I'm working in Gnuplot, and I have a graph looking roughly like the following:
If I want to have the color of the line change color depending on the curves's values, what's the most straightforward way to make that happen?
Thanks!
Does the answer to this question help?
For example:
plot "./file.dat" u 1:2:2 with lines palette
where file.dat contains your data, the first column is the x axis and the second column is the y axis.
The repetition of the 2 indicates that the second column is also used for the colour.
I know there is a function (which i use quite a bit) on the matlab file exchange by Ken Garrard called plot3k that has this functionality that you're looking for. Mayhapes you could have a look at the implementation for hints for a gnuplot port.
Maybe these three articles is helpful:
http://gnuplot-surprising.blogspot.com/2011/09/gradient-colored-curve-in-gnuplot0.html
http://gnuplot-surprising.blogspot.com/2011/09/gradient-colored-curve-in-gnuplot1.html
http://gnuplot-surprising.blogspot.com/2011/09/gradient-colored-curve-in-gnuplot2.html
Related
Hi there stackoverflow community!
I am a graduate student inquiring for some consultation on an aethetics R problem I am encountering.
The data I am working with is in the form of a VERY large matrix (49x51).
My problem is that my data ranges from very small to very large, with the bulk of my data falling within the "very large" end of the spectrum, so unless I convert my data to log10, the heatmap is rather boring and almost entirely the same color.
The spectrum of my data is totally within the range I am expecting, but I am hoping to display it in a more aesthetic way.
Proposed solution: I think I need to bin my data in a non-uniform way. If you look at the attached image, you will see that their heatmap looks nice and the color key shows the heat spectrum in a non-fixed bin format. I would like to do something like that, however, I am not sure how to declare cutoffs for each bin. I would ideally like to declare the cutoffs.
For example, bin 1 (0-1), bin 2 (2-50), bin 3 (51-5000). As you can see, my bins would not be fixed in equal increments.
I have been using heatmap.2 for this. Thanks so much in advance!
heatmap with color legend in non-uniform bins:
Hey #Punintended and #S Rivero,
I think I have reached the point that my heatmap will only improve marginally. Both of you contributed deeply to this success, so thanks! First, to condense the matrix values as much as possible, I normalized by column. I was then able to assign gradients. This turned out much better than I had hoped. As you can see, most of my data is clustered (check out the density in the key) at very low values, this is okay though, for I am interested in the higher values. I had to use custom color gradients to account for possible instances of colorblind attendees that might look at my poster. Anyways, if you guys have comments or recommendations, they will be much appreciated :). Again, thanks a bunch!
enter image description here
I'm looking for the equivalent of:
ggplot(df,aes(x=date,y=var1,**group=col1,colour=col1**))+geom_line()
in the googleVis package.
Anyone knows how to do this? I only found examples of differently colored lines if they are mapping different columns from the dataframe.
thanks!
#mtoto, I hope my answer here on ggplot2 equivalent of 'factorization or categorization' in googleVis in R can help. Have you taken a look?
Using roles you can specify specific styles for your data. It involves adding another column with the style detail. So if plotting varx, you need to add the column varx.style where you will set the colors.
I do not know ggplot well enough to know if this is the exact fit of what you want, but please take a look at my figures and links in that answer.
I have some data that I'm plotting with GNUPlot. I have three different data sets for different energies. What I need to do is label the maximas on the plot. For example, I need something like (20, 4.5) for the red plot. The values do not need to be above the maximas, as they only need to be distinguishable to which is what. Is there any easy way to do this in GNUPlot? I haven't been able to find anything online.
Thanks in advanced. Below is an example plot that I'm trying to work with. It wouldn't let me post images so I'm posting the link below.
http://i.imgur.com/xA3q52I.png
I think this example can help
http://www.gnuplot.info/demo/stats.html
Is there an function in R that does the same job as Matlab's "bar" function?
R does have a "barplot" function in the library graphics, however, it is not the same.
The Matlab bar(X,Y) (verbatim excerpt from MATLAB documentation) "draws a bar for each element in Y at locations specified in X, where X is a vector defining the x-axis intervals for the vertical bars." (emphasis mine)
However, the R barplot function does not allow one to specify locations.
Perhaps there is a method in ggplot2 that supports this? I am only able to find standard bar charts in ggplot2.
No, barplot is not the same as bar, but you should read the whole help. You can do many things to position the bars. The first is simply their order in Y. You could insert spaces if you wish (additional 0s). If you have X and Y then sort Y on X (Y[order(X)]) and plot it. If you need to change positions use the "space" and "width" arguments. It's not as straightforward as specifying X values I suppose but it's definitely more useful in most situations. Generally what you want to adjust is widths of bars and spaces between bars. Their position on the X-axis should be arbitrary. If the position on the X-axis is really meaningful then you should be using line plots, not bar graphs.
In R:
barplot(rbind(1:10, 2:11), beside=T, names.arg=1:10)
In MATLAB:
>> bar(1:10, [(1:10)' (2:11)'])
Read up on par . Then observe, for example:
x<-c(1,2,4,5,6)
y<-c(3,4,3,4,2)
plot(x,y,type='h',lwd=6)
Edit: yes, I know this doesn't (yet) plot multiple data sets, but I would hope you can see simple ways to make that happen, with spacings, colors, etc. specified to your exact liking :-)
Sounds vaguely like the R stepfun. On the other hand one would need to know what "draws a bar" means before saying it is not the same as barplot(..., horiz=TRUE) One would, of course, need to examine some more detailed evidence such as data and plots before arriving at a conclusion, however. #John Colby should be congratulated for adding some specificity to the discussion. The axis function is probably what Quant Guy needs education regarding.
I am in my way of finishing the graphs for a paper and decided (after a discussion on stats.stackoverflow), in order to transmit as much information as possible, to create the following graph that present both in the foreground the means and in the background the raw data:
However, one problem remains and that is overplotting. For example, the marked point looks like it reflects one data point, but in fact 5 data points exists with the same value at that place.
Therefore, I would like to know if there is a way to deal with overplotting in base graph using points as the function.
It would be ideal if e.g., the respective points get darker, or thicker or,...
Manually doing it is not an option (too many graphs and points like this). Furthermore, ggplot2 is also not what I want to learn to deal with this single problem (one reason is that I tend to like dual-axes what is not supprted in ggplot2).
Update: I wrote a function which automatically creates the above graphs and avoids overplotting by adding vertical or horizontal jitter (or both): check it out!
This function is now available as raw.means.plot and raw.means.plot2 in the plotrix package (on CRAN).
Standard approach is to add some noise to the data before plotting. R has a function jitter() which does exactly that. You could use it to add the necessary noise to the coordinates in your plot. eg:
X <- rep(1:10,10)
Z <- as.factor(sample(letters[1:10],100,replace=T))
plot(jitter(as.numeric(Z),factor=0.2),X,xaxt="n")
axis(1,at=1:10,labels=levels(Z))
Besides jittering, another good approach is alpha blending which you can obtain (on the graphics devices supporing it) as the fourth color parameter. I provided an example for 'overplotting' of two histograms in this SO question.
One additional idea for the general problem of showing the number of points is using a rug plot (rug function), this places small tick marks along the margin that can show how many points contribute (still use jittering or alpha blending for ties). This allows the actual points to show their true rather than jittered values, but the rug can then indicate which parts of the plot have more values.
For the example plot direct jittering or alpha blending is probably best, but in some other cases the rug plot can be useful.
You may also use sunflowerplot, while it would be hard to implement it here. I would use alpha-blending, as Dirk suggested.