Recently, I was asked about subsetting a data frame in R. My colleague had this line of code
dd2 <- subset(dd, tret == c("T1", "T2", "T3", "T4")) which yields 1/4 of the subset. In contrast to the standard dd2 <- subset(dd, tret == "T1" | tret == "T2" | tret == "T3" | tret == "T4") which yields 960 rows, the first line of code only yields 240 rows.
Same thing happens to vectors. For instance,
x <- c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)
y <- x[x == 1 | x == 2] gives a vector different from
y <- x[x == c(1,2)]
Any insight on the differences? Thank you.
The issue is with the recycling of values when we use a vector with length greater than 1 with another one having length > 1.
x == 1:2
#[1] TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
where
x
#[1] 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
and the comparison works in the following way
rep(1:2, length.out = length(x))
#[1] 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
In the above example, 1 is compared to the first element of x, 2 with 2nd element, 1 again with 3rd element of x, 2 with 4th, and it repeats until the end of the vector 'x'. For comparing vectors of length > 1, use %in%
identical(x[x == 1 | x == 2], x[x %in% 1:2])
#[1] TRUE
Is there a more elegant way to solve this problem?
For every TRUE value I'm looking for the positions of the closest previous and following FALSE values.
data:
vec <- c(FALSE, TRUE, TRUE, FALSE, TRUE, FALSE)
desired outcome: (something like)
pos start end
[1,] 2 1 4
[2,] 3 1 4
[3,] 5 4 6
explanation of the first row of the outcome:
pos = 2, position of the first TRUE,
start = 1, position of the closest FALSE in front of pos = 2
end = 4, position of the closest FALSE after pos = 2.
Already working solution:
pos = which(vec)
f_pos = which(!vec)
t(
sapply(pos, function(x){ s <- rev(f_pos[f_pos < x])[1]; e <- f_pos[x < f_pos][1]; return(data.frame(pos = x, start = s, end = e)) })
)
Using findInterval
pos <- which(vec)
b <- which(!vec)
ix <- findInterval(pos, b)
cbind(pos, from = b[ix], to = b[ix + 1])
# pos from to
# [1,] 2 1 4
# [2,] 3 1 4
# [3,] 5 4 6
If we stretch your "something like" slightly, a simple cut will do:
data.frame(pos, rng = cut(pos, b))
# pos rng
# 1 2 (1,4]
# 2 3 (1,4]
# 3 5 (4,6]
If the vector ends with TRUE, the findInterval solution will give NA in 'to' column. In cut, the last 'interval' is then coded as NA.
You can do as if FALSE defined intervals and use data.table::foverlaps to find the right ones:
library(data.table)
# put your objects in data.tables:
f_pos_inter <- data.table(start=head(f_pos, -1), end=tail(f_pos, -1))
pos_inter <- data.table(start=pos, end=pos)
# define the keys:
setkeyv(pos_inter, c("start", "end")); setkeyv(f_pos_inter, c("start", "end"))
res <- foverlaps(pos_inter, f_pos_inter)
# start end i.start i.end
#1: 1 4 2 2
#2: 1 4 3 3
#3: 4 6 5 5
You can further reorder the columns and keep only the ones you need:
res[, i.end:=NULL]
setcolorder(res, c(3, 1, 2))
setnames(res, "i.start", "pos")
res
# pos start end
#1: 2 1 4
#2: 3 1 4
#3: 5 4 6
N.B: this will give NA in both columns start and end if vec ends with TRUE
I have a numeric vector in R, say
v= c(2,3,5,6,7,6,3,2,3,4,5,7,8,9,6,1,1,2,5,6,7,11,2,3,4)
Now, I have to find all the consecutive sub-vector of size 4 out of it with the condition that each element of the sub-vector must be greater than 2 and all sub-vector must be disjoint in the sense that non of the two sub-vector can contain same index element. So my output will be:
(3,5,6,7),(3,4,5,7),(5,6,7,11)
Edited:
Other examples for illustration purpose: for,
v=c(3,3,3,3,1,3,3,3,3,3,3,3,3)
output will be :
(3,3,3,3), (3,3,3,3),(3,3,3,3).
and for,
v= c(2,3,5,5,7,6,3,2,3,4,5,7,8,9,6,1,1,2,5,6,7,11,2,3,4)
output will be
(3,5,5,7),(3,4,5,7),(5,6,7,11)
The second condition on the output simply says that if we found any sub- array say (v[m],v[m+1],v[m+2],v[m+3]) with each element greater than > 2 then it will goes into my output and the next sub-array can only be start from v[m+4](if possible)
This solution uses embed() to create a matrix of lags and then extracts the desired rows from this matrix:
v <- c(2,3,5,6,7,6,3,2,3,4,5,7,8,9,6,1,1,2,5,6,7,11,2,3,4)
e <- embed(v, 4)
ret <- which(
apply(e, 1, function(x)all(x > 2)) &
apply(e, 1, function(x)length(unique(x)) == 4)
)
rows <- ret[c(1, 1 + which(diff(ret) > 4))]
e[rows, 4:1]
[,1] [,2] [,3] [,4]
[1,] 3 5 6 7
[2,] 3 4 5 7
[3,] 5 6 7 11
Try:
fun1 <- function(vec, n, cond1) {
lst1 <- lapply(1:(length(vec) - n+1), function(i) {
x1 <- vec[i:(i + (n-1))]
if (all(diff(x1) >= 0) & all(x1 > cond1))
x1
})
indx <- which(sapply(lst1, length) == n)
indx2 <- unlist(lapply(split(indx, cumsum(c(TRUE, diff(indx) != 1))), function(x) x[seq(1,
length(x), by = n-1)]))
lst1[indx2]
}
v1 <- c(3,3,3,3,1,3,3,3,3,3,3,3,3)
v2 <- c(2,3,5,5,7,6,3,2,3,4,5,7,8,9,6,1,1,2,5,6,7,11,2,3,4)
v3 <- c(2,3,5,6,7,6,3,2,3,4,5,7,8,9,6,1,1,2,5,6,7,11,2,3,4)
fun1(v1,4,2)
#[[1]]
#[1] 3 3 3 3
#[[2]]
#[1] 3 3 3 3
#[[3]]
#[1] 3 3 3 3
fun1(v2,4,2)
#[[1]]
#[1] 3 5 5 7
#[[2]]
#[1] 3 4 5 7
#[[3]]
#[1] 5 6 7 11
fun1(v3,4,2)
#[[1]]
#[1] 3 5 6 7
#[[2]]
#[1] 3 4 5 7
#[[3]]
#[1] 5 6 7 11
Here is another idea based on rle:
ff = function(x, size, thres)
{
valid_subsets = sapply(head(seq_along(x), -(size - 1)),
function(i) all(x[i:(i + (size - 1))] > thres))
r = rle(valid_subsets)
lapply(unlist(mapply(function(a, b) a + (seq_len(b) - 1) * size,
(cumsum(r$lengths) - r$lengths + 1)[which(r$values)],
(r$lengths[which(r$values)] + size - 1) %/% size)),
function(i) x[i:(i + (size - 1))])
}
ff(c(3,3,3,3,1,3,3,3,3,3,3,3,3), 4, 2)
ff(c(2,3,5,6,7,6,3,2,3,4,5,7,8,9,6,1,1,2,5,6,7,11,2,3,4), 4, 2)
Testing on another vector (I assume this is the correct output):
set.seed(4); xx = sample(1:10, 20, T)
xx
# [1] 6 1 3 3 9 3 8 10 10 1 8 3 2 10 5 5 10 6 10 8
ff(xx, 4, 2)
#[[1]]
#[1] 3 3 9 3
#
#[[2]]
#[1] 10 5 5 10
Unless I'm missing something, on "xx" (as well as on other cases) the other posted answers do not seem to work:
fun1(xx, 4, 2)
#[[1]]
#[1] 3 8 10 10
#e[rows, 4:1]
#[1] 9 3 8 10
I have a list l, which has the following features:
It has 3 elements
Each element is a numeric vector of length 5
Each vector contains numbers from 1 to 5
l = list(a = c(2, 3, 1, 5, 1), b = c(4, 3, 3, 5, 2), c = c(5, 1, 3, 2, 4))
I want to do two things:
First
I want to know how many times each number occurs in the entire list and I want each result in a vector (or any form that can allow me to perform computations with the results later):
Code 1:
> a <- table(sapply(l, "["))
> x <- as.data.frame(a)
> x
Var1 Freq
1 1 3
2 2 3
3 3 4
4 4 2
5 5 3
Is there anyway to do it without using the table() function. I would like to do it "manually". I try to do it right below.
Code 2: (I know this is not very efficient!)
x <- data.frame(
"1" <- sum(sapply(l, "[")) == 1
"2" <- sum(sapply(l, "[")) == 2
"3" <- sum(sapply(l, "[")) == 3
"4" <- sum(sapply(l, "[")) == 4
"5" <- sum(sapply(l, "[")) == 5)
I tried the following, but I did not work. I actually did not understand the result.
> sapply(l, "[") == 1:5
a b c
[1,] FALSE FALSE FALSE
[2,] FALSE FALSE FALSE
[3,] FALSE TRUE TRUE
[4,] FALSE FALSE FALSE
[5,] FALSE FALSE FALSE
> sum(sapply(l, "[") == 1:5)
[1] 2
Second
Now, I would like to get the number of times each number appears in the list, but now in each element $a, $b and $c. I thought about using the lapply() but I don't know how exactly. Following is what I tried, but it is inefficient just like Code 2:
lapply(l, function(x) sum(x == 1))
lapply(l, function(x) sum(x == 2))
lapply(l, function(x) sum(x == 3))
lapply(l, function(x) sum(x == 4))
lapply(l, function(x) sum(x == 5))
What I get with these 5 lines of code are 5 lists of 3 elements each containing a single numeric value. For example, the second line of code tells me how many times number 2 appears in each element of l.
Code 3:
> lapply(l, function(x) sum(x == 2))
$a
[1] 1
$b
[1] 1
$c
[1] 1
What I would like to obtain is a list with three elements containing all the information I am looking for.
Please, use the references "Code 1", "Code 2" and "Code 3" in your answers. Thank you very much.
Just use as.data.frame(l) for the second part and table(unlist(l)) for the first.
> table(unlist(l))
1 2 3 4 5
3 3 4 2 3
> data.frame(lapply(l, tabulate))
a b c
1 2 0 1
2 1 1 1
3 1 2 1
4 0 1 1
5 1 1 1`
For code 1/2, you could use sapply to obtain the counts for whichever values you wanted:
l = list(a = c(2, 3, 1, 5, 1), b = c(4, 3, 3, 5, 2), c = c(5, 1, 3, 2, 4))
data.frame(number = 1:5,
freq = sapply(1:5, function(x) sum(unlist(l) == x)))
# number freq
# 1 1 3
# 2 2 3
# 3 3 4
# 4 4 2
# 5 5 3
For code 3, if you wanted to get the counts for lists a, b, and c, you could just apply your frequency function to each element of the list with the lapply function:
freqs = lapply(l, function(y) sapply(1:5, function(x) sum(unlist(y) == x)))
data.frame(number = 1:5, a=freqs$a, b=freqs$b, c=freqs$c)
# number a b c
# 1 1 2 0 1
# 2 2 1 1 1
# 3 3 1 2 1
# 4 4 0 1 1
# 5 5 1 1 1
here you have another example with nested lapply().
created data:
list = NULL
list[[1]] = c(1:5)
list[[2]] = c(1:5)+3
list[[2]] = c(1:5)+4
list[[3]] = c(1:5)-1
list[[4]] = c(1:5)*3
list2 = NULL
list2[[1]] = rep(1,5)
list2[[2]] = rep(2,5)
list2[[3]] = rep(0,5)
The result is this; it serve to subtract each element of one list with all elements of the other list.
lapply(list, function(d){ lapply(list2, function(a,b) {a-b}, b=d)})