Direction of two points - math

Some high school math concept has been forgotten, so I ask here.
If I have two points p1(x1,y1), p2(x2,y2), the direction is P1-->p2, that's p1 points to p2. To represent this direction by vector, is it Vector(x2-x1,y2-y1) or Vector(x1-x2, y1-y2)?
By the way, what is the purpose to normalize a vector?

Answer 1: it is Vector(x2-x1,y2-y1)
Answer 2: Normalizing means to scale the vector so that its length is 1. It is a useful operation in many computations, for example, normal vectors should be specified normalized for lighting calculations in computer graphics. The normalized vector of v(x,y) is vn(x/Length(v), y/length(v)).
HTH

A nice way to remember which way the subtraction goes is to think of what the vector actually does. Imagine vector v resting at p1, pointing and connecting to p2. This means that p1 + v = p2. Therefore, v = p2-p1.

Related

Vectors and Scaler in games

How can we use vector and scalar in games? What benefit from that.
Could someone please indicate precisely the difference between a scalar and a vector in games field ? I find no matter how many times I try to understand but I maybe need examples for that.
A scalar is just another word for a number. The distinction is that a scalar is a number that is part of a vector. There is nothing special about a scalar.
A vector is a set of numbers (one or more) that define something, in the most common case you have 2 numbers representing a 2D vector or 3 numbers representing a 3D vector. The abstract notion for a vector is simply an arrow.
Take a piece of graph paper. Select any point on that paper and call it the origin. Its coordinate will be x = 0, y = 0. Now draw a straight line from that point in any direction and any length. To describe that arrow you need to define the vector. Count how far across the page the end of the arrow is from the start (origin) and that is the x component. Then how far up the page and that is the y component.
You have just created a vector that has two numbers (x,y) that completely describe the arrow on the paper. This type of vector always starts at zero. You can also describe the vector by its direction (ie north, east, south...) and length.
In 3D you need 3 numbers to describe any arrow. (x,y,z)
Vectors are very handy. You can use a vector to describe how fast something is moving and in what direction. The vector represents a little arrow that starts where the object is now and ends where the object will be in the next time unit.
Thus an object at coordinate x,y has a vector velocity(0.2,0.3). To calculate the position of the object in the next time unit just add the vector to the coordinate
newXPos = currentXPos + velocityVectorX
newYPos = currentYPos + velocityVectorY
If you want to slow the speed by half you can multiply the vector by 0.5
velocityVectorX = velocityVectorX * 0.5
velocityVectorY = velocityVectorY * 0.5
You do the same to increase the speed.
velocityVectorX = velocityVectorX * 2
velocityVectorY = velocityVectorY * 2
You may have an object in 3D space that has many forces acting on it. There is gravity a vector (arrow) pointing down (G). The force of the air resistance pointing up (R). The current velocity another arrow pointing in the direction it is traveling (V). You can have as many as you like (need) to describe all the forces that push and pull at the object. When you need to calculate the position of the object for the next instance in time (say one second) you just add all the force vectors together to get the total force as a vector and add that to the objects position
Object.x = Object.x + G.x + R.x + V.x;
Object.y = Object.y + G.y + R.y + V.y;
Object.z = Object.z + G.y + R.z + V.z;
If you just want the velocity
V.x = V.x + G.x + R.x;
V.y = V.y + G.y + R.y;
V.z = V.z + G.y + R.z;
That is the new velocity in one second.
There are many things that can be done with a vector. A vector can be used to point away from a surface in 3D, this vector is called a surface normal. The you create a vector from a point on that surface pointing to a light. The cosine of the angle between the two vectors is how much light the surface will reflect.
You can use a vector to represent the three direction in space an object has. Say a box, there is a 3D vector pointing along the width, another along the height and the last along the depth. The length of each vector represents the length of each side. You can make another vector to represent how far the corner of the box is from the origin (any known point) In 3D these 4 vectors are used to represent the object and is called a transformation matrix (just another type of vector made up of vectors)
The list of things vectors can do is endless.
The basics is just like number, you can add, subtract, multiply and divide and vector.
Then there are a host of special functions for vectors, normalize, transform, dot product and cross product to name but a few. For these things people normally use a library that does all this for you. My view is that if you really want to learn about vectors and how they are used write your own vector library at some point until then use a library.
Hope that cleared the mud a little bit for you, it is always difficult to describe something you have used for a long time to someone that is new to it so feel free to ask questions in the comments if you need.

Finding the coordinates of points from distance matrix

I have a set of points (with unknow coordinates) and the distance matrix. I need to find the coordinates of these points in order to plot them and show the solution of my algorithm.
I can set one of these points in the coordinate (0,0) to simpify, and find the others. Can anyone tell me if it's possible to find the coordinates of the other points, and if yes, how?
Thanks in advance!
EDIT
Forgot to say that I need the coordinates on x-y only
The answers based on angles are cumbersome to implement and can't be easily generalized to data in higher dimensions. A better approach is that mentioned in my and WimC's answers here: given the distance matrix D(i, j), define
M(i, j) = 0.5*(D(1, j)^2 + D(i, 1)^2 - D(i, j)^2)
which should be a positive semi-definite matrix with rank equal to the minimal Euclidean dimension k in which the points can be embedded. The coordinates of the points can then be obtained from the k eigenvectors v(i) of M corresponding to non-zero eigenvalues q(i): place the vectors sqrt(q(i))*v(i) as columns in an n x k matrix X; then each row of X is a point. In other words, sqrt(q(i))*v(i) gives the ith component of all of the points.
The eigenvalues and eigenvectors of a matrix can be obtained easily in most programming languages (e.g., using GSL in C/C++, using the built-in function eig in Matlab, using Numpy in Python, etc.)
Note that this particular method always places the first point at the origin, but any rotation, reflection, or translation of the points will also satisfy the original distance matrix.
Step 1, arbitrarily assign one point P1 as (0,0).
Step 2, arbitrarily assign one point P2 along the positive x axis. (0, Dp1p2)
Step 3, find a point P3 such that
Dp1p2 ~= Dp1p3+Dp2p3
Dp1p3 ~= Dp1p2+Dp2p3
Dp2p3 ~= Dp1p3+Dp1p2
and set that point in the "positive" y domain (if it meets any of these criteria, the point should be placed on the P1P2 axis).
Use the cosine law to determine the distance:
cos (A) = (Dp1p2^2 + Dp1p3^2 - Dp2p3^2)/(2*Dp1p2* Dp1p3)
P3 = (Dp1p3 * cos (A), Dp1p3 * sin(A))
You have now successfully built an orthonormal space and placed three points in that space.
Step 4: To determine all the other points, repeat step 3, to give you a tentative y coordinate.
(Xn, Yn).
Compare the distance {(Xn, Yn), (X3, Y3)} to Dp3pn in your matrix. If it is identical, you have successfully identified the coordinate for point n. Otherwise, the point n is at (Xn, -Yn).
Note there is an alternative to step 4, but it is too much math for a Saturday afternoon
If for points p, q, and r you have pq, qr, and rp in your matrix, you have a triangle.
Wherever you have a triangle in your matrix you can compute one of two solutions for that triangle (independent of a euclidean transform of the triangle on the plane). That is, for each triangle you compute, it's mirror image is also a triangle that satisfies the distance constraints on p, q, and r. The fact that there are two solutions even for a triangle leads to the chirality problem: You have to choose the chirality (orientation) of each triangle, and not all choices may lead to a feasible solution to the problem.
Nevertheless, I have some suggestions. If the number entries is small, consider using simulated annealing. You could incorporate chirality into the annealing step. This will be slow for large systems, and it may not converge to a perfect solution, but for some problems it's the best you and do.
The second suggestion will not give you a perfect solution, but it will distribute the error: the method of least squares. In your case the objective function will be the error between the distances in your matrix, and actual distances between your points.
This is a math problem. To derive coordinate matrix X only given by its distance matrix.
However there is an efficient solution to this -- Multidimensional Scaling, that do some linear algebra. Simply put, it requires a pairwise Euclidean distance matrix D, and the output is the estimated coordinate Y (perhaps rotated), which is a proximation to X. For programming reason, just use SciKit.manifold.MDS in Python.
The "eigenvector" method given by the favourite replies above is very general and automatically outputs a set of coordinates as the OP requested, however I noticed that that algorithm does not even ask for a desired orientation (rotation angle) for the frame of the output points, the algorithm chooses that orientation all by itself!
People who use it might want to know at what angle the frame will be tipped before hand so I found an equation which gives the answer for the case of up to three input points, however I have not had time to generalize it to n-points and hope someone will do that and add it to this discussion. Here are the three angles the output sides will form with the x-axis as a function of the input side lengths:
angle side a = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2-b^2)^2)/(a^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
angle side b = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2+b^2-a^2)^2)/(4*b^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
angle side c = arcsin(sqrt(((c+b+a)*(c+b-a)*(c-b+a)*(-c+b+a)*(c^2+b^2-a^2)^2)/(4*c^4*((c^2+b^2-a^2)^2+(c^2-b^2)^2))))*180/Pi/2
Those equations also lead directly to a solution to the OP's problem of finding the coordinates for each point because: the side lengths are already given from the OP as the input, and my equations give the slope of each side versus the x-axis of the solution, thus revealing the vector for each side of the polygon answer, and summing those sides through vector addition up to a desired vertex will produce the coordinate of that vertex. So if anyone can extend my angle equations to handling beyond three input lengths (but I note: that might be impossible?), it might be a very fast way to the general solution of the OP's question, since slow parts of the algorithms that people gave above like "least square fitting" or "matrix equation solving" might be avoidable.

Signed angle between two vectors without a reference plane

(In three dimensions) I'm looking for a way to compute the signed angle between two vectors, given no information other than those vectors. As answered in this question, it is simple enough to compute the signed angle given the normal of a plane to which the vectors are perpendicular. But I can find no way to do this without that value. It's obvious that the cross product of two vectors produces such a normal, but I've run into the following contradiction using the answer above:
signed_angle(x_dir, y_dir) == 90
signed_angle(y_dir, x_dir) == 90
where I would expect the second result to be negative. This is due to the fact that the cross product cross(x_dir, y_dir) is in the opposite direction of cross(y_dir, x_dir), given the following psuedocode with normalized input:
signed_angle(Va, Vb)
magnitude = acos(dot(Va, Vb))
axis = cross(Va, Vb)
dir = dot(Vb, cross(axis, Va))
if dir < 0 then
magnitude = -magnitude
endif
return magnitude
I don't believe dir will ever be negative above.
I've seen the same problem with the suggested atan2 solution.
I'm looking for a way to make:
signed_angle(a, b) == -signed_angle(b, a)
The relevant mathematical formulas:
dot_product(a,b) == length(a) * length(b) * cos(angle)
length(cross_product(a,b)) == length(a) * length(b) * sin(angle)
For a robust angle between 3-D vectors, your actual computation should be:
s = length(cross_product(a,b))
c = dot_product(a,b)
angle = atan2(s, c)
If you use acos(c) alone, you will get severe precision problems for cases when the angle is small. Computing s and using atan2() gives you a robust result for all possible cases.
Since s is always nonnegative, the resulting angle will range from 0 to pi. There will always be an equivalent negative angle (angle - 2*pi), but there is no geometric reason to prefer it.
Signed angle between two vectors without a reference plane
angle = acos(dotproduct(normalized(a), normalized(b)));
signed_angle(a, b) == -signed_angle(b, a)
I think that's impossible without some kind of reference vector.
Thanks all. After reviewing the comments here and looking back at what I was trying to do, I realized that I can accomplish what I need to do with the given, standard formula for a signed angle. I just got hung up in the unit test for my signed angle function.
For reference, I'm feeding the resulting angle back into a rotate function. I had failed to account for the fact that this will naturally use the same axis as in signed_angle (the cross product of input vectors), and the correct direction of rotation will follow from which ever direction that axis is facing.
More simply put, both of these should just "do the right thing" and rotate in different directions:
rotate(cross(Va, Vb), signed_angle(Va, Vb), point)
rotate(cross(Vb, Va), signed_angle(Vb, Va), point)
Where the first argument is the axis of rotation and second is the amount to rotate.
If all you want is a consistent result, then any arbitrary way of choosing between a × b and b × a for your normal will do. Perhaps pick the one that's lexicographically smaller?
(But you might want to explain what problem you are actually trying to solve: maybe there's a solution that doesn't involve computing a consistent signed angle between arbitrary 3-vectors.)

Computational geometry, tetrahedron signed volume

I'm not sure if this is the right place to ask, but here goes...
Short version: I'm trying to compute the orientation of a triangle on a plane, formed by the intersection of 3 edges, without explicitly computing the intersection points.
Long version: I need to triangulate a PSLG on a triangle in 3D. The vertices of the PSLG are defined by the intersections of line segments with the plane through the triangle, and are guaranteed to lie within the triangle. Assuming I had the intersection points, I could project to 2D and use a point-line-side (or triangle signed area) test to determine the orientation of a triangle between any 3 intersection points.
The problem is I can't explicitly compute the intersection points because of the floating-point error that accumulates when I find the line-plane intersection. To figure out if the line segments strike the triangle in the first place, I'm using some freely available robust geometric predicates, which give the sign of the volume of a tetrahedron, or equivalently which side of a plane a point lies on. I can determine if the line segment endpoints are on opposite sides of the plane through the triangle, then form tetrahedra between the line segment and each edge of the triangle to determine whether the intersection point lies within the triangle.
Since I can't explicitly compute the intersection points, I'm wondering if there is a way to express the same 2D orient calculation in 3D using only the original points. If there are 3 edges striking the triangle that gives me 9 points in total to play with. Assuming what I'm asking is even possible (using only the 3D orient tests), then I'm guessing that I'll need to form some subset of all the possible tetrahedra between those 9 points. I'm having difficultly even visualizing this, let alone distilling it into a formula or code. I can't even google this because I don't know what the industry standard terminology might be for this type of problem.
Any ideas how to proceed with this? Thanks. Perhaps I should ask MathOverflow as well...
EDIT: After reading some of the comments, one thing that occurs to me... Perhaps if I could fit non-overlapping tetrahedra between the 3 line segments, then the orientation of any one of those that crossed the plane would be the answer I'm looking for. Other than when the edges enclose a simple triangular prism, I'm not sure this sub-problem is solvable either.
EDIT: The requested image.
I am answering this on both MO & SO, expanding the comments I made on MO.
My sense is that no computational trick with signed tetrahedra volumes will avoid the precision issues that are your main concern. This is because, if you have tightly twisted segments, the orientation of the triangle depends on the precise positioning of the cutting plane.
[image removed; see below]
In the above example, the upper plane crosses the segments in the order (a,b,c) [ccw from above]: (red,blue,green), while the lower plane crosses in the reverse order (c,b,a): (green,blue,red). The height
of the cutting plane could be determined by your last bit of precision.
Consequently, I think it makes sense to just go ahead and compute the points of intersection in
the cutting plane, using enough precision to make the computation exact. If your segment endpoints coordinates and plane coefficients have L bits of precision, then there is just a small constant-factor increase needed. Although I am not certain of precisely what that factor is, it is small--perhaps 4. You will not need e.g., L2 bits, because the computation is solving linear equations.
So there will not be an explosion in the precision required to compute this exactly.
Good luck!
(I was prevented from posting the clarifying image because I don't have the reputation. See
the MO answer instead.)
Edit: Do see the MO answer, but here's the image:
I would write symbolic vector equations, you know, with dot and cross products, to find the normal of the intersection triangle. Then, the sign of the dot product of this normal with the initial triangle one gives the orientation. So finally you can express this in a form sign(F(p1,...,p9)), where p1 to p9 are your points and F() is an ugly formula including dot and cross products of differences (pi-pj). Don't know if this can be done simpler, but this general approach does the job.
As I understand it, you have three lines intersecting the plane, and you want to calculate the orientation of the triangle formed by the intersection points, without calculating the intersection points themselves?
If so: you have a plane
N·(x - x0) = 0
and six points...
l1a, l1b, l2a, l2b, l3a, l3b
...forming three lines
l1 = l1a + t(l1b - l1a)
l2 = l2a + u(l2b - l2a)
l3 = l3a + v(l3b - l3a)
The intersection points of these lines to the plane occur at specific values of t, u, v, which I'll call ti, ui, vi
N·(l1a + ti(l1b - l1a) - x0) = 0
N·(x0 - l1a)
ti = ----------------
N·(l1b - l1a)
(similarly for ui, vi)
Then the specific points of intersection are
intersect1 = l1a + ti(l1b - l1a)
intersect2 = l2a + ui(l2b - l2a)
intersect3 = l3a + vi(l3b - l3a)
Finally, the orientation of your triangle is
orientation = direction of (intersect2 - intersect1)x(intersect3 - intersect1)
(x is cross-product) Work backwards plugging the values, and you'll have an equation for orientation based only on N, x0, and your six points.
Let's call your triangle vertices T[0], T[1], T[2], and the first line segment's endpoints are L[0] and L[1], the second is L[2] and L[3], and the third is L[4] and L[5]. I imagine you want a function
int Orient(Pt3 T[3], Pt3 L[6]); // index L by L[2*i+j], i=0..2, j=0..1
which returns 1 if the intersections have the same orientation as the triangle, and -1 otherwise.
The result should be symmetric under interchange of j values, antisymmetric under interchange of i values and T indices. As long as you can compute a quantity with these symmetries, that's all you need.
Let's try
Sign(Product( Orient3D(T[i],T[i+1],L[2*i+0],L[2*i+1]) * -Orient3D(T[i],T[i+1],L[2*i+1],L[2*i+0]) ), i=0..2))
where the product should be taken over cyclic permutations of the indices (modulo 3). I believe this has all the symmetry properties required. Orient3D is Shewchuk's 4-point plane orientation test, which I assume you're using.

How do you calculate the reflex angle given two vectors in 3D space?

I want to calculate the angle between two vectors a and b. Lets assume these are at the origin. This can be done with
theta = arccos(a . b / |a| * |b|)
However arccos gives you the angle in [0, pi], i.e. it will never give you an angle greater than 180 degrees, which is what I want. So how do you find out when the vectors have gone past the 180 degree mark? In 2D I would simply let the sign of the y-component on one of the vectors determine what quadrant the vector is in. But what is the easiest way to do it in 3D?
EDIT: I wanted to keep the question general but here we go. I'm programming this in c and the code I use to get the angle is theta = acos(dot(a, b)/mag(a)*mag(b)) so how would you programmatically determine the orientation?
This works in 2D because you have a plane defined in which you define the rotation.
If you want to do this in 3D, there is no such implicit 2D plane. You could transform your 3D coordinates to a 2D plane going through all three points, and do your calculation inside this plane.
But, there are of course two possible orientations for the plane, and that will affect which angles will be > 180 or smaller.
I came up with the following solution that takes advantage of the direction change of the cross product of the two vectors:
Make a vector n = a X b and normalize it. This vector is normal to the plane spanned by a and b.
Whenever a new angle is calculated compare it with the old normal. In the comparison, treat the old and the current normals as points and compute the distance between them. If this distance is 2 the normal (i.e. the cross product a X b has flipped).
You might want to have a threshold for the distance as the distance after a flip might be shorter than 2, depending on how the vectors a and b are oriented and how often you update the angle.
One solution that you could use:
What you effectively need to do is create a plane that one of the vectors is coplanar to.
Getting the cross product of both vectors will create a plane, then is you get the normal of this plane, you can get the angle between this and the vector you need to get the signed angle for, and you can use the angle to determine the sign.
If the angle is greater than 90 degrees, then it is below the created plane; less than 90 degrees, and it is above.
Depending on cost of calculations, the dot product can be used at this stage instead of the angle.
Just make sure that you always calculate the normals by the same order of vectors.
This is useable more easily if you're using the XYZ axes, and that's what you're comparing against, since you already have the vectors needed for the plane.
There are possbly more efficient solutions, but this is one I came up with.
Edit: clarification of created vectors
a X b = p. This is perpendicular to both a and b.
Then, do either:
a X p or b X p to create another vector that is the normal to the plane created by the 2 vectors. Choice of vector depends on which you're trying to find the angle for.
Strictly speaking, two 3D vectors always have two angles between them - one below or equal to 180, the other over or equal to 180. Arccos gives you one of them, you can get the other by subtracting from 360. Think of it that way: imagine two lines intersect. You have 4 angles there - 2 of one value, 2 of another. What's the angle between the lines? No single answer. Same here. Without some kind of extra criteria, you can not, in theory, tell which of the two angle values should be taken into account.
EDIT: So what you really need is an arbitrary example of fixing an orientation. Here's one: we look from the positive Z direction. If the plane between the two vectors contains the Z axis, we look from the positive Y direction. If the plane is YZ, we look from the positive X direction. I'll think how to express this in coordinate form, then edit again.

Resources