Geometrical progression with any number row - math

I can have any number row which consists from 2 to 10 numbers. And from this row, I have to get geometrical progression.
For example:
Given number row: 125 5 625 I have to get answer 5. Row: 128 8 512 I have to get answer 4.
Can you give me a hand? I don't ask for a program, just a hint, I want to understand it by myself and write a code by myself, but damn, I have been thinking the whole day and couldn't figure this out.
Thank you.
DON'T WRITE THE WHOLE PROGRAM!
Guys, you don't get it, I can't just simple make a division. I actually have to get geometrical progression + show all numbers. In 128 8 512 row all numbers would be: 8 32 128 512

Seth's answer is the right one. I'm leaving this answer here to help elaborate on why the answer to 128 8 512 is 4 because people seem to be having trouble with that.
A geometric progression's elements can be written in the form c*b^n where b is the number you're looking for (b is also necessarily greater than 1), c is a constant and n is some arbritrary number.
So the best bet is to start with the smallest number, factorize it and look at all possible solutions to writing it in the c*b^n form, then using that b on the remaining numbers. Return the largest result that works.
So for your examples:
125 5 625
Start with 5. 5 is prime, so it can be written in only one way: 5 = 1*5^1. So your b is 5. You can stop now, assuming you know the row is in fact geometric. If you need to determine whether it's geometric then test that b on the remaining numbers.
128 8 512
8 can be written in more than one way: 8 = 1*8^1, 8 = 2*2^2, 8 = 2*4^1, 8 = 4*2^1. So you have three possible values for b, with a few different options for c. Try the biggest first. 8 doesn't work. Try 4. It works! 128 = 2*4^3 and 512 = 2*4^4. So b is 4 and c is 2.
3 15 375
This one is a bit mean because the first number is prime but isn't b, it's c. So you'll need to make sure that if your first b-candidate doesn't work on the remaining numbers you have to look at the next smallest number and decompose it. So here you'd decompose 15: 15 = 15*?^0 (degenerate case), 15 = 3*5^1, 15 = 5*3^1, 15 = 1*15^1. The answer is 5, and 3 = 3*5^0, so it works out.

Edit: I think this should be correct now.
This algorithm does not rely on factoring, only on the Euclidean Algorithm, and a close variant thereof. This makes it slightly more mathematically sophisticated then a solution that uses factoring, but it will be MUCH faster. If you understand the Euclidean Algorithm and logarithms, the math should not be a problem.
(1) Sort the set of numbers. You have numbers of the form ab^{n1} < .. < ab^{nk}.
Example: (3 * 2, 3*2^5, 3*2^7, 3*2^13)
(2) Form a new list whose nth element of the (n+1)st element of the sorted list divided by the (n)th. You now have b^{n2 - n1}, b^{n3 - n2}, ..., b^{nk - n(k-1)}.
(Continued) Example: (2^4, 2^2, 2^6)
Define d_i = n_(i+1) - n_i (do not program this -- you couldn't even if you wanted to, since the n_i are unknown -- this is just to explain how the program works).
(Continued) Example: d_1 = 4, d_2 = 2, d_3 = 6
Note that in our example problem, we're free to take either (a = 3, b = 2) or (a = 3/2, b = 4). The bottom line is any power of the "real" b that divides all entries in the list from step (2) is a correct answer. It follows that we can raise b to any power that divides all the d_i (in this case any power that divides 4, 2, and 6). The problem is we know neither b nor the d_i. But if we let m = gcd(d_1, ... d_(k-1)), then we CAN find b^m, which is sufficient.
NOTE: Given b^i and b^j, we can find b^gcd(i, j) using:
log(b^i) / log(b^j) = (i log b) / (j log b) = i/j
This permits us to use a modified version of the Euclidean Algorithm to find b^gcd(i, j). The "action" is all in the exponents: addition has been replaced by multiplication, multiplication with exponentiation, and (consequently) quotients with logarithms:
import math
def power_remainder(a, b):
q = int(math.log(a) / math.log(b))
return a / (b ** q)
def power_gcd(a, b):
while b != 1:
a, b = b, power_remainder(a, b)
return a
(3) Since all the elements of the original set differ by powers of r = b^gcd(d_1, ..., d_(k-1)), they are all of the form cr^n, as desired. However, c may not be an integer. Let me know if this is a problem.

The simplest approach would be to factorize the numbers and find the greatest number they have in common. But be careful, factorization has an exponential complexity so it might stop working if you get big numbers in the row.

What you want is to know the Greatest Common Divisor of all numbers in a row.
One method is to check if they all can be divided by the smaller number in the row.
If not, try half the smaller number in the row.
Then keep going down until you find a number that divides them all or your divisor equals 1.

Seth Answer is not correct, applyin that solution does not solves 128 8 2048 row for example (2*4^x), you get:
8 128 2048 =>
16 16 =>
GCD = 16
It is true that the solution is a factor of this result but you will need to factor it and check one by one what is the correct answer, in this case you will need to check the solutions factors in reverse order 16, 8, 4, 2 until you see 4 matches all the conditions.

Related

How to find n as sum of dustinct prime numbers (when n is even number)

This problem gives you a positive integer number which is less than or equal to 100000 (10^5). You have to find out the following things for the number:
i. Is the number prime number? If it is a prime number, then print YES.
ii. If the number is not a prime number, then can we express the number as summation of unique prime numbers? If it is possible, then print YES. Here unique means, you can use any prime number only for one time.
If above two conditions fail for any integer number, then print NO. For more clarification please see the input, output section and their explanations.
Input
At first you are given an integer T (T<=100), which is the number of test cases. For each case you will be given a positive integer X which is less than or equal 100000.
Output
For every test case, print only YES or NO.
Sample
Input Output
3
7
6
10 YES
NO
YES
Case – 1 Explanation: 7 is a prime number.
Case – 2 Explanation: 6 is not a prime number. 6 can be expressed as 6 = 3 + 3 or 6 = 2 + 2 + 2. But you can’t use any prime number more than 1 time. Also there is no way to express 6 as two or three unique prime numbers summation.
Case – 3 Explanation: 10 is not prime number but 10 can be expressed as 10 = 3 + 7 or 10 = 2 + 3 + 5. In this two expressions, every prime number is used only for one time.
Without employing any mathematical tricks (not sure if any exist...you'd think as a mathematician I'd have more insight here), you will have to iterate over every possible summation. Hence, you'll definitely need to iterate over every possible prime, so I'd recommend the first step being to find all the primes at most 10^5. A basic (Sieve of Eratosthenes)[https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes] will probably be good enough, though faster sieves exist nowadays. I know your question is language agnostic, but you could consider the following as vectorized pseudocode for such a sieve.
import numpy as np
def sieve(n):
index = np.ones(n+1, dtype=bool)
index[:2] = False
for i in range(2, int(np.sqrt(n))):
if index[i]:
index[i**2::i] = False
return np.where(index)[0]
There are some other easy optimizations, but for simplicity this assumes that we have an array index where the indices correspond exactly to whether the number is prime or not. We start with every number being prime, mark 0 and 1 as not prime, and then for every prime we find we mark every multiple of it as not prime. The np.where() at the end just returns the indices where our index corresponds to True.
From there, we can consider a recursive algorithm for actually solving your problem. Note that you might feasibly have a huge number of distinct primes necessary. The number 26 is the sum of 4 distinct primes. It is also the sum of 3 and 23. Since the checks are more expensive for 4 primes than for 2, I think it's reasonable to start by checking the smallest number possible.
In this case, the way we're going to do that is to define an auxiliary function to find whether a number is the sum of precisely k primes and then sequentially test that auxiliary function for k from 1 to whatever the maximum possible number of addends is.
primes = sieve(10**5)
def sum_of_k_primes(x, k, excludes=()):
if k == 1:
if x not in excludes and x in primes:
return (x,)+excludes
else:
return ()
for p in (p for p in primes if p not in excludes):
if x-p < 2:
break
temp = sum_of_k_primes(x-p, k-1, (p,)+excludes)
if temp:
return temp
return ()
Running through this, first we check the case where k is 1 (this being the base case for our recursion). That's the same as asking if x is prime and isn't in one of the primes we've already found (the tuple excludes, since you need uniqueness). If k is at least 2, the rest of the code executes instead. We check all the primes we might care about, stopping early if we'd get an impossible result (no primes in our list are less than 2). We recursively call the same function for smaller k, and if we succeed we propagate that result up the call stack.
Note that we're actually returning the smallest possible tuple of unique prime addends. This is empty if you want your answer to be "NO" as specified, but otherwise it allows you to easily come up with an explanation for why you answered "YES".
partial = np.cumsum(primes)
def max_primes(x):
return np.argmax(partial > x)
def sum_of_primes(x):
for k in range(1, max_primes(x)+1):
temp = sum_of_k_primes(x, k)
if temp:
return temp
return ()
For the rest of the code, we store the partial sums of all the primes up to a given point (e.g. with primes 2, 3, 5 the partial sums would be 2, 5, 10). This gives us an easy way to check what the maximum possible number of addends is. The function just sequentially checks if x is prime, if it is a sum of 2 primes, 3 primes, etc....
As some example output, we have
>>> sum_of_primes(1001)
(991, 7, 3)
>>> sum_of_primes(26)
(23, 3)
>>> sum_of_primes(27)
(19, 5, 3)
>>> sum_of_primes(6)
()
At a first glance, I thought caching some intermediate values might help, but I'm not convinced that the auxiliary function would ever be called with the same arguments twice. There might be a way to use dynamic programming to do roughly the same thing but in a table with a minimum number of computations to prevent any duplicated efforts with the recursion. I'd have to think more about it.
As far as the exact output your teacher is expecting and the language this needs to be coded in, that'll be up to you. Hopefully this helps on the algorithmic side of things a little.

F#: integer (%) integer - Is Calculated How?

So in my text book there is this example of a recursive function using f#
let rec gcd = function
| (0,n) -> n
| (m,n) -> gcd(n % m,m);;
with this function my text book gives the example by executing:
gcd(36,116);;
and since the m = 36 and not 0 then it ofcourse goes for the second clause like this:
gcd(116 % 36,36)
gcd(8,36)
gcd(36 % 8,8)
gcd(4,8)
gcd(8 % 4,4)
gcd(0,4)
and now hits the first clause stating this entire thing is = 4.
What i don't get is this (%)percentage sign/operator or whatever it is called in this connection. for an instance i don't get how
116 % 36 = 8
I have turned this so many times in my head now and I can't figure how this can turn into 8?
I know this is probably a silly question for those of you who knows this but I would very much appreciate your help the same.
% is a questionable version of modulo, which is the remainder of an integer division.
In the positive, you can think of % as the remainder of the division. See for example Wikipedia on Euclidean Divison. Consider 9 % 4: 4 fits into 9 twice. But two times four is only eight. Thus, there is a remainder of one.
If there are negative operands, % effectively ignores the signs to calculate the remainder and then uses the sign of the dividend as the sign of the result. This corresponds to the remainder of an integer division that rounds to zero, i.e. -2 / 3 = 0.
This is a mathematically unusual definition of division and remainder that has some bad properties. Normally, when calculating modulo n, adding or subtracting n on the input has no effect. Not so for this operator: 2 % 3 is not equal to (2 - 3) % 3.
I usually have the following defined to get useful remainders when there are negative operands:
/// Euclidean remainder, the proper modulo operation
let inline (%!) a b = (a % b + b) % b
So far, this operator was valid for all cases I have encountered where a modulo was needed, while the raw % repeatedly wasn't. For example:
When filling rows and columns from a single index, you could calculate rowNumber = index / nCols and colNumber = index % nCols. But if index and colNumber can be negative, this mapping becomes invalid, while Euclidean division and remainder remain valid.
If you want to normalize an angle to (0, 2pi), angle %! (2. * System.Math.PI) does the job, while the "normal" % might give you a headache.
Because
116 / 36 = 3
116 - (3*36) = 8
Basically, the % operator, known as the modulo operator will divide a number by other and give the rest if it can't divide any longer. Usually, the first time you would use it to understand it would be if you want to see if a number is even or odd by doing something like this in f#
let firstUsageModulo = 55 %2 =0 // false because leaves 1 not 0
When it leaves 8 the first time means that it divided you 116 with 36 and the closest integer was 8 to give.
Just to help you in future with similar problems: in IDEs such as Xamarin Studio and Visual Studio, if you hover the mouse cursor over an operator such as % you should get a tooltip, thus:
Module operator tool tip
Even if you don't understand the tool tip directly, it'll give you something to google.

how do I generate 2 random prime numbers that when multiplied, yield a number with X bits? (X given as argument))

I lack the math skills to make this function.
basically, i want to return 2 random prime numbers that when multiplied, yield a number of bits X given as argument.
for example:
if I say my X is 3 then a possible solution would be:
p = 2 and q = 3 becouse 2 * 3 = 6 (110 has 3 bits).
A problem with this statement is that it starts by asking for two "random" prime numbers. Without any explicit statement of the distribution of the required random primes, we are already stuck. (This is the beginning of a classic paradox, where we are asked to generate a "random" integer.)
But suppose that we change the statement to finding any two arbitrary primes, that yield the desired product with a given number of bits x. The answer is trivial.
The set of numbers that have exactly x bits in their binary representation is the half open set of integers [2^(x-1),2^x-1].
Choose an arbitrary prime number that is less than or equal to (2^x-1)/2. Call it p1.
Next, choose a second prime number that lies in the interval (2^(x-1)/p1,(2^x-1)/p1). Call it p2.
It must be true that p1*p2 will be in the desired interval.
For example, given x = 10, so the product must lie in the interval [512,1023], the set of integers with exactly 10 bits. (Note, there are apparently 147 such numbers in that interval, with exactly two prime factors.)
Step 1:
Choose p1 as any prime no larger than 1023/2 = 511.5. I'll pick p1 = 137. Then the second prime factor must be a prime that lies in the interval
[512 1023]/137
ans =
3.7372 7.4672
thus either 5 or 7.
dec2bin(137*[5 7])
ans =
1010101101
1110111111
If you know the number of bits, you can generate a number 2^(x-2) < x < 2^(x-1). Then take the square root and find the closest primes on either side of it. Multiplying them together will, in most cases, get you a number in the correct range. If it's too high, you can take the two primes directly on the lower side of it.
pseudocode:
x = bits
primelist[] = makeprimelist()
rand = randnum between 2^(x-2) and 2^(x-1)
n = findposition(primelist, rand)
do
result = primelist[n]*primelist[n+1]
n--
while result > 2^(x-1)
Note that numbers generated this way will allways have '1' as the highest significant bit, so would be possible to generate a number of x-1 bits and just tack the 1 onto the end.

Arbitrary-precision arithmetic Explanation

I'm trying to learn C and have come across the inability to work with REALLY big numbers (i.e., 100 digits, 1000 digits, etc.). I am aware that there exist libraries to do this, but I want to attempt to implement it myself.
I just want to know if anyone has or can provide a very detailed, dumbed down explanation of arbitrary-precision arithmetic.
It's all a matter of adequate storage and algorithms to treat numbers as smaller parts. Let's assume you have a compiler in which an int can only be 0 through 99 and you want to handle numbers up to 999999 (we'll only worry about positive numbers here to keep it simple).
You do that by giving each number three ints and using the same rules you (should have) learned back in primary school for addition, subtraction and the other basic operations.
In an arbitrary precision library, there's no fixed limit on the number of base types used to represent our numbers, just whatever memory can hold.
Addition for example: 123456 + 78:
12 34 56
78
-- -- --
12 35 34
Working from the least significant end:
initial carry = 0.
56 + 78 + 0 carry = 134 = 34 with 1 carry
34 + 00 + 1 carry = 35 = 35 with 0 carry
12 + 00 + 0 carry = 12 = 12 with 0 carry
This is, in fact, how addition generally works at the bit level inside your CPU.
Subtraction is similar (using subtraction of the base type and borrow instead of carry), multiplication can be done with repeated additions (very slow) or cross-products (faster) and division is trickier but can be done by shifting and subtraction of the numbers involved (the long division you would have learned as a kid).
I've actually written libraries to do this sort of stuff using the maximum powers of ten that can be fit into an integer when squared (to prevent overflow when multiplying two ints together, such as a 16-bit int being limited to 0 through 99 to generate 9,801 (<32,768) when squared, or 32-bit int using 0 through 9,999 to generate 99,980,001 (<2,147,483,648)) which greatly eased the algorithms.
Some tricks to watch out for.
1/ When adding or multiplying numbers, pre-allocate the maximum space needed then reduce later if you find it's too much. For example, adding two 100-"digit" (where digit is an int) numbers will never give you more than 101 digits. Multiply a 12-digit number by a 3 digit number will never generate more than 15 digits (add the digit counts).
2/ For added speed, normalise (reduce the storage required for) the numbers only if absolutely necessary - my library had this as a separate call so the user can decide between speed and storage concerns.
3/ Addition of a positive and negative number is subtraction, and subtracting a negative number is the same as adding the equivalent positive. You can save quite a bit of code by having the add and subtract methods call each other after adjusting signs.
4/ Avoid subtracting big numbers from small ones since you invariably end up with numbers like:
10
11-
-- -- -- --
99 99 99 99 (and you still have a borrow).
Instead, subtract 10 from 11, then negate it:
11
10-
--
1 (then negate to get -1).
Here are the comments (turned into text) from one of the libraries I had to do this for. The code itself is, unfortunately, copyrighted, but you may be able to pick out enough information to handle the four basic operations. Assume in the following that -a and -b represent negative numbers and a and b are zero or positive numbers.
For addition, if signs are different, use subtraction of the negation:
-a + b becomes b - a
a + -b becomes a - b
For subtraction, if signs are different, use addition of the negation:
a - -b becomes a + b
-a - b becomes -(a + b)
Also special handling to ensure we're subtracting small numbers from large:
small - big becomes -(big - small)
Multiplication uses entry-level math as follows:
475(a) x 32(b) = 475 x (30 + 2)
= 475 x 30 + 475 x 2
= 4750 x 3 + 475 x 2
= 4750 + 4750 + 4750 + 475 + 475
The way in which this is achieved involves extracting each of the digits of 32 one at a time (backwards) then using add to calculate a value to be added to the result (initially zero).
ShiftLeft and ShiftRight operations are used to quickly multiply or divide a LongInt by the wrap value (10 for "real" math). In the example above, we add 475 to zero 2 times (the last digit of 32) to get 950 (result = 0 + 950 = 950).
Then we left shift 475 to get 4750 and right shift 32 to get 3. Add 4750 to zero 3 times to get 14250 then add to result of 950 to get 15200.
Left shift 4750 to get 47500, right shift 3 to get 0. Since the right shifted 32 is now zero, we're finished and, in fact 475 x 32 does equal 15200.
Division is also tricky but based on early arithmetic (the "gazinta" method for "goes into"). Consider the following long division for 12345 / 27:
457
+-------
27 | 12345 27 is larger than 1 or 12 so we first use 123.
108 27 goes into 123 4 times, 4 x 27 = 108, 123 - 108 = 15.
---
154 Bring down 4.
135 27 goes into 154 5 times, 5 x 27 = 135, 154 - 135 = 19.
---
195 Bring down 5.
189 27 goes into 195 7 times, 7 x 27 = 189, 195 - 189 = 6.
---
6 Nothing more to bring down, so stop.
Therefore 12345 / 27 is 457 with remainder 6. Verify:
457 x 27 + 6
= 12339 + 6
= 12345
This is implemented by using a draw-down variable (initially zero) to bring down the segments of 12345 one at a time until it's greater or equal to 27.
Then we simply subtract 27 from that until we get below 27 - the number of subtractions is the segment added to the top line.
When there are no more segments to bring down, we have our result.
Keep in mind these are pretty basic algorithms. There are far better ways to do complex arithmetic if your numbers are going to be particularly large. You can look into something like GNU Multiple Precision Arithmetic Library - it's substantially better and faster than my own libraries.
It does have the rather unfortunate misfeature in that it will simply exit if it runs out of memory (a rather fatal flaw for a general purpose library in my opinion) but, if you can look past that, it's pretty good at what it does.
If you cannot use it for licensing reasons (or because you don't want your application just exiting for no apparent reason), you could at least get the algorithms from there for integrating into your own code.
I've also found that the bods over at MPIR (a fork of GMP) are more amenable to discussions on potential changes - they seem a more developer-friendly bunch.
While re-inventing the wheel is extremely good for your personal edification and learning, its also an extremely large task. I don't want to dissuade you as its an important exercise and one that I've done myself, but you should be aware that there are subtle and complex issues at work that larger packages address.
For example, multiplication. Naively, you might think of the 'schoolboy' method, i.e. write one number above the other, then do long multiplication as you learned in school. example:
123
x 34
-----
492
+ 3690
---------
4182
but this method is extremely slow (O(n^2), n being the number of digits). Instead, modern bignum packages use either a discrete Fourier transform or a Numeric transform to turn this into an essentially O(n ln(n)) operation.
And this is just for integers. When you get into more complicated functions on some type of real representation of number (log, sqrt, exp, etc.) things get even more complicated.
If you'd like some theoretical background, I highly recommend reading the first chapter of Yap's book, "Fundamental Problems of Algorithmic Algebra". As already mentioned, the gmp bignum library is an excellent library. For real numbers, I've used MPFR and liked it.
Don't reinvent the wheel: it might turn out to be square!
Use a third party library, such as GNU MP, that is tried and tested.
You do it in basically the same way you do with pencil and paper...
The number is to be represented in a buffer (array) able to take on an arbitrary size (which means using malloc and realloc) as needed
you implement basic arithmetic as much as possible using language supported structures, and deal with carries and moving the radix-point manually
you scour numeric analysis texts to find efficient arguments for dealing by more complex function
you only implement as much as you need.
Typically you will use as you basic unit of computation
bytes containing with 0-99 or 0-255
16 bit words contaning wither 0-9999 or 0--65536
32 bit words containing...
...
as dictated by your architecture.
The choice of binary or decimal base depends on you desires for maximum space efficiency, human readability, and the presence of absence of Binary Coded Decimal (BCD) math support on your chip.
You can do it with high school level of mathematics. Though more advanced algorithms are used in reality. So for example to add two 1024-byte numbers :
unsigned char first[1024], second[1024], result[1025];
unsigned char carry = 0;
unsigned int sum = 0;
for(size_t i = 0; i < 1024; i++)
{
sum = first[i] + second[i] + carry;
carry = sum - 255;
}
result will have to be bigger by one place in case of addition to take care of maximum values. Look at this :
9
+
9
----
18
TTMath is a great library if you want to learn. It is built using C++. The above example was silly one, but this is how addition and subtraction is done in general!
A good reference about the subject is Computational complexity of mathematical operations. It tells you how much space is required for each operation you want to implement. For example, If you have two N-digit numbers, then you need 2N digits to store the result of multiplication.
As Mitch said, it is by far not an easy task to implement! I recommend you take a look at TTMath if you know C++.
One of the ultimate references (IMHO) is Knuth's TAOCP Volume II. It explains lots of algorithms for representing numbers and arithmetic operations on these representations.
#Book{Knuth:taocp:2,
author = {Knuth, Donald E.},
title = {The Art of Computer Programming},
volume = {2: Seminumerical Algorithms, second edition},
year = {1981},
publisher = {\Range{Addison}{Wesley}},
isbn = {0-201-03822-6},
}
Assuming that you wish to write a big integer code yourself, this can be surprisingly simple to do, spoken as someone who did it recently (though in MATLAB.) Here are a few of the tricks I used:
I stored each individual decimal digit as a double number. This makes many operations simple, especially output. While it does take up more storage than you might wish, memory is cheap here, and it makes multiplication very efficient if you can convolve a pair of vectors efficiently. Alternatively, you can store several decimal digits in a double, but beware then that convolution to do the multiplication can cause numerical problems on very large numbers.
Store a sign bit separately.
Addition of two numbers is mainly a matter of adding the digits, then check for a carry at each step.
Multiplication of a pair of numbers is best done as convolution followed by a carry step, at least if you have a fast convolution code on tap.
Even when you store the numbers as a string of individual decimal digits, division (also mod/rem ops) can be done to gain roughly 13 decimal digits at a time in the result. This is much more efficient than a divide that works on only 1 decimal digit at a time.
To compute an integer power of an integer, compute the binary representation of the exponent. Then use repeated squaring operations to compute the powers as needed.
Many operations (factoring, primality tests, etc.) will benefit from a powermod operation. That is, when you compute mod(a^p,N), reduce the result mod N at each step of the exponentiation where p has been expressed in a binary form. Do not compute a^p first, and then try to reduce it mod N.
Here's a simple ( naive ) example I did in PHP.
I implemented "Add" and "Multiply" and used that for an exponent example.
http://adevsoft.com/simple-php-arbitrary-precision-integer-big-num-example/
Code snip
// Add two big integers
function ba($a, $b)
{
if( $a === "0" ) return $b;
else if( $b === "0") return $a;
$aa = str_split(strrev(strlen($a)>1?ltrim($a,"0"):$a), 9);
$bb = str_split(strrev(strlen($b)>1?ltrim($b,"0"):$b), 9);
$rr = Array();
$maxC = max(Array(count($aa), count($bb)));
$aa = array_pad(array_map("strrev", $aa),$maxC+1,"0");
$bb = array_pad(array_map("strrev", $bb),$maxC+1,"0");
for( $i=0; $i<=$maxC; $i++ )
{
$t = str_pad((string) ($aa[$i] + $bb[$i]), 9, "0", STR_PAD_LEFT);
if( strlen($t) > 9 )
{
$aa[$i+1] = ba($aa[$i+1], substr($t,0,1));
$t = substr($t, 1);
}
array_unshift($rr, $t);
}
return implode($rr);
}

Fast exponentiation when only first k digits are required?

This is actually for a programming contest, but I've tried really hard and haven't got even the faintest clue how to do this.
Find the first and last k digits of nm where n and m can be very large ~ 10^9.
For the last k digits I implemented modular exponentiation.
For the first k I thought of using the binomial theorem upto certain powers but that involves quite a lot of computation for factorials and I'm not sure how to find an optimal point at which n^m can be expanded as (x+y)m.
So is there any known method to find the first k digits without performing the entire calculation?
Update 1 <= k <= 9 and k will always be <= digits in nm
not sure, but the identity nm = exp10(m log10(n)) = exp(q (m log(n)/q)) where q = log(10) comes to mind, along with the fact that the first K digits of exp10(x) = the first K digits of exp10(frac(x)) where frac(x) = the fractional part of x = x - floor(x).
To be more explicit: the first K digits of nm are the first K digits of its mantissa = exp(frac(m log(n)/q) * q), where q = log(10).
Or you could even go further in this accounting exercise, and use exp((frac(m log(n)/q)-0.5) * q) * sqrt(10), which also has the same mantissa (+ hence same first K digits) so that the argument of the exp() function is centered around 0 (and between +/- 0.5 log 10 = 1.151) for speedy convergence.
(Some examples: suppose you wanted the first 5 digits of 2100. This equals the first 5 digits of exp((frac(100 log(2)/q)-0.5)*q)*sqrt(10) = 1.267650600228226. The actual value of 2100 is 1.267650600228229e+030 according to MATLAB, I don't have a bignum library handy. For the mantissa of 21,000,000,000 I get 4.612976044195602 but I don't really have a way of checking.... There's a page on Mersenne primes where someone's already done the hard work; 220996011-1 = 125,976,895,450... and my formula gives 1.259768950493908 calculated in MATLAB which fails after the 9th digit.)
I might use Taylor series (for exp and log, not for nm) along with their error bounds, and keep adding terms until the error bounds drop below the first K digits. (normally I don't use Taylor series for function approximation -- their error is optimized to be most accurate around a single point, rather than over a desired interval -- but they do have the advantage that they're mathematically simple, and you can increased accuracy to arbitrary precision simply by adding additional terms)
For logarithms I'd use whatever your favorite approximation is.
Well. We want to calculate and to get only n first digits.
Calculate by the following iterations:
You have .
Calcluate each not exactly.
The thing is that the relative error of is less
than n times relative error of a.
You want to get final relative error less than .
Thus relative error on each step may be .
Remove last digits at each step.
For example, a=2, b=16, n=1. Final relative error is 10^{-n} = 0,1.
Relative error on each step is 0,1/16 > 0,001.
Thus 3 digits is important on each step.
If n = 2, you must save 4 digits.
2 (1), 4 (2), 8 (3), 16 (4), 32 (5), 64 (6), 128 (7), 256 (8), 512 (9), 1024 (10) --> 102,
204 (11), 408 (12), 816 (13), 1632 (14) -> 163, 326 (15), 652 (16).
Answer: 6.
This algorithm has a compexity of O(b). But it is easy to change it to get
O(log b)
Suppose you truncate at each step? Not sure how accurate this would be, but, e.g., take
n=11
m=some large number
and you want the first 2 digits.
recursively:
11 x 11 -> 121, truncate -> 12 (1 truncation or rounding)
then take truncated value and raise again
12 x 11 -> 132 truncate -> 13
repeat,
(132 truncated ) x 11 -> 143.
...
and finally add #0's equivalent to the number of truncations you've done.
Have you taken a look at exponentiation by squaring? You might be able to modify one of the methods such that you only compute what's necessary.
In my last algorithms class we had to implement something similar to what you're doing and I vaguely remember that page being useful.

Resources