Plotting Contrasting graph(s) from a dataset using R - r

I have a set of data (1000+ animals) from two seasons (winter and summer) and would like to demonstrate the differences in the gestation length (days) pattern in these two seasons. My data is similar to this:
id <- c(1,2,3,4,5,6,7,8,9,10)
season <- c(1,1,2,2,1,2,1,1,2,1)
gest <- c(114,NA,123,116,NA,120,110,NA,116,119)
data <- cbind(id,season,gest)
I would like to have something like this:
http://had.co.nz/ggplot2/graphics/55078149a733dd1a0b42a57faf847036.png
OR any similar form of graph that would give me a good contrast.
Thank you for all your help,
Bazon

library(ggplot2)
df <- data.frame(id=id,season=season,gest=gest)
qplot(gest,data=df,geom="density",fill=season,alpha=I(0.2))
This should give something similar to that example, but you may want to play with the alpha parameter to get the transparency right.

There is a chart type commonly used to show demographics data, and in particular for directly contrasting two groups in which you wish to emphasize the comparison of subgroups that comprise both groups which are identical to each other along some or all variables other than In the demographics context, the most common application is age structure of males versus females. This seems like it might be a good candidate to effectively visualize your data.
The plot shown below was created using the Base graphics package in R and the (excellent) R Package SVGAnnotation, by Duncan Temple Lang, to create the interactive elements (by re-rendering the image in SVG and post-processing the resultant XML).
(Although the plot was created using R and SVGAnnotate, the image below is from a UK Government Site).

That particular plot that you linked used ggplot2. I'm not really good at using it, so I'll show you how to do it with base graphics
data <- as.data.frame(data)
d1 <- density(data$gest[which(data$season==1)], na.rm=TRUE)
d2 <- density(data$gest[which(data$season==2)], na.rm=TRUE)
plot(d1, ylim=c(0, max(d1$y,d2$y)), xlim=range(c(d1$x, d2$x)),
main="Length of gestation", xlab="Length (days)", col="blue", lwd=2)
polygon(d1$x, d1$y, col=rgb(0, 0, 1, 0.5), lty=0)
points(d2, t="l", col="red", lwd=2)
polygon(d2$x, d2$y, col=rgb(1, 0, 0, 0.5), lty=0)
Alternatively check out the densityplot function of the lattice package, although I'm not sure how to fill in the lines.
PS: is your dataset that small? Density plots are probably NOT the way to go if that is the case (a scatterplot would be better)
EDIT
If you want to do this with histograms you can do something like:
hist(data$gest[which(data$season==1)], main="Length of gestation",
xlab="Length (days)", col=rgb(0, 0, 1, 0.5))
# Note the add=TRUE parameter to superimpose the histograms
hist(data$gest[which(data$season==2)], col=rgb(1, 0, 0, 0.5), add=TRUE)

Related

Is it possible to create this graph on R?

I'm really new to R and I'm looking to create a graph similar to the one attached. I have tried to create a density plot using both ggplot and the base program.
I have used code ggplot(data, aes(x = Freq)) + geom_density() but the output is incorrect. I'm getting a spike at each number point rather than an overall curve. Every row is one data point of between 1 to 7 and the frequency distributions for one trait is as follows:
1: 500, 2: 550 3:700 4:1000 5:900 6:835: 7:550
As such I have 5035 rows as one row equates to one score.
Any help is much appreciated.
Here is what I wish the plot would look like. (Note I'll add other traits at a later stage, I just wish to add one line at the moment).
there are a few things going on here, first is generating summary statistics of the data. you just need to call mean and sd in the appropriate way to get mean and standard deviation from your data. you've not shown your data so it would be difficult to suggest much here.
as far as plotting these summary statistics, you can replicate the plot from the original paper easily, but it's pretty bad and I'd suggest you not do that. stronger lines imply more importance, the need to double label everything, mislabelling the y-axis, all of that on top of drawing nice smooth parametric curves gives a false impression of confidence. I've only scanned the paper, but that sort of data is crying out for a multi-level model of some sort
I prefer "base" graphics, ggplot is great for exploratory graphics but if you have hard constraints on what a plot should look like it tends to get in the way. We start with the summary statistics:
df <- read.csv(text="
title, mu, sigma,label, label_x,label_pos
Extraversion, 4.0, 1.08,Extra, 3.85,3
Agreeableness, 5.0, 0.77,Agree, 5.0, 3
Conscientiousness, 4.7, 0.97,Cons, 3.4, 2
Emotional stability,5.3, 0.84,Emot stab,5.9, 4
Intellect, 3.7, 0.86,Intellect,3.7, 3
")
I've just pulled numbers out of the paper here, you'd have to calcular them. the mu column is the mean of the variable, and sigma is the standard deviation. label_x and label_pos are used to draw labels so need to be manually chosen (or the plot can be annotated afterwards in something like Inkscape). label_x is the x-axis position, and label_pos stands for where it is in relation to the x-y point (see text for info about the pos parameter)
next we calculate a couple of things:
lwds <- 1 + seq(3, 1, len=5) ^ 2
label_y <- dnorm(df$label_x, df$mu, df$sigma)
i.e. line widths and label y positions, and we can start to make the plot:
# start by setting up plot nicely and setting plot limits
par(bty='l', mar=c(3, 3, 0.5, 0.5), mgp=c(1.8, 0.4, 0), tck=-0.02)
plot.new(); plot.window(c(1, 7), c(0, 0.56), yaxs='i')
# loop over data drawing curves
for (i in 1:nrow(df)) {
curve(dnorm(x, df$mu[[i]], df$sigma[[i]]), add=T, n=151, lwd=lwds[[i]])
}
# draw labels
text(df$label_x, label_y, df$label, pos=df$label_pos)
# draw axes
axis(1, lwd=0, lwd.ticks=1)
axis(2, lwd=0, lwd.ticks=1)
box(lwd=1)
# finally, title and legend
title(xlab='Level of state', ylab='Probability density')
legend('topleft', legend=df$title, lwd=lwds, bty='n', cex=0.85)
this gives us something like:
I've also gone with more modern capitalisation, and started the y-axis at zero as these are probabilities so can't be negative
My preferences would be for something closer to this:
the thin lines cover 2 standard deviations (i.e. 95% intervals) around the mean, thick lines 1 SDs (68%), and the point is the mean. it's much easier to discriminate each measure and compare across them, and it doesn't artificially make "extraversion" more prominent. the code for this is similar:
par(bty='l', mar=c(3, 8, 0.5, 0.5), mgp=c(1.8, 0.4, 0), tck=-0.02)
plot.new(); plot.window(c(1, 7), c(5.3, 0.7))
# draw quantiles
for (i in 1:nrow(df)) {
lines(df$mu[[i]] + df$sigma[[i]] * c(-1, 1), rep(i,2), lwd=3)
lines(df$mu[[i]] + df$sigma[[i]] * c(-2, 2), rep(i,2), lwd=1)
}
# and means
points(df$mu, 1:5, pch=20)
axis(1, lwd=0, lwd.ticks=1)
axis(2, at=1:5, labels=df$title, lwd=0, lwd.ticks=1, las=1)
box()
title(xlab='Level of state')

Plotting many (i.e. 1000+) distributions on one plot in R

I'm trying to plot 18000 distributions as a heatmap type thing in R
One row can easily be plotted as a histogram but as i need to represent so many the only option I can think of is a heatmap.
This is not currently working as all the heatmap/imaging functions seem to do some kind of clustering/compare the rows instead of just plotting the distribution like in a histogram.
Does anyone know how to get around the problem or a better way of representing a large number of distribution?
matrix <- replicate(100, rnorm(100))
hist(matrix[1,],breaks = 60)
image2D(z=matrix, border="black")
image2D doesn't seem to do the trick...
Thanks
Edit 12/06/18:
Using
library(denstrip)
Does the trick for anyone who needs to visualise differences in a large amount of distributions.
You could overlay a lot of density plots using transparancy to get a sense of overlap.
m <- replicate(100, rnorm(100))
plot(range(m), c(0, 0.5), type = 'n')
for (i in 1:ncol(m)) lines(density(m[, i]), col = rgb(0.5, 0.5, 0.5, 0.5))

R Scatter Plot: symbol color represents number of overlapping points

Scatter plots can be hard to interpret when many points overlap, as such overlapping obscures the density of data in a particular region. One solution is to use semi-transparent colors for the plotted points, so that opaque region indicates that many observations are present in those coordinates.
Below is an example of my black and white solution in R:
MyGray <- rgb(t(col2rgb("black")), alpha=50, maxColorValue=255)
x1 <- rnorm(n=1E3, sd=2)
x2 <- x1*1.2 + rnorm(n=1E3, sd=2)
dev.new(width=3.5, height=5)
par(mfrow=c(2,1), mar=c(2.5,2.5,0.5,0.5), ps=10, cex=1.15)
plot(x1, x2, ylab="", xlab="", pch=20, col=MyGray)
plot(x1, x2, ylab="", xlab="", pch=20, col="black")
However, I recently came across this article in PNAS, which took a similar a approach, but used heat-map coloration as opposed to opacity as an indicator of how many points were overlapping. The article is Open Access, so anyone can download the .pdf and look at Figure 1, which contains a relevant example of the graph I want to create. The methods section of this paper indicates that analyses were done in Matlab.
For the sake of convenience, here is a small portion of Figure 1 from the above article:
How would I create a scatter plot in R that used color, not opacity, as an indicator of point density?
For starters, R users can access this Matlab color scheme in the install.packages("fields") library, using the function tim.colors().
Is there an easy way to make a figure similar to Figure 1 of the above article, but in R? Thanks!
One option is to use densCols() to extract kernel densities at each point. Mapping those densities to the desired color ramp, and plotting points in order of increasing local density gets you a plot much like those in the linked article.
## Data in a data.frame
x1 <- rnorm(n=1E3, sd=2)
x2 <- x1*1.2 + rnorm(n=1E3, sd=2)
df <- data.frame(x1,x2)
## Use densCols() output to get density at each point
x <- densCols(x1,x2, colramp=colorRampPalette(c("black", "white")))
df$dens <- col2rgb(x)[1,] + 1L
## Map densities to colors
cols <- colorRampPalette(c("#000099", "#00FEFF", "#45FE4F",
"#FCFF00", "#FF9400", "#FF3100"))(256)
df$col <- cols[df$dens]
## Plot it, reordering rows so that densest points are plotted on top
plot(x2~x1, data=df[order(df$dens),], pch=20, col=col, cex=2)
You can get a similar effect by doing hexagonal binning, divide the region into hexagons, color each hexagon based on the number of points in the hexagon. The hexbin package has functions to do this and there are also functions in the ggplot2 package.
You can use smoothScatter for this.
colramp = colorRampPalette(c('white', 'blue', 'green', 'yellow', 'red'))
smoothScatter(x1, x2, colramp=colramp)

R: Plotting one ECDF on top of another in different colors

I have a couple of cumulative empirical density functions which I would like to plot on top of each other in order to illustrate differences in the two curves. As was pointed out in a previous question, the function to draw the ECDF is simply plot(Ecdf()) And as I read the fine manual page, I determined that I can plot multiple ECDFs on top of each other using something like the following:
require( Hmisc )
set.seed(3)
g <- c(rep(1, 20), rep(2, 20))
Ecdf(c( rnorm(20), rnorm(20)), group=g)
However my curves sometimes overlap a bit and can be hard to tell which is which, just like the example above which produces this graph:
I would really like to make the color of these two CDFs different. I can't figure out how to do that, however. Any tips?
If memory serves, I have done this in the past. As I recall, you needed to trick it as Ecdf() is so darn paramterised. I think in help(ecdf) it hints that it is just a plot of stepfunctions, so you could estimate two or more ecdfs, plot one and then annotate via lines().
Edit Turns out it is as easy as
R> Ecdf(c(rnorm(20), rnorm(20)), group=g, col=c('blue', 'orange'))
as the help page clearly states the col= argument. But I have also found some scriptlets where I used plot.stepfun() explicitly.
You can add each curve one at a time (each with its own style), e.g.
Ecdf(rnorm(20), lwd = 2)
Ecdf(rnorm(20),add = TRUE, col = 'red', lty = 1)
Without using Ecdf (doesn't look like Hmisc is available):
set.seed(3)
mat <- cbind(rnorm(20), rnorm(20))
matplot(apply(mat, 2, sort), seq(20)/20, type='s')

Plotting predefined density functions using ggplot and R

I have three data sets of different lengths and I would like to plot density functions of all three on the same plot. This is straight forward with base graphics:
n <- c(rnorm(10000), rnorm(10000))
a <- c(rnorm(10001), rnorm(10001, 0, 2))
p <- c(rnorm(10002), rnorm(10002, 2, .5))
plot(density(n))
lines(density(a))
lines(density(p))
Which gives me something like this:
alt text http://www.cerebralmastication.com/wp-content/uploads/2009/10/density.png
But I really want to do this with GGPLOT2 because I want to add other features that are only available with GGPLOT2. It seems that GGPLOT really wants to take my empirical data and calculate the density for me. And it gives me a bunch of lip because my data sets are of different lengths. So how do I get these three densities to plot in GGPLOT2?
The secret to happiness in ggplot2 is to put everything in the "long" (or what I guess matrix oriented people would call "sparse") format:
df <- rbind(data.frame(x="n",value=n),
data.frame(x="a",value=a),
data.frame(x="p",value=p))
qplot(value, colour=x, data=df, geom="density")
If you don't want colors:
qplot(value, group=x, data=df, geom="density")

Resources