Opencl FFT libraries? Anything new or under the radar out there? - opencl

I googled this topic and didn't find anything new. I am aware of Nvidia's FFT implementation which is great, but for CUDA only. AMD just released their implementation, but it doesn't work on Nvidia cards. Apple has an older and slower implementation. Are there any other good FFT libraries out there? It would be nice if there was an implementation that was meant to work on Nvidia and AMD cards and other possible platforms and is being actively maintained.

The AMD clAmdFft library should work on NVidia GPUs.
I was involved in the development and I know that was the intention. The code was written to the OpenCL standard and doesn't use any proprietary tricks. Of course, AMD didn't do QA testing on NVidia hardware. It could be that NVidia's OpenCL implementation isn't quite 100% compliant to the standard yet. Or it could be something about your particular video card.
Please post more details here as to exacly what is happening. You should also post that information in the AMD developer forums as a bug.

AMD recently released an OpenCL SDK for their CPUs as wel as GPUs. Included in it are FFT and BLAS libraries. You can go to the bottom of the page to find out about the supported devices.
But I am not really sure about the performance.

Not yet - but there is a project to port the GSL (Gnu Scientific Library) to opencl
http://gsl-cl.sourceforge.net/

I know Apple has released an OpenCL FFT package, but I don't know much about it. I've heard that they make the source available.

Related

How to use Flux.jl on an AMD GPU?

I currently do not have an Nvidia GPU on my laptop but I still want to be able to speed up training. Per the Flux docs, it says Nvidia GPU's are supported out of the box but doesn't mention AMD GPU's at all. Is it possible to work with Flux on an AMD GPU?
This should in principle be possible, since AMDGPU.jl provides a similar interface for AMD GPUs as CUDA.jl does for NVIDIA GPUs, and Flux is claimed to be agnostic to array types. However, at best this will only work on Linux, since AMDGPU.jl relies on AMD's ROCm platform, and ROCm is only supported on Linux, since ROCm is indeed specifically built around the Linux kernel.

Is there such a thing as OpenCL-aware MPI - on Nvidia and AMD?

Do Nvidia GPUs support an OpenCL aware MPI, with similar functionality as its CUDA aware MPI?
Also, do AMD GPUs' OpenCL provide such functionality?
I would have thought a simple google search would have answered this, but surprisingly I did not find much info on this while there is a ton of info on CUDA aware MPI!

OpenCL for custom systems on SoC prototyping board

Is it possible to run OpenCL on a system designed by a user on a SoC prototyping board? To be more specific, I have a ZedBoard (Xilinx Zynq) that has Dual ARM cores and a Programmable Logic (PL) Area. If I design a simple system of my own that has a video processing accelerator implemented in the logic area, an ARM core and an AXI interconnect, what do I have to do to provide OpenCL support for this simple system? (In this simple system, the ARM core could be the "Host" and the video processing accelerator could be the "device").
I am a student and I have only some basic knowledge about OpenCL. I have researched about my question and have only ended up confusing myself. What are the things that have to be done to provide OpenCL support for a SoC? I understand that this may be a big project, but I need a guideline where to start and how to proceed.
what do I have to do to provide OpenCL support for this simple system?
Implement a OpenCL platform that makes either use of your ARM CPU or the FPGA (or both). I'd say that is pretty much impossible for you; ARM would surely offer one for the CPU if it was easy (and they definitely have the financial means to employ capable engineers/computer scientists), and implementing accelerators on an FPGA requires in-depth knowledge of FPGA development, as well as compiler theory and experience in systems design. I don't want to sound mean, but you seem to have none of these three.
You asked where to get started; I recommend just writing a first accelerator that e.g. adds up a vector of numbers; as soon as you have that, you will have a clearer idea of your task.
If you want to have a look at a reference: The Ettus USRP E310 is a zynq-based SDR device. Ettus has a technology called RFNoC, which allows users to write their own blocks to push data through. Notice that this took quite a few engineers and quite some time to get started. Notice further that it's much easier than implementing something that converts OpenCL to FPGA implementations.
If you have access to the Xilinx tools: Vivado HLS 15.1 System Edition should compile OpenCL kernels. This will also be included in the SDAccel tool suite.
Source: UG973: Vivado Design Suite User Guide Release Notes, Installation,and Licensing
An alternative might be switching to Altera. They provide some good examples for the Altera Cyclone V SoC which is comparable to Xilinx Zynq devices (also includes ARM Cortex-A9) :
AlteraSDK for OpenCL
I am also a student and my current project is also going on a similar direction, i have successfully installed a version of opencl called POCL on the zedboard, it successfully detects the arm cpu of the zedboard. To install pocl, you need llvm and a horde of other things as well. but basic steps to get pocl up on the zedboard are given below:-
Installing pocl:
http://www.hosseinabady.com/install-pocl-opencl
running example:
http://www.hosseinabady.com/embedded-system-by-examples/opencl_embedded_system/opencl-vector-addition
Lots of dependency: can resolved easily
but LLVM make sure you install 3.4 version for pocl 0.9
Steps to install llvm
https://github.com/pacs-course/pacs/wiki/Instructions-to-install-clang-3.1-on-ubuntu-12.04.1-and-12.10
POCL 0.9 is successfully working for me, as you do the installation you will face many other missing dependencies like hwloc, mesa libraries, open gl/cl headers icd loaders i hope you can resolve them as its a very big list to put up in stack overflow.
In order to detect your fpga as an open cl device, thats not going to be a trivial thing to do, you can refer to this link question i posted on github
https://github.com/pocl/pocl/issues/285
and also a research paper published by hosseinbady found on the publications link on the pocl website
http://pocl.sourceforge.net/publications.html
hope this helps you
Try the ARM OpenCL SDK. The Zedboard has an ARM A9 CPU, this should have a NEON SIMD vector unit http://www.arm.com/products/processors/technologies/neon.php which can run OpenCL. See http://www.arm.com/products/multimedia/mali-technologies/opencl-for-neon.php.
The Zedboard isn't listed as an OpenCL conformant platform https://www.khronos.org/conformance/adopters/conformant-products#opencl.
So there is a chance the ARM driver will not work.
Good luck!
If still relevant, try this paper OpenCL on ZYNQ [PDF]
Also note that Zynq-7000 is listed on https://www.khronos.org/conformance/adopters/conformant-products#opencl ( OpenCL_1_0 ), hence the compatibility.

AMD APP OpenCL SDK on Intel

I have seen that AMD APP SDK samples work on a machine having only Intel CPU.
How can this happen? How does the compiler target a different machine architecture?
Do I not need Intel's set of compilers for running the code on the intel CPU?
I think if we have to run an OpenCL application on a specific hardware, I have to (re)compile it using device's vendor specifics compiler.
Where is my understanding wrong?
Firstly, OpenCL is built to work on CPU's and GPU's. You can compile and run the same source code on either type of device. However, its very likely that CPU code will be sub-optimal for a GPU and vice-versa.
AMD H/W is 7% - 14% of total x86/x64 CPU's. So AMD must develop compilers for both AMD and Intel chips to be relevant. AMD have history developing compilers for both sets of chips. Conversely, Intel have developed compilers that either don't work on AMD chips or don't work that well. That's no surprise.
With OpenCL, the AMD APP SDK is the most flexible it will work well on AMD and Intel CPU's and AMD GPUs. Intel's OpenCL SDK doesn't even install on AMD x86 H/W.
If you compile an OpenCL program to binary, you can save and reuse it as long as it matches the OpenCL Platform and Device that created it. So, if you compile for one device and use on another you are very likely to get an error.
The power of OpenCL is abstracting the underlaying hardware and offer massive, parallel and heterogeneous computing power.
Some SDKs and platforms offers some specific features to "optimize" the code, i honestly think that such features are just marketing and they introduce boilerplate code making the application less portable.
There are also some pseudo-new technologies that are just wrappers to OpenCL or they are really similar in the concept like the Intel quick sync.
About Intel i should say that at the first place they were supporting all the iCore generation and even some C2D, now the new SDK only support the 3rd iCore generation, i don't get their strategy honestly, probably Intel is the last option if you want to adopt OpenCL and targeting the biggest possible audience, also their SDK doesn't seems to be really good at all .
Stick with the standard and you will avoid both possible legal and performance issues and your code will also be more portable.
The bottom line is that the AMD SDK includes a compiler for targeting x86 CPUs for OpenCL. That means that even though you are running an Intel CPU the generated code will run on it. It's the same concept as compiling a C program to run on an x86 CPU: it works on Intel and AMD CPUs (or any that implement the x86 instruction set).
The vendor's compiler might have specific optimizations, like user827992 mentions, but in my experience the performance of AMD's CPU compiler isn't that bad when running on an Intel CPU. I haven't tried Intel's OpenCL implementation.
It is true that for some (maybe most in the future) hardware, only the vendor's compiler will support it. AMD's SDK won't build code that will run on an NVIDIA card, and vice-versa. CPUs happen to be a bit of a special case in that the basic instruction set is so widely deployed that the CPU compiler will work on most machines you're likely to come in contact with.

Need to install opencl for CPU and GPU platforms?

I have a system with an NVidia graphics card and I'm looking at using openCL to replace openMP for some small on CPU tasks (thanks to VS2010 making openMP useless)
Since I have NVidia's opencl SDK installed clGetPlatformIDs() only returns a single platform (NVidia's) and so only a single device (the GPU).
Do I need to also install Intel's openCL sdk to get access to the CPU platform?
Shouldn't the CPU platform always be available - I mean, how do you NOT have a cpu?
How do you manage to build against two openCL SDKs simultaneously?
You need to have a SDK which provides interface to CPU. nVidia does not, AMD and Intel's SDKs do; in my case the one from Intel is significantly (something like 10x) faster, which might due to bad programming on my part however.
You don't need the SDK for programs to run, just the runtime. In Linux, each vendor installs a file in /etc/OpenCL/vendors/*.icd, which contains path of the runtime library to use. That is scanned by the OpenCL runtime you link to (libOpenCL.so), which then calls each of the vendor's libs when querying for devices on that particular platform.
In Linux, the GPU drivers install OpenCL runtime automatically, the Intel runtime is likely to be downloadable separately from the SDK, but is part of the SDK as well, of course.
Today i finally got around to trying to start doing openCl development and wow... it is not straight forward at all.
There's an AMD sdk, there's an intel sdk, there's an nvidia sdk, each with their own properties (CPU only vs GPU only vs specific video card support only perhaps?)
There may be valid technical reasons for it having to be this way but i really wish there was just one sdk, and that when programming perhaps you could specify GPU / CPU tasks, or that maybe it would use whatever resources made most sense / preformed best or SOMETHING.
Time to dive in though I guess... trying to decide though if i go CPU or GPU. I have a pretty new 4000$ alienware laptop with SLI video cards, but then also an 8 core cpu so yeah... guess ill have to try a couple sdk's and see which preforms best for my needs?
Not sure what end users of my applications would do though... it doesnt seem like they can flip a switch to make it run on cpu or gpu instead.
The OpenCL landscape really needs some help...

Resources