How do you design an OLAP Database? - olap

I need a mental process to design an OLAP database...
Essentially for standard relational it'd be (loosely):
Identify Entities
Identify Relationships
Identify Properties of Entities
For each property:
Ensure property can be related to only one entity
Ensure property is directly related to entity
For OLAP databases, I understand the terminology, the motivation and the structure; however, I have no clue as to how to decompose my relational model into an OLAP model.

Identify Dimensions (or By's)
These are anything that you may want to analyse/group your report by. Every table in the source database is a potential Dimension. Dimensions should be hierarchical if possible, e.g. your Date dimension should have a year,month,day hierarchy, Similarly Location should have for example Country, Region, City hierarchy. This will allow your OLAP tool to more efficiently calculate aggregations.
Identify Measures
These are the KPI's or the actual numerical information your client wants to see, these are usually capable of being aggregated, therefore any non flag, non key numeric field in the source database is a potential measure.
Arrange in star schema, with Measures in the center 'Fact' table, and FK relations to applicable Dimension tables. Measures should be stored at the lowest dimension hierarchy level.
Identify the 'Grain' of the fact table, this is essentially the 'level of detail' held. It is usually determined by the reporting requirements, the data granularity available in the source and performance requirements of the reporting solution.You may identify the grain as you go, or you may approach it as a final step once all the important data has been identified. I tend to have a final step to ensure the grain is consistent between my fact tables.
The final step is identifying slowly changing dimensions, and the requirements for these. For example if the customer dimension includes an element of their address and they move, how is that to be handled.

One important point in identify the Dimensions and Measures is the final cardinality that you are electing for the model.
Let´s say that your relational database data entry is during all day.
Maybe you don´t need to visualize or aggregate the measures by hour, even by day. You can choose a week granularity or monthly etc.

Related

Modeling time in graph databases

I read in Neo4j documentation a section about how to make queries that depends on time more efficient:
One way to model time-specific data and relationships is by including
data in the relationship type. Because Neo4j is optimized specifically
for traversing relationships between entities, you can often improve
query performance by specifying a date as the relationship type and
only traversing particular dated relationships.
But I was wondering, using this technique you will have to repeat the same things any time you want to make the time-based-queries more efficient. For example if you want to query the posts created by specific user at specific date you have to add (similarly to AirportDay) something like UserDay.
My question is there a possible way to model time universally in your graph?, so that time become the main entry-point to query events and activities in the graph.
There's no answer to modelling time universally in your graph. It depends on your use cases.
The example in your post is one way to optimise non-performant queries that traverse too many relationships of the same type from a node.
You could also store time as a property on the node, and index it.
And then there's the option of a timetree https://graphaware.com/neo4j/2014/08/20/graphaware-neo4j-timetree.html
To summarise, it depends on your use cases- usually no need to prematurely optimise.

how to create dynamoDB efficiently with my table?

If each of my database's an overview has only two types (state: pending, appended), is it efficient to designate these two types as partition keys? Or is it effective to index this state value?
It would be more effective to use a sparse index. In your case, you might add an attribute called isPending. You can add this attribute to items that are pending, and remove it once they are appended. If you create a GSI with tid as the hash key and isPending as the sort key, then only items that are pending will be in the GSI.
It will depend on how would you search for these records!
For example, if you will always search by record ID, it never minds. But if you will search every time by the set of records pending, or appended, you should think in use partitions.
You also could research in this Best practice guide from AWS: https://docs.aws.amazon.com/en_us/amazondynamodb/latest/developerguide/best-practices.html
Updating:
In this section of best practice guide, it recommends the following:
Keep related data together. Research on routing-table optimization
20 years ago found that "locality of reference" was the single most
important factor in speeding up response time: keeping related data
together in one place. This is equally true in NoSQL systems today,
where keeping related data in close proximity has a major impact on
cost and performance. Instead of distributing related data items
across multiple tables, you should keep related items in your NoSQL
system as close together as possible.
As a general rule, you should maintain as few tables as possible in a
DynamoDB application. As emphasized earlier, most well designed
applications require only one table, unless there is a specific reason
for using multiple tables.
Exceptions are cases where high-volume time series data are involved,
or datasets that have very different access patterns—but these are
exceptions. A single table with inverted indexes can usually enable
simple queries to create and retrieve the complex hierarchical data
structures required by your application.
Use sort order. Related items can be grouped together and queried
efficiently if their key design causes them to sort together. This is
an important NoSQL design strategy.
Distribute queries. It is also important that a high volume of
queries not be focused on one part of the database, where they can
exceed I/O capacity. Instead, you should design data keys to
distribute traffic evenly across partitions as much as possible,
avoiding "hot spots."
Use global secondary indexes. By creating specific global secondary
indexes, you can enable different queries than your main table can
support, and that are still fast and relatively inexpensive.
I hope I could help you!

Relational behavior against a NoSQL document store for ODBC support

The first assertion is that document style nosql databases such as MarkLogic and Mongo should store each piece of information in a nested/complex object.
Consider the following model
<patient>
<patientid>1000</patientid>
<firstname>Johnny</firstname>
<claim>
<claimid>1</claimid>
<claimdate>2015-01-02</claimdate>
<charge><amount>100</amount><code>374.3</code></charge>
<charge><amount>200</amount><code>784.3</code></charge>
</claim>
<claim>
<claimid>2</claimid>
<claimdate>2015-02-02</claimdate>
<charge><amount>300</amount><code>372.2</code></charge>
<charge><amount>400</amount><code>783.1</code></charge>
</claim>
</patient>
In the relational world this would be modeled as a patient table, claim table, and claim charge table.
Our primary desire is to simultaneously feed downstream applications with this data, but also perform analytics on it. Since we don't want to write a complex program for every measure, we should be able to put a tool on top of this. For example Tableau claims to have a native connection with MarkLogic, which is through ODBC.
When we create views using range indexes on our document model, the SQL against it in MarkLogic returns excessive repeating results. The charge numbers are also double counted with sum functions. It does not work.
The thought is that through these index, view, and possibly fragment techniques of MarkLogic, we can define a semantic layer that resembles a relational structure.
The documentation hints that you should create 1 object per table, but this seems to be against the preferred document db structure.
What is the data modeling and application pattern to store large amounts of document data and then provide a turnkey analytics tool on top of it?
If the ODBC connection is going to always return bad data and not be aware of relationships, then all of the tools claiming to have ODBC support against NoSQL is not true.
References
https://docs.marklogic.com/guide/sql/setup
https://docs.marklogic.com/guide/sql/tableau
http://www.marklogic.com/press-releases/marklogic-and-tableau-build-connection/
https://developer.marklogic.com/learn/arch/data-model
For your question: "What is the data modeling and application pattern to store large amounts of document data and then provide a turnkey analytics tool on top of it?"
The rule of thumb I use is that when I want to count "objects", I model them as separate documents. So if you want to run queries that count patients, claims, and charges, you would put them in separate documents.
That doesn't mean we're constraining MarkLogic to only relational patterns. In UML terms, a one-to-many relationship can be a composition or an aggregation. In a relational model, I have no choice but to model those as separate tables. But in a document model, I can do separate documents per object or roll them all together - the choice is usually based on how I want to query the data.
So your first assertion is partially true - in a document store, you have the option of nesting all your related data, but you don't have to. Also note that because MarkLogic is schema-agnostic, it's straightforward to transform your data as your requirements evolve (corb is a good option for this). Certain requirements may require denormalization to help searches run efficiently.
Brief example - a person can have many names (aliases, maiden name) and many addresses (different homes, work address). In a relational model, I'd need a persons table, a names table, and an addresses table. But I'd consider the names to be a composite relationship - the lifecycle of a name equals that of the person - and so I'd rather nest those names into a person document. An address OTOH has a lifecycle independent of the person, so I'd make that an address document and toss an element onto the person document for each related address. From an analytics perspective, I can now ask lots of interesting questions about persons and their names, and persons and addresses - I just can't get counts of names efficiently, because names aren't in separate documents.
I guess MarkLogic is a little atypical compared to other document stores. It works best when you don't store an entire table as one document, but one record per document. MarkLogic indexing is optimized for this approach, and handles searching across millions of documents easily that way. You will see that as soon as you store records as documents, results in Tableau will improve greatly.
Splitting documents to such small fragments also allows higher performance, and lower footprints. MarkLogic doesn't hold the data as persisted DOM trees that allow random access. Instead, it streams the data in a very efficient way, and relies on index resolution to pull relevant fragments quickly..
HTH!

Local Cube - Is there a reason to use OLTP's grain?

I am building a local OLAP cube based on data gathered from several OLTP sources. Please note that I am doing this programmatically and do not have access to tools like SSAS or MDX-based tools.
My requirements are somewhat different than the operational requirements of the OLTP system users. I know that "in theory" it would be preferable to retain the most atomic grain available to me, but I don't see a reason to include the lowest level of data in the cube.
For example (I am simplifying), I have a measure field like "Price". Additionally, each sales fact has a Version attribute with values such as:
List (Original/Initial)
Initial Quote
Adjusted Quote
Sold
These describe the internal development of our pricing and are critical to the reports that I create.
However, for my reporting purposes, I will always want to know the value of all Versions whenever I am referencing a given transaction. Therefore, I am considering pivoting measures like Price by Version in the cube (Version will still be its own entity in the data model), resulting in measures like:
PriceList
PriceQuotedInitial
PriceQuotedAdjusted
PriceSold
Since only one Version is ever effective at a given point in time, we do not need to aggregate across multiple Versions.
Known Advantages
Since this will be a local cube file, it appears this approach would
simplify the creation of several required calculated measures that compare Price
across different Versions (would not be an issue to create calculated measures at various levels of aggregation if I was doing this with MDX)
It would also reduce the number of records by a factor of between 3
and 6, which would significantly boost performance for a local cube.
Known Disadvantages
While the data model will match the business process, the cube would not store the data at the most atomic level. An analyst would need to distinguish between Versions by Measure selection, and could not filter by Version - they would always get all available Versions.
This approach will greatly increase the number of Measures. For
example, there is not just one Price we are tracking, but several
price components and other Measures we track for each transaction.
So if we track a dozen true Measures for each transaction, that
might end up being 50-60 Measures if I take this approach.
I understand that for very large Fact tables, it would be preferable to factor all possible fields out of the Fact table into Dimensions for performance purposes, but I am not sure whether this is the case when using a local cube, as in all likelihood, I will put fewer than 50,000 records into any given cube file, given the limitations of local cubes.
Are there other drawbacks to this approach that I'm missing?

How is representing all information in Nodes vs Attributes affect storage, computations?

While using Graph Databases(my case Neo4j), we can represent the same information many ways. Making each entity a Node and connecting all entities through relationships or just adding the entities to attribute list of a Node.diff
Following are two different representations of the same data.
Overall, which mechanism is suitable in which conditions?
My use case involves traversing the Database from different nodes until 4 depths and examining the information through connected nodes or attributes (based on which approach it is).
One query of interest may be, "Who are the friends of John who went to Stanford?"
What is the difference in terms of Storage, computations
Normally,
properties are loaded lazily, and are more expensive to hold in cache, especially strings. Nodes and Relationships are most effective for traversal, especially since the relationships types are stored together with the relatoinship records and thus don't trigger property loads when used in traversals.
Also, a balanced graph (that is, not many dense nodes with over say 10K relationships) is most effective to traverse.
I would try to model most of the reoccurring proeprties as nodes connecting to the entities, thus using the graph itself to index on these values, instead of having to revert to filter on property values or index the property with an expensive index lookup.
The first one is much better since you're querying on entities such as Stanford- and that entity is related to many person nodes. My opinion that modeling as nodes is more intuitive and easier to query on. "Find all persons who went to Stanford" would not be very easy to do in your second model as you don't have a place to start traversing from.
I'd use attributes mainly to describe the node/entity use them to filter results from the query e.g. Who are friends of John who went to Stanford in the year 2010. In this case, the year attribute would just be used to trim the results. Depends on your use case- if year is really important and drives a lot of queries or is used to represent a timeline, you could even model the year as a node attached to Stanford.

Resources