Check if three circles fit inside a triangle - math

I have thought some time about writing a program that tells me if three circles with given diameters can fit inside a triangle with given side lengths without overlapping (touching is ok) each other.
How would one think about doing that?

I would try to find some way to enumerate the possible configurations for the three circles, and then test each configuration until one is found where the three circles fit, or until all configurations have been tested and rejected.
(In what follows I am assuming that each circle is known to fit in the triangle by itself. Obviously if any circle fails to fit by itself then it fails to fit in any configuration of three circles.)
Configuration (1) involves putting a circle in each corner of the triangle. (This is the configuration that everyone spotted.)
There are six ways to arrange the circles, and for each arrangement it sufficient to check whether the circles will fit pairwise:
The distance AS₁ is r₁/tan(½α), the distance S₂B is r₂/tan(½β), and the distance S₁S₂ is √((r₁ + r₂)² − (r₁ − r₂)²) = 2√r₁r₂
The circles fit if AS₁ + S₁S₂ + S₂B ≤ AB.
In configuration (2) we place two circles into two of the corners of the triangle, and the third circle between these two and one of the two edges that's not touching both circles:
Figuring out whether these will fit is a bit more complex:
To find the length AS₁ we have to walk round the triangle from corner C via the point T. I'll leave the details of this as an exercise.
There are eighteen ways to arrange the circles into this configuration.
Is there a configuration (3)? I looked but couldn't find one that couldn't be turned into one of the two I gave. For example, if all three circles touch the same side then there's always room to swap the middle circle over to the opposite side, getting configuration (2). However, enumeration of geometric configurations is always tricky and I could easily have missed one.

Just a guess: your problem could be related to that of Appolonius's circles.
I ran into it while trying to fit recursively 3 circles within a 4th one without any intersection for some fractal animation, so it may be worth a try.
You'll find it explained in length at Wolfram (this problem was solved only in 1968):
http://mathworld.wolfram.com/ApolloniusProblem.html

this seems to be a tough and interesting problem. Through the solution of the Marble Problem (related to Malfatti's Circles) by Los and Zalgaller in 1994, it might be possible for you to tediously extract a necessary condition for existence of a configuration of three non-overlapping circles with given radii inside a triangle with prescribed side lengths. If you can place them inside the triangle, the sum of their areas will be at most the maximal possible area for three triangles inside a circle. The Marble Problem is the problem of determining the maximal area of three non-overlapping circles inside a given triangle. Right now, I can't see that this is also sufficient.
Perhaps it would be worth, as a start, to introduce an ε to the problem and then look for an algortihm that in a finite number of steps, could determine if a configuration which is at most "bad by ε" (defined in some sensible way) exists.
Some of the World's top mathematicians participate regularly at stackoverflow's sibling,
mathoverflow.org, so you could try posting this problem over there.
Thanks for posting this.

I think it's sufficient to try all 6 possible permutations (A1 B2 C3, A2 B1 C3, A1 B3 C2, A3 B1 C2, A2 B3 C1, A3 B2 C1). If a circle isn't tangent to two edges of the triangle, then it's placement is suboptimal in some sense and you could make more space for the other two by sliding it into a corner. If it's possible to stick three circles in a triangle without them overlapping then it's probably possible to slide them into the corners (for the case in which they're all jammed against the edges, lift them all up together and rotate by 60 degrees). Of course, this isn't a rigorous proof, but I'm pretty sure it works.
Furthermore, I imagine the solution will always be to place the largest circles at the widest angles, because those are the ones that could potentially take up the most central triangle space.

Related

Area of n overlapping circle [duplicate]

I recently came across a problem where I had four circles (midpoints and radius) and had to calculate the area of the union of these circles.
Example image:
For two circles it's quite easy,
I can just calculate the fraction of the each circles area that is not within the triangles and then calculate the area of the triangles.
But is there a clever algorithm I can use when there is more than two circles?
Find all circle intersections on the outer perimeter (e.g. B,D,F,H on the following diagram). Connect them together with the centres of the corresponding circles to form a polygon. The area of the union of the circles is the area of the polygon + the area of the circle slices defined by consecutive intersection points and the circle center in between them. You'll need to also account for any holes.
I'm sure there is a clever algorithm, but here's a dumb one to save having to look for it;
put a bounding box around the circles;
generate random points within the bounding box;
figure out whether the random point is inside one of the circles;
compute the area by some simple addition and division (proportion_of_points_inside*area_of_bounding_box).
Sure it's dumb, but:
you can get as accurate an answer as you want, just generate more points;
it will work for any shapes for which you can calculate the inside/outside distinction;
it will parallelise beautifully so you can use all your cores.
Ants Aasma's answer gave the basic idea, but I wanted to make it a little more concrete. Take a look at the five circles below and the way they've been decomposed.
The blue dots are circle centers.
The red dots are circle boundary intersections.
The red dots with white interior are circle boundary intersections that are not contained in any other circles.
Identifying these 3 types of dots is easy. Now construct a graph data structure where the nodes are the blue dots and the red dots with white interior. For every circle, put an edge between the circle middle (blue dot) and each of its intersections (red dots with white interior) on its boundary.
This decomposes the circle union into a set of polygons (shaded blue) and circular pie pieces (shaded green) that are pairwise disjoint and cover the original union (that is, a partition). Since each piece here is something that's easy to compute the area of, you can compute the area of the union by summing the pieces' areas.
For a different solution from the previous one you could produce an estimation with an arbitrary precision using a quadtree.
This also works for any shape union if you can tell if a square is inside or outside or intersects the shape.
Each cell has one of the states : empty , full , partial
The algorithm consists in "drawing" the circles in the quadtree starting with a low resolution ( 4 cells for instance marked as empty). Each cell is either :
inside at least one circle, then mark the cell as full,
outside all circles, mark the cell as empty,
else mark the cell as partial.
When it's done, you can compute an estimation of the area : the full cells give the lower bound, the empty cells give the higher bound, the partial cells give the max area error.
If the error is too big for you, you refine the partial cells until you get the right precision.
I think this will be easier to implement than the geometric method which may require to handle a lot of special cases.
I love the approach to the case of 2 intersecting circles -- here's how i'd use a slight variation of the same approach for the more complex example.
It might give better insight into generalising the algorithm for larger numbers of semi-overlapping circles.
The difference here is that i start by linking the centres (so there's a vertice between the centre of the circles, rather than between the places where the circles intersect) I think this lets it generalise better.
(in practice, maybe the monte-carlo method is worthwhile)
(source: secretGeek.net)
If you want a discrete (as opposed to a continuous) answer, you could do something similar to a pixel painting algorithm.
Draw the circles on a grid, and then color each cell of the grid if it's mostly contained within a cirle (i.e., at least 50% of its area is inside one of the circles). Do this for the entire grid (where the grid spans all of the area covered by the circles), then count the number of colored cells in the grid.
Hmm, very interesting problem. My approach would probably be something along the lines of the following:
Work out a way of working out what the areas of intersection between an arbitrary number of circles is, i.e. if I have 3 circles, I need to be able to work out what the intersection between those circles is. The "Monte-Carlo" method would be a good way of approximating this (http://local.wasp.uwa.edu.au/~pbourke/geometry/circlearea/).
Eliminate any circles that are contained entirely in another larger circle (look at radius and the modulus of the distance between the centre of the two circles) I dont think is mandatory.
Choose 2 circles (call them A and B) and work out the total area using this formula:
(this is true for any shape, be it circle or otherwise)
area(A∪B) = area(A) + area(B) - area(A∩B)
Where A ∪ B means A union B and A ∩ B means A intersect B (you can work this out from the first step.
Now keep on adding circles and keep on working out the area added as a sum / subtraction of areas of circles and areas of intersections between circles. For example for 3 circles (call the extra circle C) we work out the area using this formula:
(This is the same as above where A has been replaced with A∪B)
area((A∪B)∪C) = area(A∪B) + area(C) - area((A∪B)∩C)
Where area(A∪B) we just worked out, and area((A∪B)∩C) can be found:
area((A∪B)nC) = area((A∩C)∪(B∩C)) = area(A∩C) + area(A∩B) - area((A∩C)∩(B∩C)) = area(A∩C) + area(A∩B) - area(A∩B∩C)
Where again you can find area(A∩B∩C) from above.
The tricky bit is the last step - the more circles get added the more complex it becomes. I believe there is an expansion for working out the area of an intersection with a finite union, or alternatively you may be able to recursively work it out.
Also with regard to using Monte-Carlo to approximate the area of itersection, I believe its possible to reduce the intersection of an arbitrary number of circles to the intersection of 4 of those circles, which can be calculated exactly (no idea how to do this however).
There is probably a better way of doing this btw - the complexity increases significantly (possibly exponentially, but I'm not sure) for each extra circle added.
There are efficient solutions to this problem using what are known as power diagrams. This is really heavy math though and not something that I would want to tackle offhand. For an "easy" solution, look up line-sweep algorithms. The basic principle here is that that you divide the figure up into strips, where calculating the area in each strip is relatively easy.
So, on the figure containing all of the circles with nothing rubbed out, draw a horizontal line at each position which is either the top of a circle, the bottom of a circle or the intersection of 2 circles. Notice that inside these strips, all of the areas you need to calculate look the same: a "trapezium" with two sides replaced by circular segments. So if you can work out how to calculate such a shape, you just do it for all the individual shapes and add them together. The complexity of this naive approach is O(N^3), where N is the number of circles in the figure. With some clever data structure use, you could improve this line-sweep method to O(N^2 * log(N)), but unless you really need to, it's probably not worth the trouble.
The pixel-painting approach (as suggested by #Loadmaster) is superior to the mathematical solution in a variety of ways:
Implementation is much simpler. The above problem can be solved in less than 100 lines of code, as this JSFiddle solution demonstrates (mostly because it’s conceptually much simpler, and has no edge cases or exceptions to deal with).
It adapts easily to more general problems. It works with any shape, regardless of morphology, as long as it’s renderable with 2D drawing libraries (i.e., “all of them!”) — circles, ellipses, splines, polygons, you name it. Heck, even bitmap images.
The complexity of the pixel-painting solution is ~O[n], as compared to ~O[n*n] for the mathematical solution. This means it will perform better as the number of shapes increases.
And speaking of performance, you’ll often get hardware acceleration for free, as most modern 2D libraries (like HTML5’s canvas, I believe) will offload rendering work to graphics accelerators.
The one downside to pixel-painting is the finite accuracy of the solution. But that is tunable by simply rendering to larger or smaller canvases as the situation demands. Note, too, that anti-aliasing in the 2D rendering code (often turned on by default) will yield better-than-pixel-level accuracy. So, for example, rendering a 100x100 figure into a canvas of the same dimensions should, I think, yield accuracy on the order of 1 / (100 x 100 x 255) = .000039% ... which is probably “good enough” for all but the most demanding problems.
<p>Area computation of arbitrary figures as done thru pixel-painting, in which a complex shape is drawn into an HTML5 canvas and the area determined by comparing the number of white pixels found in the resulting bitmap. See javascript source for details.</p>
<canvas id="canvas" width="80" height="100"></canvas>
<p>Area = <span id="result"></span></p>
// Get HTML canvas element (and context) to draw into
var canvas = document.getElementById('canvas');
var ctx = canvas.getContext('2d');
// Lil' circle drawing utility
function circle(x,y,r) {
ctx.beginPath();
ctx.arc(x, y, r, 0, Math.PI*2);
ctx.fill();
}
// Clear canvas (to black)
ctx.fillStyle = 'black';
ctx.fillRect(0, 0, canvas.width, canvas.height);
// Fill shape (in white)
ctx.fillStyle = 'white';
circle(40, 50, 40);
circle(40, 10, 10);
circle(25, 15, 12);
circle(35, 90, 10);
// Get bitmap data
var id = ctx.getImageData(0, 0, canvas.width, canvas.height);
var pixels = id.data; // Flat array of RGBA bytes
// Determine area by counting the white pixels
for (var i = 0, area = 0; i < pixels.length; i += 4) {
area += pixels[i]; // Red channel (same as green and blue channels)
}
// Normalize by the max white value of 255
area /= 255;
// Output result
document.getElementById('result').innerHTML = area.toFixed(2);
I have been working on a problem of simulating overlapping star fields, attempting to estimate the true star counts from the actual disk areas in dense fields, where the larger bright stars can mask fainter ones. I too had hoped to be able to do this by rigorous formal analysis, but was unable to find an algorithm for the task. I solved it by generating the star fields on a blue background as green disks, whose diameter was determined by a probability algorithm. A simple routine can pair them to see if there's an overlap (turning the star pair yellow); then a pixel count of the colours generates the observed area to compare to the theoretical area. This then generates a probability curve for the true counts. Brute force maybe, but it seems to work OK.
(source: 2from.com)
Here's an algorithm that should be easy to implement in practice, and could be adjusted to produce arbitrarily small error:
Approximate each circle by a regular polygon centered at the same point
Calculate the polygon which is the union of the approximated circles
Calculate the area of the merged polygon
Steps 2 and 3 can be carried out using standard, easy-to-find algorithms from computational geometry.
Obviously, the more sides you use for each approximating polygon, the closer to exact your answer would be. You could approximate using inscribed and circumscribed polygons to get bounds on the exact answer.
I found this link which may be useful. There does not seem to be a definitive answer though.
Google answers. Another reference for three circles is Haruki's theorem. There is a paper there as well.
Depending on what problem you are trying to solve it could be sufficient to get an upper and lower bound. An upper bound is easy, just the sum of all the circles. For a lower bound you can pick a single radius such that none of the circles overlap. To better that find the largest radius (up to the actual radius) for each circle so that it doesn't overlap. It should also be pretty trivial to remove any completely overlapped circles (All such circles satisfy |P_a - P_b| <= r_a) where P_a is the center of circle A, P_b is the center of circle B, and r_a is the radius of A) and this betters both the upper and lower bound. You could also get a better Upper bound if you use your pair formula on arbitrary pairs instead of just the sum of all the circles. There might be a good way to pick the "best" pairs (the pairs that result in the minimal total area.
Given an upper and lower bound you might be able to better tune a Monte-carlo approach, but nothing specific comes to mind. Another option (again depending on your application) is to rasterize the circles and count pixels. It is basically the Monte-carlo approach with a fixed distribution.
I've got a way to get an approximate answer if you know that all your circles are going to be within a particular region, i.e. each point in circle is inside a box whose dimensions you know. This assumption would be valid, for example, if all the circles are in an image of known size. If you can make this assumption, divide the region which contains your image into 'pixels'. For each pixel, compute whether it is inside at least one of the circles. If it is, increment a running total by one. Once you are done, you know how many pixels are inside at least one circle, and you also know the area of each pixel, so you can calculate the total area of all the overlapping circles.
By increasing the 'resolution' of your region (the number of pixels), you can improve your approximation.
Additionally, if the size of the region containing your circles is bounded, and you keep the resolution (number of pixels) constant, the algorithm runs in O(n) time (n is the number of circles). This is because for each pixel, you have to check whether it is inside each one of your n circles, and the total number of pixels is bounded.
This can be solved using Green's Theorem, with a complexity of n^2log(n).
If you're not familiar with the Green's Theorem and want to know more, here is the video and notes from Khan Academy. But for the sake of our problem, I think my description will be enough.
If I put L and M such that
then the RHS is simply the area of the Region R and can be obtained by solving the closed integral or LHS and this is exactly what we're going to do.
So Integrating along the path in the anticlockwise gives us the Area of the region and integrating along the clockwise gives us negative of the Area. So
AreaOfUnion = (Integration along red arcs in anticlockwise direction + Integration along blue arcs in clockwise direction)
But the cool trick is if for each circle if we integrate the arcs which are not inside any other circle we get our required area i.e. we get integration in an anticlockwise direction along all red arcs and integration along all blue arcs along the clockwise direction. JOB DONE!!!
Even the cases when a circle doesn't intersect with any other is taken
care of.
Here is the GitHub link to my C++ Code

Determining whether an object is in the path of two other objects in 2D space

Say there are 3 objects defined by rectangles in x-y coordinates. The rectangles can be of any orientation (not necessarily parallel to the axes).
How would you go about approaching the problem of determining whether object C is partially, fully, or not at all obscured by object B from the perspective of object A (object A can see from anywhere on its rectangle)?
Second question: is it possible to determine the percentage of object C that is visible?
Here is my (completely untested) approach.
Consider first the same problem but only looking from one fixed point P.
Find the two (infinite) lines that go through P and enclose your rectangle B. Since it is a rectangle these two lines will be two of the four lines that go through P and each vertex of B.
Check whether each vertex of C is in between these two lines or not. If any vertex of C is between these two lines check whether it is closer or farther from P than B is. If it is farther than B is at least partially obscuring C.
Now do this for each vertex of A. You may get more complicated results if you see a part of C from one point P in A and a different part of C from a different point P in A. I will leave it up to you how to deal with that.
To determine the percent coverage, compute the shape that you get from intersecting rectangle C with these two lines and compute its area, then divide by the total area of the shape.
I have left all the math in this up to you to figure out, but if you have any specific questions about your work, feel free to ask those.
This answer would benefit nicely from having some pictures added, but I'm hoping you can understand this answer while drawing your own diagrams according to the steps provided.

Finding the normal between a cylinder and a triangle

I have a pretty rudimentary physics engine in the game I'm working on, between moving, cylindrical characters, and static meshes made of triangles. The intended behavior is for characters to slide across surfaces, and in most cases, it works fine. But the engine doesn't discriminate between a head-on collision and a glancing collision.
I'm not entirely sure what information I could give that would be helpful. I'm looking for a mathematical solution, at any rate, a method to determine the 'angle of contact' between an arbitrary cylinder and triangle. My instincts, or whatever, tell me that I need to find the point of contact between the triangle and the cylinder, then determine whether that point is within the triangle (Using the triangle's regular normal) or along one of its edges (Using the angle between the point of contact and some point on the cylinder, I'm not sure which.), but I'm sure there's a better solution.
As requested, here's a couple of examples. In this first image, a cylinder travels downwards towards a triangle (In this example, the triangle is vertical, simplified to a line.) I project the velocity vector onto the plane of the triangle, using the formula Vf = V - N * (dot(V,N)). This is the intended behavior for this type of collision.
In this image, the cylinder's axis is parallel with the normal of the triangle. Under the current implementation, Vf is still determined using the triangle's natural normal, which would cause the cylinder to begin moving vertically. Under intended behavior, N would be perpendicular to the colliding edge of the triangle.
But these are just the two extremes of collision. There are going to be a bunch of in-betweens, so I need a more arbitrary solution.
This is my attempt at a more 3D example. I apologize for the poor perspective. The bottom-most vertex in this triangle is closer to the 'camera'. The point of collision between the cylinder and the triangle is marked by the red X. Under intended behavior, if the cylinder was moving directly away from the camera, it would slide to the left, along the length of the triangle's edge. No vertical movement would be imparted, as the point of contact is along the cylinder's, uh, tube section, rather than the caps.
Under current behavior, the triangle's normal is used. The cylinder would be pushed upwards, as though sliding across the face of the triangle, while doing little to prevent movement into the triangle.
I understand that this is a difficult request, so I appreciate the suggestions made to help refine my question.
What you're looking for is probably an edge collision detector. In rigid body collision systems, there are usually two types of collisions: surface collisions (for colliding with things that have a regular surface normal, where the reaction normal can be computed easily, as you pointed out, by processing A velocity vs B surface normal), and edge collisions (where the A body hits the edge of B body, be it box, triangle or anything else). In this case, the matter is more complicated, because, obviously, edge is not a surface, and thus you can't calculate it's normal at all. Usually, it's approximated one way or another - you can for example assume that, for triangle mesh, the edge normal is the average between normals of the two edge triangle's. There are also other methods to deal with it, some discussed here:
https://code.google.com/p/bullet/downloads/detail?name=CEDEC2011_ErwinCoumans.pdf&can=2&q=
Usually, there's an edge processing threshold value, if a collision occurred in the radius of this value, it's considered an edge collision, and processed differently.
See the examples here:
http://www.wildbunny.co.uk/blog/2012/10/31/2d-polygonal-collision-detection-and-internal-edges/
Googling "internal edge collision" and learning about rigid body collisions/dynamics in general will help you understand and solve this problem by yourself.

circles and triangles problem

I have an interesting problem here I've been trying to solve for the last little while:
I have 3 circles on a 2D xy plane, each with the same known radius. I know the coordinates of each of the three centers (they are arbitrary and can be anywhere).
What is the largest triangle that can be drawn such that each vertex of the triangle sits on a separate circle, what are the coordinates of those verticies?
I've been looking at this problem for hours and asked a bunch of people but so far only one person has been able to suggest a plausible solution (though I have no way of proving it).
The solution that we have come up with involves first creating a triangle about the three circle centers. Next we look at each circle individually and calculate the equation of a line that passes through the circle's center and is perpendicular to the opposite edge. We then calculate two intersection points of the circle. This is then done for the next two circles with a result of 6 points. We iterate over the 8 possible 3 point triangles that these 6 points create (the restriction is that each point of the big triangle must be on a separate circle) and find the maximum size.
The results look reasonable (at least when drawn out on paper) and it passes the special case of when the centers of the circles all fall on a straight line (gives a known largest triangle). Unfortunate i have no way of proving this is correct or not.
I'm wondering if anyone has encountered a problem similar to this and if so, how did you solve it?
Note: I understand that this is mostly a math question and not programming, however it is going to be implemented in code and it must be optimized to run very fast and efficient. In fact, I already have the above solution in code and tested to be working, if you would like to take a look, please let me know, i chose not to post it because its all in vector form and pretty much impossible to figure out exactly what is going on (because it's been condensed to be more efficient).
Lastly, yes this is for school work, though it is NOT a homework question/assignment/project. It's part of my graduate thesis (abet a very very small part, but still technically is part of it).
Thanks for your help.
Edit: Heres a new algorithm that i came up with a little while ago.
Starting at a circle's centre, draw a line to the other two centres. Calculate the line that bisects the angle created and calculate the intersections between the circle and the line that passes through the centre of your circle. You will get 2 results. Repeat this for the other two circles to get a total of 6 points. Iterate over these 6 points and get 8 possible solutions. Find the maximum of the 8 solutions.
This algorithm will deal with the collinear case if you draw your lines in one "direction" about the three points.
From the few random trials i have attempted using CAD software to figure out the geometries for me, this method seems to outperform all other methods previously stated However, it has already been proven to not be an optimal solution by one of Victor's counter examples.
I'll code this up tomorrow, for some reason I've lost remote access to my university computer and most things are on it.
I've taken the liberty of submitting a second answer, because my original answer referred to an online app that people could play with to get insight. The answer here is more a geometric argument.
The following diagram illuminates, I hope, what is going on. Much of this was inspired by #Federico Ramponi's observation that the largest triangle is characterized by the tangent at each vertex being parallel to the opposite side.
(source: brainjam.ca)
The picture was produced using a trial version of the excellent desktop program Geometry Expressions. The diagram shows the three circles centered at points A,E, and C. They have equal radii, but the picture doesn't really depend on the radii being equal, so the solution generalizes to circles of different radii. The lines MN, NO, and OM are tangent to the circles, and touch the circles at the points I,H, and G respectively. The latter points form the inner triangle IHG which is the triangle whose size we want to maximize.
There is also an exterior triangle MNO which is homethetic to the interior triangle, meaning that its sides are parallel to that of IHG.
#Federico observed that IHG has maximal area because moving any of its vertices along the corresponding circle will result an a triangle that has the same base but less height, therefore less area. To put it in slightly more technical terms, if the triangle is parameterized by angles t1,t2,t3 on the three circles (as pointed out by #Charles Stewart, and as used in my steepest descent canvas app), then the gradient of the area w.r.t to (t1,t2,t3) is (0,0,0), and the area is extremal (maximal in the diagram).
So how is this diagram computed? I'll admit in advance that I don't quite have the full story, but here's a start. Given the three circles, select a point M. Draw tangents to the circles centered at E and C, and designate the tangent points as G and I. Draw a tangent OHN to the circle centered at A that is parallel to GI. These are fairly straightforward operations both algebraically and geometrically.
But we aren't finished. So far we only have the condition that OHN is parallel to GI. We have no guarantee that MGO is parallel to IH or that MIN is parallel to GH. So we have to go back and refine M. In an interactive geometry program it's no big deal to set this up and then move M until the latter parallel conditions are met (by eyeballs, anyways). Geometry Expressions created the diagram, but I used a bit of a cheat to get it to do so, because its constraint solver was apparently not powerful enough to do the job. The algebraic expressions for G, I, and H are reasonably straightforward, so it should be possible to solve for M based on the fact that MIHG is a parallelogram, either explicitly or numerically.
I should point out that in general if you follow the construction starting from M, you have two choices of tangent for each circle, and therefore eight possible solutions. As in the other attempted answers to the question, unless you have a good heuristic to help you choose in advance which of the tangents to compute, you should probably compute all eight possible triangles and find the one with maximum area. The other seven will be extremal in the sense of being minimal area or saddle points.
That's it. This answer is not quite complete in that it leaves the final computation of M somewhat open ended. But it's reduced to either a 2D search space or the solution of an ornery but not humongous equation.
Finally, I have to disagree with #Federico's conclusion that this confirms that the solution proposed by the OP is optimal. It's true that if you draw perpendiculars from the circle centers to the opposite edge of the inner triangle, those perpendiculars intersect the circle to give you the triangle vertex. E.g. H lies on the line through A perpendicular to GI), but this is not the same as in the original proposed solution (which was to take the line through A and perpendicular to EC - in general EC is not parallel to GI).
I've created an HTML5 canvas app that may be useful for people to play with. It's pretty basic (and the code is not beautiful), but it lets you move three circles of equal radius, and then calculates a maximal triangle using gradient/steepest descent. You can also save bitmaps of the diagram. The diagram also shows the triangle whose vertices are the circle centers, and one of the altitudes. Edit1: the "altitude" is really just a line segment through one of the circle centers and perpendicular to the opposite edge of the triangle joining the centers. It's there because some of the suggested constructions use it. Edit2: the steepest descent method sometimes gets stuck in a local maximum. You can get out of that maximum by moving a circle until the black triangle flips and then bringing the circle back to its original position. Working on how to find the global maximum.
This won't work in IE because it doesn't support canvas, but most other "modern" browsers should work.
I did this partially because I found some of the arguments on this page questionable, and partially because I've never programmed a steepest descent and wanted to see how that worked. Anyways, I hope this helps, and I hope to weigh in with some more comments later.
Edit: I've looked at the geometry a little more and have written up my findings in a separate answer.
Let A, B, C be the vertexes of your triangle, and suppose they are placed as in your solution.
Notice that the key property of your construction is that each of the vertexes lies on a tangent to its circle which is parallel to the opposite side of the triangle. Obviously, the circle itself lies entirely on one side of the tangent, and in the optimal solution each tangent leaves its circle on the same side as the other vertexes.
Consider AB as the "base" of the triangle, and let C float in its circle. If you move C to another position C' within the circle, you will obtain another triangle ABC' with the same base but a smaller height, hence also with a smaller area:
figure 1 http://control.ee.ethz.ch/~ramponif/stuff/circles1.png
For the same reason, you can easily see that any position of the vertexes that doesn't follow your construction cannot be optimal. Suppose, for instance, that each one of the vertexes A', B', C' does not lie on a tangent parallel to the side connecting the other two.
Then, constructing the tangent to the circle that contains (say) C', which is parallel to A'B' and leaves the circle on the same side as A'B', and moving C' to the point of tangency C, it is always possible to construct a triangle A'B'C which has the same base, but a greater height, hence also a greater area:
figure 2 http://control.ee.ethz.ch/~ramponif/stuff/circles2.png
Since any triangle that does not follow your construction cannot be optimal, I do believe that your construction is optimal. In the case when the centers of the circles are aligned I'm a bit confused, but I guess that it is possible to prove optimality along the same lines.
I believe this is a convex optimization problem (no it's not, see below), and hence can be solved efficiently using well known methods.
You essentially want to solve the problem:
maximize: area(v1,v2,v3) ~ |cross((v2-v1), (v3-v1))|
such that: v1 in C1, v2 in C2, v3 in C3 (i.e., v_i-c_i)^2 - r_i^2 <= 0)
Each of the constraints are convex, and the area function is convex as well. Now, I don't know if there is a more efficient formulation, but you can at least use an interior point method with derivatives since the derivative of the area with respect to each vertex position can be worked out analytically (I have it written down somewhere...).
Edit: grad(area(v1,v2,v3))(v_i) = rot90(vec(vj,vk)), where vec(a,b) is making a 2D vector starting at a and ending at b, and rot90 means a positive orientation rotation by 90 degrees, assuming (vi,vj,vk) was positively oriented.
Edit 2: The problem is not convex, as should be obvious considering the collinear case; two degenerate solutions is a sure sign of non-convexity. However, the configuration starting at the circle centers should be in the globally optimal local maximum.
Not optimal, works well when all three are not colinear:
I don't have a proof (and therefore don't know if it's guaranteed to be biggest). Maybe I'll work on one. But:
We have three circles with radius R with positions (from center) P0, P1, and P2. We wish to find the vertices of a triangle such that the area of the triangle is maximum, and the vertices lie on any point of the circles edges.
Find the center of all the circles and call that C. Then C = (P0 + P1 + P2) / 3. Then we find the point on each circle farthest from C.
Find vectors V0, V1, and V2, where Vi = Pi - C. Then find points Q0, Q1, and Q2, where Qi = norm(Vi) * R + Pi. Where norm indicates normalization of a vector, norm(V) = V / |V|.
Q0, Q1, and Q2 are the vertices of the triangle. I assume this is optimal because this is the farthest the vertices could be from each other. (I think.)
My first thought is that you should be able to find an analytic solution.
Then the equations of the circles are:
(x1-h1)^2 + (y1-k1)^2 = r^2
(x2-h2)^2 + (y2-k2)^2 = r^2
(x3-h3)^2 + (y3-k3)^2 = r^2
The vertices of your triangle are (x1, y1), (x2, y2), and (x3, y3). The side lengths of your triangle are
A = sqrt((x1-x2)^2 + (y1-y2)^2)
B = sqrt((x1-x3)^2 + (y1-y3)^2)
C = sqrt((x2-x3)^2 + (y2-y3)^2)
So the area of the triangle is (using Heron's formula)
S = (A+B+C)/2
area = sqrt(S(S-A)(S-B)(S-C))
So area is a function of 6 variables.
At this point I realize this is not a fruitful line of reasoning. This is more like something I'd drop into a simulated annealing system.
So my second thought is to choose the point on circle with centre A as follows: Construct line BC joining the centres of the other two circles, then construct the line AD that is perpendicular to BC and passes through A. One vertex of the triangle is the intersection of AD and circle with centre A. Likewise for the other vertices. I can't prove this but I think it gives different results than the simple "furthest from the centre of all the circles" method, and for some reason it feels better to me. I know, not very mathematical, but then I'm a programmer.
Let's assume the center of the circles to be C0,C1 and C2; and the radius R.
Since the area of a triangle is .5*base*height, let's first find the maximum base that can be constructed with the circles.
Base = Max {(|C0-C1|+2R),(|C1-C2|+2R,(|C2-C0|+2R}
Once the base length is determined between 2 circles, then we can find the farthest perpendicular point from the base line to the third circle. (product of the their slopes is -1)
For special cases such as circles aligned in a single line, we need to perform additional checks at the time of determining the base line.
It appears that finding the largest Apollonius circle for the three circles and then inscribing an equilateral triangle in that circle would be a solution. Proof left as an exercise ;).
EDIT
This method has issues for collinear circles like other solutions here, too and doesn't work.
Some initial thoughts.
Definition Call the sought-after triangle, the maximal triangle. Note that this might not be unique: if the circles all have the same centre, then there are infinitely many maximal triangles obtained by rotation around the center, and if the centres are colinear, then there will be two maximal triangles, each a mirror image of the other.
Definition Call the triangle (possibly, degenerately, either a point or a line) whose vertices are the centres of the circles the interior triangle.
Observation The solution can be expressed as three angles, indicating where on the circumference of each circle the triangle is to be found.
Observation Given two exterior vertices, we can determine a third vertex that gives the maximal area: draw the altitude of the triangle between the two exterior vertices and the centre of the other circle. This line intersects the circumference in two places; the further away point is the maximising choice of third vertex. (Fixed incorrect algorithm, Federico's argument can be adapted to show correctness of this observation)
Consequence The problem is reduced to from a problem in three angles to one in two.
Conjecture Imagine the diagram is a pinboard, with three pins at the three centres of the circles. Imagine also a closed loop of string of length equal to the perimiter of the interior triangle, plus the radius of a circle, and we place this loop around the pins. Take an imaginary pen and imaginarily draw the looping figure where the loop is always tight. I conjecture that the points of the maximal triangle will all lie on this looping figure, and that in the case where the interior triangle is not degenerate, the vertices of the maximal triangle will be the three points where the looping figure intersects one of the circle circumferences. Many counterexamples
More to follow when I can spare time to think about it.
This is just a thought, no proof or math to go along with the construction just yet. It requires that the circle centers not be colinear if the radii are the same for each circle. This restriction can be relaxed if the radii are different.
Construction:
(1) Construct a triangle such that each side of the triangle is tangent to two circles, and therefore, each circle has a tangent point on two sides of the triangle.
(2) Draw the chord between these two tangent points on each circle
(3) Find the point on the boundary of the circle on the extended ray starting at the circle's center through the midpoint of the chord. There should be one such point on each of the three circles.
(4) Connect them three points of (3) to fom a triangle.
At that point I don't know if it's the largest such triangle, but if you're looking for something approximate, this might be it.
Later: You might be able to find an approximate answer for the degenerate case by perturbing the "middle" circle slightly in a direction perpendicular to the line connecting the three circles.

How to compute a pair of closest points on two 3d circles?

I have two 2d circles in 3d space (defined by a center, normal, and radius) and I'm trying to come up with a pair of points that is one of the set of closest pairs of points. I know that there are anywhere from 1 to an infinite number of point pairs, I just need a single matching pair.
Is there a simple way to do that? Precision is not essential. The radius of both circles are the same, non-zero value.
In case the background is helpful, my overall algorithm takes in a NURBS curve in space and extrudes a 2d polygon along the curve, yielding a deformed cylinder. I just sample several points along the curve. The normal of each circle is the NURBS curve tangent, and I'm trying to figure out how to align adjacent samples, so I don't get weird twisting. It seems that the closest points on adjacent samples should be aligned.
Thanks for all the responses here.. this part of the project got a little delayed, which is why I haven't tested all the answers yet. I'll be sure to toss up some images here and mark an answer when I get to work on this again.
What you are really trying to compute is the pair of points that minimizes the distance between points that lie on 2 different circles in 3 dimensions. The method that you should be employing to find the exact solution (as in almost all optimization problems) is to represent the distance as a function of all possible points and to take its derivate with respect to the independent variables and set the resulting expressions to 0. Since you have 2 circles, you will have 2 independent variables (ie. the angle of a point on one circle and one on the other circle). Once you have solved the minimization equations you would have also found the points on the circles that will satisfy your constraint. (Basically you will find the angles on the circles for the pair of points you are looking for.)
I have found a paper online (at this site) that rigorously goes through with the calculations but the end result is solving an 8th order polynomial equation. You might try to simplify the equations and come up with a less exact solution that satisfies your needs.
There is also an paper that claims to have a much faster algorithm for finding the distance between two circles in 3d; however, I cannot view the contents and, thus, cannot tell if it also gives you the pair of points that satisfy that condition.
UPDATE: Having re-read your question, I see that even though you are asking for a way to find the closest pair of points on two circles in 3 dimensions, I think, you should pay more attention to the properties of the NURBS curve that you are trying to extrude the 2D polygon along. You mention that the orientation of the circle at a given point on the curve is specified by the tangent vector at that point. However, there is more to 3D curves than just the tangent vector; there is the normal (or curvature) vector that points towards the center of curvature of the curve at a given point and then there is the torsion vector that basically specifies the amount of "lift" of the curve from the plane given by the tangent and the normal vectors. All of these define a (what is called) Frenet frame. You can read up more on these at the Wikipedia article.
My suspicion is that you can achieve the effect you desire by joining the points of consecutive circles that each lie along the the normal vector direction of the underlying 3D curve. That way, you will have twisting only when the curve is actually twisting, ie when the torsion vector is non-zero and the normal vector is changing direction as well. In other circumstances, this should satisfy your actual need.
You probably don't need the overkill of finding closest points on consecutive circles.
For what you describe, it is sufficient to select a point on the perimeter of the first circle and find the point on the perimeter of each circle along that is closest to the one selected for the previous circle; this will completely constrain the polygonization, with no twisting, and should be much easier to solve than the general case - simply find the point on the plane containing the second circle that is closest to that selected in the first, and intersect the line passing through that point and the second circle's center with the second circle's perimeter.
However, this might not yield as pleasing a polygonisation for the extruded cylinder as keeping the polygon area constant as possible, and to do that will require some twisting between adjacent circles.
Yikes, unless the circles happen to be on the same plane or parallel planes I think the only way to do it is to find a minimum on the equation of the distance between two points on the circle.
http://www.physicsforums.com/showthread.php?t=123168
That link shows how to get the equation of each circle in 3D space, then minimize for the distance formula between those equations. Not pretty though, hopefully someone will come up with something more clever.
I think with the two closest points you might still get weird twisting... An extreme example: Let's assume both circles have the R=1. If the first circle's centre is O, and it is sitting on X-Y plane, and the second circle's centre is sitting at X=1,Y=0,Z=0.01, and it just slightly tilted in the growing direction of X, the closest points on the two circles will for sure get the "weird twist" you are trying to avoid. Since the closest points would not get you the weird twist in case the second circle is at X=0,Y=0,Z=0.01 and is equally tilted, then at some point the statements "aligned to two closest points on two circles" and "no weird twisting seen" no longer correspond to each other.
Assuming this can happen within the constraint of NURBS, here's another idea. In the start, take the three points on the NURBS curve - two that belong to the centers of your circles, and the third one precisely inbetween. Draw a plane between the three. This plane will cross the two circles at 4 points. Two of these points will be on the same "side" of the line that connects the centers of the circles - they are your alignment points.
For the next alignment points you would take the alignment point of the "previous circle", and draw the plane between the center of the "previous circle", this alignment point, and the center of the "new circle". From this you get the "next alignment point" based on the intersection with the other circle.
Next step - "previous circle" = "new circle", and the "new circle" - your next one according to the NURBS curve.
If the radii from the centers of the circles to the selected alignment points cross, you know you the picture will look a bit ugly - that's the scenario where with the "closest point" algorithm you'd still get the weird twisting.
I think the coordinates of the point on the circle that is intersection with the plane going via its center should be easy to calculate (it's a point on the line made by intersection of the two planes, one of the circle and the target plane; at the distance R from the center).
I don't have the rigorous proof to fully assert or deny the above - but hopefully it helps at all, and I think it should be quick enough to verify, compared to calculating the closet points on the two circles... (If there are any flaws in my logic, the corrections in the comments are very welcome).
The thread here, mentioned in another answer gives the parameterization formula for a 3D circle: P = R cos(t) u + R sin(t) nxu + c, where u is a unit vector from the centre of the circle to any point on the circumference; R is the radius; n is a unit vector perpendicular to the plane and c is the centre of the circle, t goes from 0 to 2pi, and by nxu I mean "n cross u". Parameterize one circle this way, and another similarly with a different parameter, say s. Then each point Pt on the first circle will have coordinates in the variable t, and each point Ps on the second circle will have coordinates in the variable s.
Write the distance function d(s,t) between Ps and Pt in the usual way (or better, the square of the Euclidean distance so you don't have to mess with the square root when you take derivatives). The graph of this function d of two variables is a surface over a 2pi by 2pi square in the s,t plane, and it's minimum is what you're after. You can determine it with the standard calculus methods, e.g. as explained here.
Extend the circles to planes (using the center points and normals). If the planes are parallel, then any points will do. If the planes are not parallel, then they intersect in a line. Construct the plane through the two centers of the circles perpendicular to the line. The two circles intersect this new plane in four points. These four points are the two nearest points and the two farthest points on the circles.
Isn't this just a matter of constructing the line between the two centers of the circles/spheres and finding the intersection of the line and the circles? The solutions that are closest are it (unless the circle intersect, then the answer depends on how you want to interpret that case).

Resources