)) = e^(ln(x) + c) = e^ln(x)*e(c)
2y = x + c
solving for y(0) = 0 gives c = 0, as you stated.
Why do you think c must not be 0?
Related
Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 2 years ago.
Improve this question
For example, I try to solve for x: 12*exp(-2x/4)=0.5, or x^2+3x^4+9x^5=10, is there any method in R to solve such equations?
Try with uniroot function
r1 <- uniroot(function(x) 12*exp(-x/2) - 0.5, c(-1000, 1000))
r2 <- uniroot(function(x) x^2 + 3*x^4 + 9*x^5 - 10, c(-1000, 1000))
r1$root
[1] 6.356108
r2$root
[1] 0.943561
You have to define:
a function of the type f(x) = 0 (and remove the second member of equality)
an interval within which to search for the solution
Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 8 years ago.
Improve this question
I'm having trouble solving a normal distribution problem in R. I'm unfamiliar with the syntax and would like some help.
If X~N(2,9), compute
a. P(X>=2)
b. P(1<=X<7)
c. P(-2.5<=X<-1)
d. P(-3<=X-2<3)
You are looking for the pnorm function. This is the normal CDF. So you want to do something like:
# A
1 - pnorm(2, mean = 2, sd = 9) # = 0.5
# B
pnorm(7, mean = 2, sd = 9) - pnorm(1, mean = 2, sd = 9) # = 0.255
I think you can figure out the last two yourself.
Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 10 years ago.
Improve this question
T(n)=T(n-1) + lgn
My approach is:
Substituting n-1,n-2,n-3
Finally we get,
T(n)=T(1) + lg 2 +lg 3 and so lg n
=> T(n) = lg(2*3*4*5 n)
Hence T(n)=lg(n!).
But they give the answer as nlgn.
Is this a problem for computing complexity? If so then both you and "they" are correct.
O(lg(n!)) = O(lg(n^n)) = O(n lg(n))
More rigorously, from Stirling formula:
lg(n!) = n lg(n) - n + O(ln(n))
Therefore
O(lg(n!)) = O(n lg(n)) + O(n) + O(ln(n)) = O(n lg(n))
Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 11 years ago.
Improve this question
I am trying to solve a Mathematical equation in one of my geometric modelling problem.
Let's say if I have 2 vectors, A and B, and I have the following equation:
A x B = c (c is a scalar value).
If I know the coordinate of my vector B (7/2, 15/2); and I know the value of c, which is -4.
How can I calculate my vector A, to satisfy that equation (A X B = c) ?
The problem is underdetermined; there isn't a unique such A. I assume that by "multiplication" you mean the cross product.
A = (x,y)
B = (7/2, 15/2)
A×B = x(15/2) - y(7/2)
-4 = (15x-7y)/2
15x - 7y = -8
This gives a line along which points A=(x,y) can lie. Specifically, for any real number t,
x = -1 + 7t
y = -1 + 15t
gives a solution.
Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 12 years ago.
Improve this question
∫▒fdf/√(f(f^3 a+6bf+3c))
a, b, c are constant
The program is:
Integrate[x/Sqrt[x (x^3 a + 6 b x + 3 c )], x]
As per Mathematica output:
(2*(EllipticF[ArcSin[Sqrt[(x*(-R[1] + R[3]))/((x - R[1])*R[3])]],
((R[1] - R[2])*R[3])/(R[2]*(R[1] - R[3]))] -
EllipticPi[R[3]/(-R[1] + R[3]),
ArcSin[Sqrt[(x*(-R[1] + R[3]))/((x - R[1])*R[3])]],
((R[1] - R[2])*R[3])/(R[2]*(R[1] - R[3]))])*(x - R[1])^2*
Sqrt[(R[1]*(x - R[2]))/((x - R[1])*R[2])]*R[3]*
Sqrt[x*R[1]*(x - R[3])*(-R[1] + R[3]^2)])/
(Sqrt[x*(3*c + 6*b*x + a*x^3)]* (R[1] - R[3]))
Where:
Root[n]
Is the n root of the polynomial
p[u]=3 c + 6 b u + a u^3
Additionally, you may try this in Wolfram Alpha to get the indefinite integral, or definite ones. But I really think that if you are solving one important differential equation in general relativity and don't tried Mathematica and/or Wolfram Alpha, you may be a) Trolling or b) In great trouble