Related
I want to plot a heatmap where the x-axis is clustered by "normal" and "KIRP" from left to right.
Currently, my code clusters by dendrogram/similarity, and unfortunately I have one outlier "KIRP" on the left-most. I want to move this "KIRP" sample so that it appears after all the "normal" samples. Nevertheless, both groups "normal" and "KIRP" should still be clustered and arranged based on group similarity.
[![enter image description here][1]][1]
Code:
dge <- DGEList(counts=mat, group=group)
keep <- filterByExpr(dge)
v <- voom(mat, design, plot=TRUE)
vfit <- lmFit(v, design)
vfit <- contrasts.fit(vfit, contrasts=contrasts)
efit <- eBayes(vfit)
tfit <- treat(vfit, lfc=1)
dt <- decideTests(tfit)
de.common <- which(dt[,1]!=0)
kirp.vs.normal <- topTreat(tfit, coef=1, n=Inf)
topgenes <- rownames(kirp.vs.normal)[1:150]
i <- which(rownames(dge) %in% topgenes)
mycol <- colorpanel(1000,"#FFA500","white","#2E2787")
heatmap.2(lcpm[i,], scale="row",
labRow=rownames(dge)[i], labCol=group,
col=mycol, trace="none", density.info="none",
margin=c(8,1), lhei=c(2,10), dendrogram="column", main="Differential Gene Expression in\nNormal vs KIRP Type II CIMP samples", cex.main=0.3, lmat=rbind(c(0,3,4), c(2,1,0)), lwid=c(0.5,10,3))
Data:
dput(dge[1:50,1:50])
new("DGEList", .Data = list(structure(c(2L, 47L, 5L, 185L, 124L,
272L, 197L, 405L, 59L, 258L, 270L, 226L, 112L, 322L, 381L, 281L,
145L, 53L, 325L, 107L, 103L, 375L, 70L, 298L, 131L, 79L, 297L,
2L, 345L, 390L, 113L, 289L, 58L, 400L, 389L, 414L, 228L, 188L,
392L, 222L, 86L, 355L, 20L, 49L, 211L, 311L, 96L, 304L, 378L,
145L, 3L, 363L, 199L, 22L, 313L, 305L, 182L, 338L, 32L, 266L,
314L, 35L, 384L, 361L, 37L, 241L, 4L, 340L, 356L, 26L, 100L,
212L, 27L, 273L, 25L, 43L, 355L, 5L, 211L, 155L, 372L, 253L,
180L, 380L, 105L, 13L, 242L, 221L, 401L, 215L, 197L, 233L, 345L,
136L, 254L, 183L, 111L, 390L, 392L, 298L, 1L, 308L, 89L, 118L,
306L, 219L, 50L, 100L, 352L, 286L, 229L, 340L, 135L, 194L, 130L,
124L, 323L, 54L, 105L, 279L, 91L, 99L, 391L, 291L, 395L, 83L,
353L, 1L, 322L, 185L, 196L, 263L, 33L, 274L, 362L, 265L, 234L,
356L, 297L, 154L, 81L, 65L, 293L, 144L, 2L, 132L, 270L, 360L,
371L, 5L, 2L, 95L, 1L, 93L, 248L, 317L, 269L, 373L, 71L, 192L,
375L, 340L, 60L, 108L, 42L, 128L, 3L, 292L, 312L, 173L, 363L,
178L, 17L, 387L, 143L, 329L, 385L, 2L, 252L, 118L, 413L, 16L,
87L, 339L, 88L, 75L, 347L, 184L, 337L, 297L, 136L, 229L, 85L,
358L, 8L, 283L, 162L, 316L, 45L, 7L, 1L, 319L, 2L, 117L, 137L,
199L, 300L, 114L, 291L, 92L, 125L, 168L, 153L, 238L, 3L, 259L,
192L, 360L, 125L, 230L, 80L, 262L, 34L, 266L, 220L, 237L, 272L,
1L, 326L, 38L, 350L, 273L, 352L, 320L, 45L, 218L, 209L, 224L,
288L, 145L, 372L, 192L, 307L, 203L, 2L, 277L, 280L, 233L, 368L,
6L, 2L, 83L, 2L, 192L, 141L, 297L, 203L, 338L, 323L, 210L, 289L,
275L, 91L, 263L, 3L, 4L, 2L, 28L, 259L, 264L, 317L, 198L, 361L,
365L, 373L, 312L, 300L, 2L, 283L, 63L, 123L, 324L, 286L, 251L,
253L, 104L, 284L, 143L, 371L, 237L, 325L, 314L, 16L, 208L, 1L,
191L, 134L, 279L, 348L, 180L, 2L, 126L, 1L, 369L, 368L, 377L,
305L, 314L, 38L, 24L, 407L, 223L, 320L, 66L, 3L, 136L, 2L, 240L,
404L, 227L, 336L, 356L, 403L, 49L, 195L, 260L, 365L, 2L, 405L,
350L, 302L, 351L, 11L, 358L, 225L, 37L, 340L, 132L, 380L, 276L,
146L, 80L, 200L, 328L, 2L, 317L, 184L, 269L, 304L, 280L, 3L,
147L, 4L, 183L, 279L, 198L, 69L, 90L, 337L, 192L, 9L, 173L, 201L,
265L, 2L, 237L, 291L, 392L, 96L, 287L, 30L, 78L, 383L, 317L,
325L, 333L, 275L, 1L, 354L, 12L, 37L, 245L, 378L, 316L, 51L,
284L, 223L, 330L, 308L, 113L, 44L, 321L, 298L, 92L, 4L, 18L,
241L, 269L, 336L, 22L, 1L, 272L, 4L, 114L, 134L, 224L, 315L,
72L, 361L, 200L, 135L, 269L, 98L, 260L, 4L, 42L, 4L, 371L, 148L,
168L, 110L, 323L, 48L, 271L, 33L, 49L, 345L, 2L, 285L, 95L, 79L,
277L, 38L, 327L, 352L, 124L, 230L, 189L, 283L, 160L, 54L, 220L,
357L, 211L, 2L, 287L, 273L, 275L, 339L, 2L, 2L, 302L, 203L, 210L,
190L, 276L, 351L, 51L, 361L, 155L, 232L, 213L, 184L, 330L, 130L,
56L, 342L, 79L, 209L, 178L, 163L, 86L, 375L, 337L, 96L, 286L,
335L, 5L, 382L, 398L, 116L, 322L, 16L, 268L, 40L, 261L, 229L,
263L, 359L, 181L, 117L, 71L, 400L, 113L, 1L, 390L, 23L, 329L,
284L, 5L, 1L, 330L, 3L, 40L, 102L, 200L, 269L, 67L, 284L, 149L,
186L, 145L, 93L, 296L, 4L, 321L, 1L, 35L, 53L, 148L, 57L, 283L,
366L, 280L, 85L, 43L, 357L, 1L, 304L, 9L, 41L, 259L, 326L, 310L,
106L, 153L, 229L, 214L, 243L, 172L, 30L, 289L, 331L, 174L, 111L,
359L, 273L, 294L, 365L, 4L, 3L, 379L, 10L, 171L, 216L, 301L,
151L, 70L, 40L, 34L, 394L, 245L, 390L, 142L, 3L, 146L, 10L, 341L,
154L, 35L, 263L, 65L, 387L, 356L, 23L, 290L, 24L, 1L, 227L, 91L,
323L, 389L, 376L, 275L, 55L, 369L, 328L, 257L, 256L, 304L, 102L,
57L, 62L, 336L, 7L, 217L, 187L, 310L, 401L, 10L, 2L, 284L, 2L,
141L, 222L, 278L, 376L, 67L, 342L, 276L, 142L, 179L, 74L, 310L,
253L, 228L, 8L, 14L, 193L, 190L, 89L, 62L, 40L, 330L, 184L, 283L,
324L, 2L, 244L, 390L, 183L, 277L, 402L, 357L, 388L, 156L, 256L,
255L, 343L, 114L, 79L, 38L, 361L, 167L, 2L, 301L, 375L, 262L,
356L, 205L, 1L, 111L, 1L, 58L, 109L, 315L, 210L, 23L, 18L, 218L,
36L, 268L, 285L, 301L, 7L, 186L, 8L, 258L, 142L, 130L, 291L,
335L, 71L, 19L, 16L, 385L, 69L, 2L, 276L, 375L, 128L, 42L, 369L,
333L, 91L, 318L, 371L, 225L, 270L, 226L, 31L, 329L, 106L, 224L,
2L, 172L, 88L, 292L, 35L, 143L, 2L, 23L, 2L, 74L, 207L, 257L,
357L, 27L, 341L, 124L, 202L, 72L, 86L, 237L, 7L, 287L, 3L, 44L,
224L, 221L, 116L, 35L, 30L, 305L, 71L, 337L, 350L, 1L, 365L,
353L, 62L, 292L, 17L, 288L, 21L, 143L, 228L, 253L, 271L, 178L,
39L, 382L, 363L, 238L, 6L, 137L, 374L, 331L, 346L, 100L, 1L,
26L, 114L, 270L, 218L, 370L, 151L, 361L, 48L, 121L, 345L, 68L,
280L, 308L, 326L, 217L, 2L, 234L, 93L, 40L, 73L, 102L, 85L, 265L,
335L, 301L, 375L, 1L, 163L, 201L, 123L, 260L, 109L, 357L, 208L,
319L, 286L, 108L, 252L, 284L, 184L, 181L, 235L, 240L, 2L, 56L,
194L, 248L, 20L, 232L, 1L, 379L, 4L, 39L, 188L, 291L, 352L, 17L,
363L, 57L, 177L, 215L, 127L, 300L, 3L, 112L, 5L, 23L, 77L, 199L,
32L, 385L, 47L, 311L, 139L, 277L, 346L, 1L, 305L, 60L, 162L,
284L, 13L, 332L, 36L, 159L, 224L, 230L, 304L, 228L, 53L, 376L,
371L, 190L, 2L, 366L, 380L, 258L, 386L, 132L, 2L, 34L, 5L, 120L,
375L, 338L, 126L, 41L, 24L, 173L, 33L, 387L, 54L, 146L, 198L,
292L, 6L, 15L, 226L, 267L, 333L, 153L, 335L, 57L, 380L, 148L,
32L, 3L, 349L, 189L, 298L, 49L, 403L, 350L, 88L, 94L, 343L, 260L,
322L, 311L, 92L, 80L, 371L, 388L, 1L, 274L, 73L, 47L, 280L, 229L,
1L, 316L, 1L, 118L, 261L, 254L, 347L, 58L, 388L, 209L, 264L,
298L, 56L, 288L, 365L, 227L, 365L, 321L, 179L, 92L, 86L, 135L,
35L, 279L, 133L, 190L, 353L, 2L, 314L, 93L, 223L, 329L, 45L,
379L, 16L, 211L, 216L, 262L, 306L, 202L, 108L, 90L, 319L, 204L,
4L, 273L, 381L, 332L, 15L, 118L, 3L, 211L, 138L, 48L, 255L, 302L,
283L, 22L, 368L, 29L, 228L, 363L, 405L, 309L, 58L, 350L, 286L,
301L, 78L, 159L, 65L, 149L, 399L, 306L, 74L, 198L, 336L, 1L,
327L, 91L, 312L, 259L, 108L, 345L, 168L, 70L, 251L, 221L, 314L,
253L, 169L, 97L, 231L, 177L, 4L, 325L, 291L, 293L, 386L, 138L,
2L, 181L, 1L, 10L, 214L, 292L, 311L, 28L, 382L, 163L, 262L, 347L,
77L, 242L, 404L, 340L, 9L, 416L, 232L, 168L, 157L, 95L, 14L,
297L, 303L, 113L, 354L, 129L, 313L, 70L, 190L, 296L, 67L, 355L,
17L, 103L, 266L, 257L, 377L, 226L, 98L, 132L, 345L, 241L, 7L,
108L, 54L, 320L, 395L, 205L, 196L, 265L, 3L, 140L, 257L, 190L,
74L, 95L, 315L, 177L, 151L, 130L, 169L, 235L, 5L, 188L, 311L,
9L, 72L, 277L, 23L, 16L, 354L, 302L, 378L, 353L, 229L, 2L, 338L,
19L, 156L, 262L, 352L, 288L, 274L, 228L, 200L, 351L, 310L, 127L,
28L, 355L, 237L, 78L, 2L, 385L, 273L, 304L, 330L, 1L, 2L, 377L,
138L, 141L, 22L, 286L, 318L, 399L, 38L, 230L, 97L, 295L, 57L,
312L, 2L, 263L, 4L, 385L, 240L, 149L, 58L, 24L, 45L, 300L, 104L,
263L, 367L, 1L, 319L, 100L, 169L, 298L, 36L, 383L, 130L, 91L,
241L, 159L, 320L, 233L, 120L, 347L, 351L, 194L, 4L, 372L, 355L,
329L, 394L, 8L, 3L, 110L, 1L, 311L, 143L, 373L, 178L, 181L, 379L,
393L, 307L, 274L, 121L, 86L, 277L, 3L, 202L, 365L, 124L, 378L,
374L, 107L, 348L, 57L, 370L, 304L, 18L, 139L, 255L, 325L, 286L,
13L, 391L, 293L, 46L, 271L, 345L, 116L, 372L, 242L, 213L, 248L,
149L, 295L, 4L, 106L, 263L, 303L, 279L, 119L, 2L, 262L, 2L, 242L,
373L, 304L, 246L, 216L, 18L, 265L, 255L, 199L, 30L, 291L, 6L,
357L, 133L, 359L, 168L, 266L, 80L, 114L, 352L, 15L, 157L, 389L,
61L, 40L, 60L, 273L, 91L, 130L, 156L, 329L, 387L, 292L, 397L,
403L, 323L, 301L, 215L, 332L, 177L, 375L, 9L, 161L, 181L, 330L,
335L, 254L, 2L, 178L, 120L, 70L, 49L, 352L, 287L, 351L, 368L,
214L, 389L, 221L, 44L, 60L, 2L, 121L, 272L, 363L, 36L, 388L,
284L, 63L, 38L, 57L, 47L, 263L, 342L, 237L, 312L, 300L, 228L,
22L, 373L, 201L, 116L, 77L, 347L, 168L, 318L, 257L, 107L, 27L,
61L, 326L, 5L, 390L, 229L, 349L, 279L, 120L, 1L, 205L, 6L, 108L,
141L, 129L, 47L, 83L, 327L, 23L, 54L, 184L, 181L, 249L, 188L,
143L, 188L, 102L, 107L, 228L, 35L, 82L, 343L, 290L, 12L, 311L,
232L, 1L, 339L, 53L, 159L, 212L, 346L, 239L, 316L, 305L, 158L,
313L, 280L, 139L, 40L, 68L, 320L, 84L, 4L, 143L, 276L, 275L,
310L, 2L, 1L, 147L, 1L, 339L, 67L, 301L, 117L, 329L, 347L, 372L,
276L, 258L, 24L, 310L, 1L, 5L, 1L, 335L, 368L, 47L, 74L, 209L,
262L, 83L, 371L, 28L, 341L, 1L, 305L, 31L, 9L, 357L, 325L, 259L,
30L, 313L, 344L, 216L, 311L, 210L, 100L, 48L, 234L, 330L, 6L,
19L, 285L, 350L, 275L, 180L, 8L, 128L, 2L, 120L, 162L, 266L,
309L, 35L, 375L, 83L, 192L, 258L, 147L, 202L, 142L, 41L, 2L,
313L, 9L, 197L, 126L, 75L, 368L, 323L, 14L, 199L, 63L, 5L, 380L,
91L, 114L, 311L, 29L, 296L, 301L, 203L, 276L, 246L, 335L, 182L,
45L, 11L, 387L, 215L, 1L, 15L, 383L, 364L, 332L, 7L, 2L, 132L,
2L, 116L, 130L, 218L, 321L, 47L, 351L, 264L, 192L, 171L, 126L,
227L, 2L, 363L, 229L, 379L, 210L, 188L, 154L, 285L, 11L, 314L,
338L, 177L, 323L, 2L, 362L, 382L, 49L, 237L, 375L, 310L, 244L,
185L, 254L, 241L, 346L, 111L, 27L, 230L, 383L, 175L, 2L, 232L,
386L, 284L, 287L, 1L, 1L, 347L, 9L, 95L, 285L, 339L, 245L, 397L,
91L, 229L, 298L, 26L, 396L, 385L, 401L, 24L, 8L, 347L, 264L,
122L, 146L, 128L, 28L, 306L, 93L, 390L, 415L, 2L, 300L, 207L,
262L, 287L, 127L, 51L, 230L, 43L, 297L, 194L, 348L, 209L, 213L,
193L, 365L, 165L, 3L, 69L, 17L, 342L, 382L, 131L, 2L, 328L, 128L,
109L, 207L, 199L, 305L, 43L, 357L, 269L, 207L, 209L, 162L, 251L,
4L, 195L, 190L, 104L, 275L, 153L, 117L, 302L, 51L, 307L, 69L,
358L, 341L, 4L, 283L, 359L, 46L, 238L, 12L, 293L, 312L, 212L,
215L, 271L, 348L, 136L, 15L, 353L, 52L, 174L, 190L, 18L, 123L,
321L, 335L, 1L, 2L, 301L, 5L, 365L, 226L, 285L, 206L, 28L, 395L,
297L, 245L, 13L, 75L, 281L, 32L, 324L, 7L, 393L, 94L, 181L, 125L,
153L, 368L, 268L, 10L, 191L, 369L, 1L, 326L, 180L, 188L, 314L,
58L, 375L, 53L, 122L, 236L, 235L, 265L, 207L, 156L, 165L, 313L,
171L, 5L, 385L, 256L, 276L, 29L, 129L, 1L, 216L, 128L, 72L, 117L,
233L, 287L, 378L, 353L, 204L, 80L, 257L, 65L, 315L, 190L, 201L,
227L, 12L, 198L, 146L, 103L, 15L, 48L, 280L, 155L, 308L, 359L,
1L, 253L, 144L, 19L, 288L, 49L, 329L, 119L, 113L, 200L, 151L,
284L, 196L, 102L, 295L, 358L, 240L, 128L, 241L, 281L, 264L, 349L,
3L, 2L, 20L, 3L, 131L, 144L, 180L, 356L, 57L, 331L, 232L, 175L,
199L, 114L, 215L, 191L, 74L, 5L, 88L, 144L, 202L, 135L, 355L,
30L, 283L, 291L, 98L, 350L, 1L, 371L, 26L, 251L, 288L, 398L,
270L, 353L, 93L, 237L, 225L, 333L, 174L, 45L, 8L, 391L, 197L,
6L, 65L, 330L, 346L, 367L, 122L, 1L, 244L, 2L, 95L, 191L, 166L,
360L, 63L, 305L, 118L, 182L, 172L, 110L, 236L, 6L, 17L, 6L, 365L,
237L, 173L, 52L, 322L, 23L, 290L, 373L, 354L, 307L, 1L, 340L,
47L, 97L, 273L, 329L, 284L, 316L, 203L, 219L, 253L, 315L, 142L,
377L, 325L, 321L, 274L, 2L, 40L, 336L, 321L, 351L, 1L, 4L, 236L,
5L, 278L, 195L, 243L, 348L, 40L, 9L, 230L, 215L, 364L, 39L, 196L,
58L, 332L, 114L, 297L, 130L, 165L, 65L, 151L, 75L, 288L, 322L,
200L, 380L, 4L, 227L, 198L, 217L, 233L, 111L, 276L, 293L, 167L,
211L, 303L, 287L, 160L, 128L, 177L, 308L, 147L, 1L, 136L, 376L,
274L, 335L, 176L, 1L, 397L, 1L, 46L, 137L, 315L, 271L, 373L,
393L, 323L, 196L, 232L, 351L, 130L, 207L, 174L, 1L, 197L, 229L,
123L, 228L, 368L, 36L, 383L, 140L, 322L, 342L, 2L, 200L, 345L,
336L, 294L, 249L, 227L, 276L, 88L, 307L, 119L, 390L, 234L, 70L,
46L, 64L, 241L, 205L, 132L, 208L, 270L, 343L, 13L, 1L, 221L,
1L, 168L, 38L, 266L, 333L, 272L, 358L, 335L, 79L, 241L, 110L,
33L, 1L, 1L, 2L, 41L, 295L, 165L, 287L, 368L, 332L, 337L, 357L,
30L, 284L, 117L, 324L, 356L, 162L, 309L, 270L, 306L, 49L, 7L,
282L, 155L, 12L, 194L, 68L, 259L, 208L, 85L, 1L, 214L, 63L, 252L,
305L, 117L, 1L, 398L, 131L, 399L, 221L, 323L, 142L, 373L, 397L,
262L, 277L, 389L, 315L, 324L, 98L, 393L, 8L, 190L, 285L, 58L,
56L, 194L, 87L, 340L, 192L, 239L, 382L, 1L, 246L, 400L, 254L,
269L, 161L, 314L, 148L, 146L, 276L, 200L, 334L, 284L, 185L, 147L,
341L, 140L, 203L, 280L, 16L, 330L, 392L, 325L, 6L, 271L, 6L,
75L, 241L, 205L, 14L, 108L, 363L, 190L, 148L, 269L, 169L, 226L,
6L, 34L, 137L, 398L, 234L, 276L, 104L, 381L, 355L, 341L, 12L,
322L, 325L, 1L, 360L, 123L, 224L, 291L, 400L, 301L, 285L, 245L,
232L, 359L, 344L, 145L, 64L, 369L, 272L, 194L, 4L, 26L, 326L,
309L, 323L, 6L, 1L, 376L, 2L, 102L, 109L, 202L, 298L, 72L, 366L,
230L, 213L, 221L, 84L, 242L, 2L, 339L, 8L, 42L, 247L, 204L, 111L,
28L, 17L, 281L, 375L, 150L, 337L, 1L, 349L, 24L, 229L, 262L,
378L, 277L, 358L, 170L, 254L, 261L, 285L, 205L, 48L, 10L, 333L,
198L, 2L, 324L, 309L, 355L, 359L, 4L, 1L, 55L, 4L, 91L, 386L,
289L, 45L, 13L, 347L, 263L, 370L, 303L, 384L, 127L, 2L, 131L,
6L, 353L, 165L, 333L, 271L, 295L, 105L, 18L, 109L, 20L, 14L,
1L, 305L, 30L, 380L, 397L, 12L, 293L, 385L, 213L, 357L, 201L,
312L, 282L, 23L, 318L, 72L, 301L, 4L, 146L, 96L, 302L, 379L,
2L, 2L, 379L, 2L, 188L, 174L, 223L, 304L, 388L, 392L, 312L, 278L,
182L, 144L, 334L, 5L, 283L, 195L, 59L, 310L, 179L, 192L, 30L,
316L, 335L, 68L, 387L, 332L, 3L, 374L, 402L, 143L, 305L, 20L,
358L, 21L, 208L, 239L, 214L, 407L, 133L, 97L, 326L, 42L, 256L,
123L, 63L, 45L, 395L, 276L, 124L, 1L, 282L, 204L, 21L, 248L,
311L, 74L, 62L, 416L, 347L, 278L, 276L, 69L, 385L, 20L, 297L,
6L, 324L, 176L, 188L, 127L, 108L, 331L, 307L, 214L, 93L, 390L,
2L, 300L, 80L, 349L, 344L, 109L, 398L, 339L, 173L, 244L, 323L,
272L, 259L, 185L, 172L, 366L, 226L, 129L, 35L, 303L, 404L, 391L,
206L, 2L, 346L, 4L, 109L, 30L, 218L, 171L, 17L, 332L, 240L, 239L,
384L, 102L, 73L, 2L, 290L, 245L, 350L, 221L, 39L, 214L, 233L,
74L, 378L, 329L, 286L, 359L, 4L, 315L, 115L, 353L, 306L, 328L,
226L, 305L, 255L, 297L, 167L, 356L, 228L, 392L, 244L, 398L, 210L,
1L, 170L, 92L, 264L, 300L, 8L, 4L, 197L, 2L, 7L, 231L, 352L,
118L, 320L, 24L, 176L, 252L, 392L, 13L, 133L, 3L, 209L, 258L,
121L, 186L, 204L, 80L, 168L, 379L, 374L, 335L, 271L, 39L, 279L,
44L, 148L, 262L, 95L, 99L, 388L, 37L, 309L, 365L, 136L, 333L,
291L, 164L, 215L, 27L, 343L, 3L, 115L, 233L, 368L, 342L, 51L,
4L, 329L, 2L, 14L, 37L, 301L, 125L, 31L, 315L, 389L, 34L, 218L,
38L, 312L, 11L, 4L, 227L, 271L, 228L, 102L, 357L, 208L, 316L,
47L, 20L, 369L, 45L, 4L, 390L, 302L, 94L, 19L, 362L, 251L, 394L,
335L, 32L, 258L, 325L, 256L, 73L, 52L, 110L, 288L, 8L, 58L, 113L,
353L, 320L, 136L, 2L, 230L, 2L, 42L, 123L, 327L, 222L, 354L,
338L, 345L, 236L, 128L, 102L, 41L, 135L, 7L, 3L, 31L, 293L, 347L,
328L, 296L, 16L, 47L, 385L, 86L, 294L, 2L, 19L, 246L, 164L, 371L,
317L, 297L, 100L, 346L, 352L, 206L, 379L, 252L, 40L, 363L, 54L,
186L, 1L, 339L, 139L, 274L, 391L, 194L, 1L, 287L, 1L, 128L, 53L,
268L, 180L, 343L, 13L, 213L, 377L, 270L, 80L, 204L, 119L, 118L,
118L, 10L, 103L, 375L, 202L, 21L, 63L, 316L, 393L, 342L, 344L,
1L, 353L, 93L, 86L, 324L, 327L, 336L, 319L, 230L, 308L, 167L,
355L, 219L, 43L, 32L, 389L, 199L, 3L, 96L, 386L, 290L, 388L,
6L), dim = c(50L, 50L), dimnames = list(c("A2ML1", "ABCA4", "ABCB5",
"ABHD1", "ACRBP", "ACSL5", "ACSM5", "ACSS3", "ACVRL1", "ADH1C",
"ADRB2", "AEBP1", "AFMID", "AIF1", "AIM2", "AKR1B10", "AKR1C4",
"AKR7L", "ALDH3B2", "ALDH8A1", "ALDOC", "ALOX5AP", "ALPK3", "AMFR",
"ANKRD22", "ANKRD2", "ANKRD45", "ANXA8L2", "ANXA9", "AOC3", "APBB1IP",
"APH1B", "APOBEC3C", "APOL3", "APOL4", "APOM", "APP", "AQP1",
"ARFRP1", "ARHGAP29", "ARHGDIB", "ARL11", "ARL4D", "ARRDC3",
"ASCL3", "B3GNT3", "B3GNT8", "BAMBI", "BAZ2B", "BCL2L14"), c("TCGA.BQ.7051.11A",
"TCGA.DZ.6132.11A", "TCGA.CZ.4864.11A", "TCGA.KN.8426.11A", "TCGA.CZ.5982.11A",
"TCGA.A4.A4ZT.11A", "TCGA.CZ.5468.11A", "TCGA.BQ.5894.11A", "TCGA.B0.5699.11A",
"TCGA.KL.8339.11A", "TCGA.CZ.5988.11A", "TCGA.CZ.5461.11A", "TCGA.CJ.6030.11A",
"TCGA.B8.5549.11A", "TCGA.CW.5587.11A", "TCGA.CZ.5987.11A", "TCGA.CJ.5677.11A",
"TCGA.CZ.5470.11A", "TCGA.B2.5636.11A", "TCGA.CJ.5676.11A", "TCGA.KN.8435.11A",
"TCGA.BQ.5877.11A", "TCGA.CZ.5984.11A", "TCGA.CZ.5457.11A", "TCGA.CZ.4863.11A",
"TCGA.CZ.5467.11A", "TCGA.A3.3387.11A", "TCGA.CZ.5456.11A", "TCGA.B9.4115.11A",
"TCGA.GL.6846.11A", "TCGA.B0.5402.11A", "TCGA.DZ.6133.11A", "TCGA.B0.5691.11A",
"TCGA.B0.4700.11A", "TCGA.B0.5696.11A", "TCGA.CW.5581.11A", "TCGA.BQ.7045.11A",
"TCGA.KN.8427.11A", "TCGA.GL.A59R.11A", "TCGA.CW.5584.11A", "TCGA.BQ.5878.11A",
"TCGA.CW.5589.11A", "TCGA.CJ.5672.11A", "TCGA.BQ.7044.11A", "TCGA.CZ.5466.11A",
"TCGA.BQ.5887.11A", "TCGA.CZ.4865.11A", "TCGA.CZ.5458.11A", "TCGA.Y8.A8RY.11A",
"TCGA.KN.8422.11A"))), structure(list(group = structure(c(1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), levels = "normal", class = "factor"), lib.size = c(94225,
93733, 87671, 94478, 81956, 81966, 91604, 87469, 81048, 91004,
81264, 92424, 91496, 85877, 87734, 83846, 88254, 92553, 89254,
91736, 96220, 84907, 90231, 87189, 90384, 87166, 81495, 81436,
90285, 83664, 95495, 84763, 91291, 85265, 87117, 81741, 88278,
92099, 81840, 90942, 88312, 89034, 89739, 90942, 95178, 88887,
91263, 85695, 87717, 90705), norm.factors = c(1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1)), row.names = c("TCGA.BQ.7051.11A", "TCGA.DZ.6132.11A",
"TCGA.CZ.4864.11A", "TCGA.KN.8426.11A", "TCGA.CZ.5982.11A", "TCGA.A4.A4ZT.11A",
"TCGA.CZ.5468.11A", "TCGA.BQ.5894.11A", "TCGA.B0.5699.11A", "TCGA.KL.8339.11A",
"TCGA.CZ.5988.11A", "TCGA.CZ.5461.11A", "TCGA.CJ.6030.11A", "TCGA.B8.5549.11A",
"TCGA.CW.5587.11A", "TCGA.CZ.5987.11A", "TCGA.CJ.5677.11A", "TCGA.CZ.5470.11A",
"TCGA.B2.5636.11A", "TCGA.CJ.5676.11A", "TCGA.KN.8435.11A", "TCGA.BQ.5877.11A",
"TCGA.CZ.5984.11A", "TCGA.CZ.5457.11A", "TCGA.CZ.4863.11A", "TCGA.CZ.5467.11A",
"TCGA.A3.3387.11A", "TCGA.CZ.5456.11A", "TCGA.B9.4115.11A", "TCGA.GL.6846.11A",
"TCGA.B0.5402.11A", "TCGA.DZ.6133.11A", "TCGA.B0.5691.11A", "TCGA.B0.4700.11A",
"TCGA.B0.5696.11A", "TCGA.CW.5581.11A", "TCGA.BQ.7045.11A", "TCGA.KN.8427.11A",
"TCGA.GL.A59R.11A", "TCGA.CW.5584.11A", "TCGA.BQ.5878.11A", "TCGA.CW.5589.11A",
"TCGA.CJ.5672.11A", "TCGA.BQ.7044.11A", "TCGA.CZ.5466.11A", "TCGA.BQ.5887.11A",
"TCGA.CZ.4865.11A", "TCGA.CZ.5458.11A", "TCGA.Y8.A8RY.11A", "TCGA.KN.8422.11A"
), class = "data.frame")))
I used some simulated data to try this, since it seems that the question can be generalized to other datasets. I also ran into errors with your subset of data.
set.seed(123)
data <- as.matrix(data.frame(
a1 = rnorm(100, 0, 1),
a2 = rnorm(100, 0, 1),
a3 = rnorm(100, 0, 1),
b1 = rnorm(100, 0, 1.2),
b2 = rnorm(100, 0, 1.2),
b3 = rnorm(100, 0, 1.2)
))
Here we see that b1 would look nicer next to b3 and b2.
library(gplots)
ht <- heatmap.2(
x = data,
ColSideColors = c(rep("#b66363", 3), rep("#8fa8c0", 3)),
col = colorpanel(1000,"#FFA500","white","#2E2787"),
trace = "none",
key = FALSE,
dendrogram = "column",
main = "Example Data",
labRow = FALSE
)
Looking at the structure of the heatmap output, the dendrogram is stored as a "dendrogram" class object, which can be manipulated with with the reorder() generic.
The documentation doesn't reveal too much, but the second argument wts describes arbitrary weights to determine a reordered dendrogram. From what I can tell, large values generally get placed to the right. From trial-and-error, it appears that supplying weights in the original order of the columns worked out. This essentially flips branches without affecting the distance metrics.
colden <- ht$colDendrogram
colden_reordered <- reorder(colden, c(10, 1, 1, 100, 300, 200))
plot(colden, main = "original dendrogram")
plot(colden_reordered, main = "modified dendrogram")
When can then plot the heatmap with the new dendrogram using the Colv option.
ht2 <- heatmap.2(
x = data,
ColSideColors = c(rep("#b66363", 3), rep("#8fa8c0", 3)),
col = colorpanel(1000,"#FFA500","white","#2E2787"),
trace = "none",
key = FALSE,
dendrogram = "column",
Colv = colden_reordered,
main = "Reordered manually",
labRow = FALSE
)
The dendsort package may be a better go-to tool for sorting dendrograms. In short, the dendsort() moves clusters with smaller average distances to the left. Using this alone seems to solve the issue. With larger heatmaps, the benefit may be apparent when looking for patterns in the data. Seems preferable to manual reordering, when possible. Below I've modified the option Colv to use this function.
library(dendsort)
ht3 <- heatmap.2(
x = data,
ColSideColors = c(rep("#b66363", 3), rep("#8fa8c0", 3)),
col = colorpanel(1000,"#FFA500","white","#2E2787"),
trace = "none",
density.info = "none",
key = FALSE,
dendrogram = "column",
Colv = dendsort(colden),
main = "Reordered w/ dendsort()",
labRow = FALSE
)
For more options for heatmaps concerning clustering and groups, I use the ComplexHeatmap package, which has wonderful documentation. They have many options for splitting columns; for instance, slicing up the columns into groups first, and then clustering within those slices. See this section 2.7: Chapter 2 A Single Heatmap | ComplexHeatmap Complete Reference.
I am currently trying to find a solution to a transportation problem. I have a table with the travel times from 30 customers to each other. The goal is to use dynamic program to go from this table with direct durations to a table with shortest duration possible (via possible subtours between pairs of customers)
I have no clue how to solve this. The question states "Let π·π,π,π be the shortest (in duration) path between customer π and π, using only nodes 0 to π as intermediaries."
Is there someone who can help me with this?
Thank you in advance. :-)
to use only nodes 0 to k as intermediates.
structure(list(ID = 1:30, X1 = c(0L, 98L, 132L, 245L, 17L, 69L,
139L, 112L, 207L, 35L, 249L, 43L, 215L, 62L, 152L, 237L, 59L,
119L, 45L, 59L, 23L, 12L, 16L, 66L, 177L, 31L, 118L, 165L, 117L,
193L), X2 = c(37L, 0L, 74L, 176L, 91L, 111L, 143L, 208L, 202L,
40L, 172L, 101L, 163L, 51L, 220L, 180L, 48L, 98L, 45L, 62L, 91L,
9L, 50L, 145L, 198L, 48L, 3L, 163L, 159L, 176L), X3 = c(118L,
10L, 0L, 138L, 108L, 115L, 221L, 274L, 231L, 89L, 197L, 36L,
175L, 93L, 174L, 184L, 13L, 109L, 109L, 22L, 172L, 91L, 12L,
149L, 140L, 108L, 8L, 133L, 168L, 139L), X4 = c(252L, 137L, 112L,
0L, 248L, 276L, 373L, 350L, 353L, 137L, 31L, 186L, 49L, 170L,
325L, 81L, 117L, 184L, 175L, 185L, 279L, 182L, 120L, 205L, 130L,
132L, 133L, 226L, 158L, 67L), X5 = c(40L, 93L, 118L, 188L, 0L,
38L, 147L, 106L, 208L, 46L, 228L, 26L, 208L, 54L, 163L, 212L,
81L, 49L, 45L, 84L, 12L, 82L, 114L, 81L, 173L, 67L, 52L, 63L,
146L, 156L), X6 = c(54L, 117L, 143L, 296L, 74L, 0L, 78L, 97L,
218L, 52L, 239L, 47L, 267L, 111L, 216L, 269L, 167L, 91L, 105L,
99L, 16L, 117L, 95L, 15L, 264L, 136L, 148L, 100L, 145L, 242L),
X7 = c(143L, 145L, 208L, 302L, 130L, 86L, 0L, 84L, 308L,
151L, 348L, 102L, 305L, 139L, 254L, 272L, 156L, 182L, 87L,
214L, 110L, 82L, 145L, 59L, 283L, 98L, 171L, 192L, 211L,
228L), X8 = c(142L, 195L, 238L, 336L, 161L, 80L, 2L, 0L,
289L, 135L, 342L, 134L, 307L, 169L, 197L, 347L, 261L, 143L,
128L, 243L, 52L, 128L, 169L, 97L, 318L, 214L, 229L, 225L,
287L, 288L), X9 = c(230L, 238L, 217L, 264L, 229L, 154L, 299L,
269L, 0L, 210L, 335L, 204L, 342L, 260L, 25L, 258L, 264L,
76L, 170L, 222L, 126L, 193L, 272L, 203L, 218L, 186L, 214L,
120L, 240L, 207L), X10 = c(2L, 30L, 34L, 186L, 75L, 96L,
161L, 179L, 244L, 0L, 199L, 17L, 181L, 59L, 240L, 178L, 101L,
117L, 1L, 48L, 79L, 72L, 24L, 60L, 236L, 5L, 32L, 151L, 203L,
133L), X11 = c(243L, 191L, 114L, 38L, 164L, 211L, 295L, 370L,
350L, 211L, 0L, 174L, 14L, 166L, 278L, 164L, 165L, 223L,
252L, 129L, 201L, 196L, 201L, 271L, 98L, 199L, 209L, 219L,
168L, 62L), X12 = c(22L, 14L, 64L, 164L, 68L, 113L, 117L,
115L, 208L, 8L, 239L, 0L, 204L, 36L, 230L, 217L, 37L, 62L,
41L, 30L, 64L, 25L, 22L, 60L, 150L, 30L, 90L, 109L, 92L,
178L), X13 = c(224L, 168L, 120L, 23L, 213L, 310L, 324L, 377L,
366L, 212L, 54L, 178L, 0L, 207L, 316L, 105L, 117L, 266L,
235L, 106L, 231L, 186L, 147L, 223L, 109L, 182L, 211L, 183L,
130L, 132L), X14 = c(66L, 22L, 77L, 204L, 23L, 143L, 93L,
171L, 259L, 37L, 182L, 68L, 218L, 0L, 216L, 186L, 56L, 139L,
65L, 44L, 118L, 64L, 19L, 112L, 183L, 14L, 40L, 142L, 96L,
131L), X15 = c(167L, 236L, 263L, 275L, 187L, 189L, 212L,
282L, 9L, 181L, 309L, 231L, 340L, 238L, 0L, 207L, 216L, 97L,
204L, 237L, 120L, 160L, 217L, 188L, 258L, 203L, 183L, 106L,
174L, 267L), X16 = c(173L, 196L, 161L, 152L, 168L, 268L,
322L, 280L, 265L, 230L, 133L, 160L, 102L, 209L, 193L, 0L,
162L, 168L, 228L, 208L, 283L, 159L, 195L, 270L, 14L, 233L,
176L, 172L, 48L, 38L), X17 = c(70L, 44L, 13L, 184L, 90L,
186L, 194L, 267L, 257L, 72L, 179L, 38L, 107L, 88L, 177L,
172L, 0L, 93L, 71L, 14L, 167L, 117L, 37L, 146L, 116L, 35L,
62L, 83L, 93L, 129L), X18 = c(115L, 128L, 153L, 196L, 78L,
109L, 147L, 185L, 103L, 138L, 218L, 123L, 200L, 85L, 91L,
178L, 86L, 0L, 35L, 125L, 67L, 68L, 142L, 42L, 202L, 84L,
81L, 91L, 87L, 210L), X19 = c(36L, 104L, 71L, 166L, 16L,
99L, 88L, 133L, 200L, 35L, 246L, 2L, 263L, 89L, 144L, 229L,
47L, 103L, 0L, 31L, 114L, 32L, 44L, 106L, 219L, 43L, 92L,
119L, 150L, 103L), X20 = c(74L, 66L, 22L, 101L, 76L, 101L,
194L, 211L, 170L, 21L, 179L, 105L, 197L, 36L, 180L, 204L,
48L, 71L, 59L, 0L, 178L, 32L, 58L, 125L, 180L, 46L, 16L,
77L, 130L, 75L), X21 = c(85L, 158L, 144L, 210L, 29L, 16L,
44L, 65L, 141L, 88L, 258L, 70L, 279L, 124L, 168L, 190L, 145L,
45L, 40L, 110L, 0L, 129L, 157L, 52L, 177L, 117L, 175L, 153L,
133L, 190L), X22 = c(25L, 44L, 124L, 236L, 62L, 39L, 108L,
149L, 175L, 18L, 177L, 16L, 259L, 44L, 163L, 179L, 74L, 110L,
28L, 104L, 110L, 0L, 97L, 123L, 216L, 5L, 112L, 170L, 153L,
196L), X23 = c(26L, 2L, 39L, 205L, 102L, 74L, 205L, 203L,
257L, 49L, 194L, 96L, 207L, 5L, 174L, 160L, 37L, 159L, 55L,
55L, 91L, 1L, 0L, 153L, 216L, 52L, 11L, 192L, 116L, 149L),
X24 = c(12L, 127L, 115L, 288L, 90L, 60L, 73L, 79L, 194L,
87L, 203L, 81L, 257L, 108L, 188L, 263L, 185L, 90L, 25L, 177L,
51L, 85L, 93L, 0L, 234L, 114L, 111L, 72L, 131L, 153L), X25 = c(194L,
120L, 191L, 143L, 212L, 253L, 281L, 318L, 291L, 160L, 108L,
174L, 94L, 188L, 203L, 43L, 127L, 153L, 204L, 162L, 170L,
237L, 194L, 251L, 0L, 237L, 122L, 149L, 75L, 104L), X26 = c(10L,
58L, 22L, 171L, 101L, 131L, 144L, 154L, 177L, 5L, 222L, 48L,
220L, 59L, 192L, 193L, 9L, 134L, 23L, 80L, 75L, 19L, 19L,
132L, 197L, 0L, 57L, 146L, 163L, 154L), X27 = c(104L, 58L,
15L, 175L, 46L, 178L, 206L, 185L, 199L, 44L, 191L, 115L,
211L, 33L, 200L, 148L, 25L, 104L, 47L, 8L, 154L, 35L, 41L,
106L, 159L, 14L, 0L, 171L, 88L, 87L), X28 = c(80L, 137L,
93L, 225L, 76L, 138L, 245L, 195L, 102L, 130L, 197L, 112L,
169L, 163L, 68L, 83L, 108L, 50L, 125L, 108L, 139L, 106L,
131L, 111L, 136L, 179L, 150L, 0L, 103L, 151L), X29 = c(170L,
113L, 89L, 120L, 138L, 172L, 224L, 263L, 233L, 155L, 170L,
132L, 194L, 133L, 160L, 99L, 106L, 86L, 154L, 90L, 132L,
158L, 142L, 209L, 55L, 127L, 118L, 93L, 0L, 67L), X30 = c(197L,
170L, 155L, 66L, 178L, 193L, 226L, 303L, 213L, 161L, 104L,
94L, 140L, 138L, 241L, 29L, 102L, 131L, 108L, 129L, 182L,
167L, 167L, 198L, 83L, 154L, 89L, 106L, 87L, 0L)), class = "data.frame", row.names = c(NA,
-30L))
Following up on my comment to use the igraph package, below is a way to accomplish what is described.
library(igraph)
m <- data.frame(X1 = c(0L, 98L, 132L, 245L, 17L, 69L, 139L, 112L, 207L, 35L, 249L, 43L, 215L, 62L, 152L, 237L, 59L, 119L, 45L, 59L, 23L, 12L, 16L, 66L, 177L, 31L, 118L, 165L, 117L, 193L),
X2 = c(37L, 0L, 74L, 176L, 91L, 111L, 143L, 208L, 202L, 40L, 172L, 101L, 163L, 51L, 220L, 180L, 48L, 98L, 45L, 62L, 91L, 9L, 50L, 145L, 198L, 48L, 3L, 163L, 159L, 176L),
X3 = c(118L, 10L, 0L, 138L, 108L, 115L, 221L, 274L, 231L, 89L, 197L, 36L, 175L, 93L, 174L, 184L, 13L, 109L, 109L, 22L, 172L, 91L, 12L, 149L, 140L, 108L, 8L, 133L, 168L, 139L),
X4 = c(252L, 137L, 112L, 0L, 248L, 276L, 373L, 350L, 353L, 137L, 31L, 186L, 49L, 170L, 325L, 81L, 117L, 184L, 175L, 185L, 279L, 182L, 120L, 205L, 130L, 132L, 133L, 226L, 158L, 67L),
X5 = c(40L, 93L, 118L, 188L, 0L, 38L, 147L, 106L, 208L, 46L, 228L, 26L, 208L, 54L, 163L, 212L, 81L, 49L, 45L, 84L, 12L, 82L, 114L, 81L, 173L, 67L, 52L, 63L, 146L, 156L),
X6 = c(54L, 117L, 143L, 296L, 74L, 0L, 78L, 97L, 218L, 52L, 239L, 47L, 267L, 111L, 216L, 269L, 167L, 91L, 105L, 99L, 16L, 117L, 95L, 15L, 264L, 136L, 148L, 100L, 145L, 242L),
X7 = c(143L, 145L, 208L, 302L, 130L, 86L, 0L, 84L, 308L, 151L, 348L, 102L, 305L, 139L, 254L, 272L, 156L, 182L, 87L, 214L, 110L, 82L, 145L, 59L, 283L, 98L, 171L, 192L, 211L, 228L),
X8 = c(142L, 195L, 238L, 336L, 161L, 80L, 2L, 0L, 289L, 135L, 342L, 134L, 307L, 169L, 197L, 347L, 261L, 143L, 128L, 243L, 52L, 128L, 169L, 97L, 318L, 214L, 229L, 225L, 287L, 288L),
X9 = c(230L, 238L, 217L, 264L, 229L, 154L, 299L, 269L, 0L, 210L, 335L, 204L, 342L, 260L, 25L, 258L, 264L, 76L, 170L, 222L, 126L, 193L, 272L, 203L, 218L, 186L, 214L, 120L, 240L, 207L),
X10 = c(2L, 30L, 34L, 186L, 75L, 96L, 161L, 179L, 244L, 0L, 199L, 17L, 181L, 59L, 240L, 178L, 101L, 117L, 1L, 48L, 79L, 72L, 24L, 60L, 236L, 5L, 32L, 151L, 203L, 133L),
X11 = c(243L, 191L, 114L, 38L, 164L, 211L, 295L, 370L, 350L, 211L, 0L, 174L, 14L, 166L, 278L, 164L, 165L, 223L, 252L, 129L, 201L, 196L, 201L, 271L, 98L, 199L, 209L, 219L, 168L, 62L),
X12 = c(22L, 14L, 64L, 164L, 68L, 113L, 117L, 115L, 208L, 8L, 239L, 0L, 204L, 36L, 230L, 217L, 37L, 62L, 41L, 30L, 64L, 25L, 22L, 60L, 150L, 30L, 90L, 109L, 92L, 178L),
X13 = c(224L, 168L, 120L, 23L, 213L, 310L, 324L, 377L, 366L, 212L, 54L, 178L, 0L, 207L, 316L, 105L, 117L, 266L, 235L, 106L, 231L, 186L, 147L, 223L, 109L, 182L, 211L, 183L, 130L, 132L),
X14 = c(66L, 22L, 77L, 204L, 23L, 143L, 93L, 171L, 259L, 37L, 182L, 68L, 218L, 0L, 216L, 186L, 56L, 139L, 65L, 44L, 118L, 64L, 19L, 112L, 183L, 14L, 40L, 142L, 96L, 131L),
X15 = c(167L, 236L, 263L, 275L, 187L, 189L, 212L, 282L, 9L, 181L, 309L, 231L, 340L, 238L, 0L, 207L, 216L, 97L, 204L, 237L, 120L, 160L, 217L, 188L, 258L, 203L, 183L, 106L, 174L, 267L),
X16 = c(173L, 196L, 161L, 152L, 168L, 268L, 322L, 280L, 265L, 230L, 133L, 160L, 102L, 209L, 193L, 0L, 162L, 168L, 228L, 208L, 283L, 159L, 195L, 270L, 14L, 233L, 176L, 172L, 48L, 38L),
X17 = c(70L, 44L, 13L, 184L, 90L, 186L, 194L, 267L, 257L, 72L, 179L, 38L, 107L, 88L, 177L, 172L, 0L, 93L, 71L, 14L, 167L, 117L, 37L, 146L, 116L, 35L, 62L, 83L, 93L, 129L),
X18 = c(115L, 128L, 153L, 196L, 78L, 109L, 147L, 185L, 103L, 138L, 218L, 123L, 200L, 85L, 91L, 178L, 86L, 0L, 35L, 125L, 67L, 68L, 142L, 42L, 202L, 84L, 81L, 91L, 87L, 210L),
X19 = c(36L, 104L, 71L, 166L, 16L, 99L, 88L, 133L, 200L, 35L, 246L, 2L, 263L, 89L, 144L, 229L, 47L, 103L, 0L, 31L, 114L, 32L, 44L, 106L, 219L, 43L, 92L, 119L, 150L, 103L),
X20 = c(74L, 66L, 22L, 101L, 76L, 101L, 194L, 211L, 170L, 21L, 179L, 105L, 197L, 36L, 180L, 204L, 48L, 71L, 59L, 0L, 178L, 32L, 58L, 125L, 180L, 46L, 16L, 77L, 130L, 75L),
X21 = c(85L, 158L, 144L, 210L, 29L, 16L, 44L, 65L, 141L, 88L, 258L, 70L, 279L, 124L, 168L, 190L, 145L, 45L, 40L, 110L, 0L, 129L, 157L, 52L, 177L, 117L, 175L, 153L, 133L, 190L),
X22 = c(25L, 44L, 124L, 236L, 62L, 39L, 108L, 149L, 175L, 18L, 177L, 16L, 259L, 44L, 163L, 179L, 74L, 110L, 28L, 104L, 110L, 0L, 97L, 123L, 216L, 5L, 112L, 170L, 153L, 196L),
X23 = c(26L, 2L, 39L, 205L, 102L, 74L, 205L, 203L, 257L, 49L, 194L, 96L, 207L, 5L, 174L, 160L, 37L, 159L, 55L, 55L, 91L, 1L, 0L, 153L, 216L, 52L, 11L, 192L, 116L, 149L),
X24 = c(12L, 127L, 115L, 288L, 90L, 60L, 73L, 79L, 194L, 87L, 203L, 81L, 257L, 108L, 188L, 263L, 185L, 90L, 25L, 177L, 51L, 85L, 93L, 0L, 234L, 114L, 111L, 72L, 131L, 153L),
X25 = c(194L, 120L, 191L, 143L, 212L, 253L, 281L, 318L, 291L, 160L, 108L, 174L, 94L, 188L, 203L, 43L, 127L, 153L, 204L, 162L, 170L, 237L, 194L, 251L, 0L, 237L, 122L, 149L, 75L, 104L),
X26 = c(10L, 58L, 22L, 171L, 101L, 131L, 144L, 154L, 177L, 5L, 222L, 48L, 220L, 59L, 192L, 193L, 9L, 134L, 23L, 80L, 75L, 19L, 19L, 132L, 197L, 0L, 57L, 146L, 163L, 154L),
X27 = c(104L, 58L, 15L, 175L, 46L, 178L, 206L, 185L, 199L, 44L, 191L, 115L, 211L, 33L, 200L, 148L, 25L, 104L, 47L, 8L, 154L, 35L, 41L, 106L, 159L, 14L, 0L, 171L, 88L, 87L),
X28 = c(80L, 137L, 93L, 225L, 76L, 138L, 245L, 195L, 102L, 130L, 197L, 112L, 169L, 163L, 68L, 83L, 108L, 50L, 125L, 108L, 139L, 106L, 131L, 111L, 136L, 179L, 150L, 0L, 103L, 151L),
X29 = c(170L, 113L, 89L, 120L, 138L, 172L, 224L, 263L, 233L, 155L, 170L, 132L, 194L, 133L, 160L, 99L, 106L, 86L, 154L, 90L, 132L, 158L, 142L, 209L, 55L, 127L, 118L, 93L, 0L, 67L),
X30 = c(197L, 170L, 155L, 66L, 178L, 193L, 226L, 303L, 213L, 161L, 104L, 94L, 140L, 138L, 241L, 29L, 102L, 131L, 108L, 129L, 182L, 167L, 167L, 198L, 83L, 154L, 89L, 106L, 87L, 0L))
system.time({
g <- graph_from_adjacency_matrix(as.matrix(m), "directed", TRUE, FALSE)
mOpt <- shortest.paths(g, V(g), V(g), mode = "out")
})
#> user system elapsed
#> 0 0 0
mOpt[1:10, 1:10]
#> X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
#> X1 0 21 25 133 36 27 71 73 123 2
#> X2 18 0 10 122 40 45 89 91 127 17
#> X3 36 18 0 112 58 63 107 109 145 27
#> X4 130 112 117 0 152 157 201 203 239 129
#> X5 17 36 40 148 0 44 88 81 127 17
#> X6 39 48 52 160 28 0 86 68 142 41
#> X7 67 88 92 200 56 60 0 2 170 69
#> X8 88 109 113 221 77 81 84 0 191 90
#> X9 157 165 170 250 140 157 208 193 0 154
#> X10 22 19 23 131 34 49 92 94 121 0
mOptPaths <- lapply(V(g), function(from) all_shortest_paths(g, from = from, mode = "out"))
# optimal path from 1 to 2
(path_1_2 <- as.integer(mOptPaths[[1]]$res[[2]]))
#> [1] 1 10 26 22 2
# distances for path from 1 to 2
m[matrix(c(head(path_1_2, -1), path_1_2[-1]), ncol = 2)]
#> [1] 2 5 5 9
I try do define the model for my test and training dataset. But I get the following Error:
Error in eval(predvars, data, env) : object 'avg_rating' not found
But all of my datasets have the "avg_rating"
This is my code
lm_model <- train(avg_rating ~., data = trainingindex,method = "lm",na.action = na.omit, preProcess = c("scale", "center"),trControl = trainControl(method = "none"))
structure(c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 21L, 23L, 24L, 25L, 27L, 28L, 29L, 30L,
31L, 32L, 33L, 35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L,
45L, 46L, 47L, 48L, 49L, 52L, 53L, 55L, 58L, 61L, 62L, 63L, 65L,
66L, 67L, 68L, 69L, 70L, 71L, 74L, 77L, 78L, 80L, 81L, 83L, 84L,
85L, 86L, 87L, 88L, 90L, 91L, 92L, 93L, 94L, 96L, 97L, 99L, 102L,
103L, 104L, 105L, 106L, 107L, 108L, 109L, 110L, 111L, 113L, 115L,
116L, 118L, 119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L,
128L, 129L, 130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L,
139L, 140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 150L,
152L, 154L, 155L, 157L, 158L, 160L, 161L, 162L, 165L, 166L, 167L,
168L, 170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L,
180L, 181L, 182L, 185L, 187L, 188L, 189L, 190L, 191L, 192L, 193L,
194L, 195L, 196L, 197L, 199L, 200L, 201L, 202L, 203L, 204L, 205L,
207L, 208L, 209L, 210L, 213L, 214L, 216L, 217L, 219L, 220L, 221L,
223L, 224L, 225L, 226L, 227L, 228L, 230L, 231L, 232L, 233L, 234L,
235L, 236L, 237L, 238L, 239L, 240L, 242L, 243L, 244L, 245L, 246L,
247L, 248L, 249L, 250L, 251L, 252L, 253L, 254L, 255L, 257L, 259L,
260L, 261L, 262L, 263L, 264L, 266L, 267L, 268L, 271L, 272L, 273L,
274L, 275L, 276L, 277L, 278L, 280L, 281L, 282L, 284L, 285L, 286L,
287L, 288L, 290L, 291L, 294L, 295L, 296L, 297L, 298L, 299L, 300L,
301L, 302L, 303L, 304L, 305L, 308L, 309L, 310L, 311L, 312L, 313L,
314L, 315L, 317L, 318L, 319L, 320L, 321L, 322L, 323L, 324L, 326L,
327L, 329L, 330L, 331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L,
340L, 341L, 343L, 344L, 345L, 346L, 348L, 349L, 350L, 351L, 353L,
354L, 355L, 356L, 357L, 358L, 359L, 360L, 361L, 363L, 364L, 365L,
366L, 367L, 368L, 369L, 370L, 371L, 372L, 373L, 374L, 375L, 376L,
377L, 378L, 379L, 380L, 381L, 382L, 383L, 384L, 385L, 386L, 387L,... 3687L), .Dim = c(2952L, 1
), .Dimnames = list(NULL, "Resample1"))
15L, 16L, 17L, 18L, 19L, 21L, 23L, 24L, 25L, 27L, 28L, 29L, 30L,
31L, 32L, 33L, 35L, 36L), .Dim = c(30L, 1L), .Dimnames = list(
NULL, "Resample1"))
I have this data below. I am having problem partitioning this using caret's createPartition.
gg <- structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L,
5L, 5L, 6L, 6L, 6L, 145L, 145L, 145L, 146L, 146L, 146L, 147L,
147L, 147L, 148L, 148L, 148L, 149L, 149L, 149L, 150L, 150L, 150L,
193L, 193L, 193L, 194L, 194L, 194L, 195L, 195L, 195L, 196L, 196L,
196L, 197L, 197L, 197L, 198L, 198L, 198L, 199L, 199L, 199L, 200L,
200L, 200L, 201L, 201L, 201L, 202L, 202L, 202L, 203L, 203L, 203L,
204L, 204L, 204L, 205L, 205L, 205L, 206L, 206L, 206L, 207L, 207L,
207L, 208L, 208L, 208L, 209L, 209L, 209L, 210L, 210L, 210L, 211L,
211L, 211L, 212L, 212L, 212L, 213L, 213L, 213L, 214L, 214L, 214L,
215L, 215L, 215L, 216L, 216L, 216L, 217L, 217L, 217L, 218L, 218L,
218L, 219L, 219L, 219L, 220L, 220L, 220L, 221L, 221L, 221L, 222L,
222L, 222L, 223L, 223L, 223L, 224L, 224L, 224L, 225L, 225L, 225L,
226L, 226L, 226L, 227L, 227L, 227L, 228L, 228L, 228L, 229L, 229L,
229L, 230L, 230L, 230L, 231L, 231L, 231L, 232L, 232L, 232L, 233L,
233L, 233L, 234L, 234L, 234L, 235L, 235L, 235L, 236L, 236L, 236L,
237L, 237L, 237L, 238L, 238L, 238L, 239L, 239L, 239L, 240L, 240L,
240L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 11L,
11L, 11L, 12L, 12L, 12L, 13L, 13L, 13L, 14L, 14L, 14L, 15L, 15L,
15L, 16L, 16L, 16L, 17L, 17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L,
20L, 20L, 20L, 21L, 21L, 21L, 22L, 22L, 22L, 23L, 23L, 23L, 24L,
24L, 24L, 25L, 25L, 25L, 26L, 26L, 26L, 27L, 27L, 27L, 28L, 28L,
28L, 29L, 29L, 29L, 30L, 30L, 30L, 31L, 31L, 31L, 32L, 32L, 32L,
33L, 33L, 33L, 34L, 34L, 34L, 35L, 35L, 35L, 36L, 36L, 36L, 37L,
37L, 37L, 38L, 38L, 38L, 39L, 39L, 39L, 40L, 40L, 40L, 41L, 41L,
41L, 42L, 42L, 42L, 43L, 43L, 43L, 44L, 44L, 44L, 45L, 45L, 45L,
46L, 46L, 46L, 47L, 47L, 47L, 48L, 48L, 48L, 49L, 49L, 49L, 50L,
50L, 50L, 51L, 51L, 51L, 52L, 52L, 52L, 53L, 53L, 53L, 54L, 54L,
54L, 55L, 55L, 55L, 56L, 56L, 56L, 57L, 57L, 57L, 58L, 58L, 58L,
59L, 59L, 59L, 60L, 60L, 60L, 61L, 61L, 61L, 62L, 62L, 62L, 63L,
63L, 63L, 64L, 64L, 64L, 65L, 65L, 65L, 66L, 66L, 66L, 67L, 67L,
67L, 68L, 68L, 68L, 69L, 69L, 69L, 70L, 70L, 70L, 71L, 71L, 71L,
72L, 72L, 72L, 73L, 73L, 73L, 74L, 74L, 74L, 75L, 75L, 75L, 76L,
76L, 76L, 77L, 77L, 77L, 78L, 78L, 78L, 79L, 79L, 79L, 80L, 80L,
80L, 81L, 81L, 81L, 82L, 82L, 82L, 83L, 83L, 83L, 84L, 84L, 84L,
85L, 85L, 85L, 86L, 86L, 86L, 87L, 87L, 87L, 88L, 88L, 88L, 89L,
89L, 89L, 90L, 90L, 90L, 91L, 91L, 91L, 92L, 92L, 92L, 93L, 93L,
93L, 94L, 94L, 94L, 95L, 95L, 95L, 96L, 96L, 96L, 97L, 97L, 97L,
98L, 98L, 98L, 99L, 99L, 99L, 100L, 100L, 100L, 101L, 101L, 101L,
102L, 102L, 102L, 103L, 103L, 103L, 104L, 104L, 104L, 105L, 105L,
105L, 106L, 106L, 106L, 107L, 107L, 107L, 108L, 108L, 108L, 109L,
109L, 109L, 110L, 110L, 110L, 111L, 111L, 111L, 112L, 112L, 112L,
113L, 113L, 113L, 114L, 114L, 114L, 115L, 115L, 115L, 116L, 116L,
116L, 117L, 117L, 117L, 118L, 118L, 118L, 119L, 119L, 119L, 120L,
120L, 120L, 121L, 121L, 121L, 122L, 122L, 122L, 123L, 123L, 123L,
124L, 124L, 124L, 125L, 125L, 125L, 126L, 126L, 126L, 127L, 127L,
127L, 128L, 128L, 128L, 129L, 129L, 129L, 130L, 130L, 130L, 131L,
131L, 131L, 132L, 132L, 132L, 151L, 151L, 151L, 152L, 152L, 152L,
153L, 153L, 153L, 154L, 154L, 154L, 155L, 155L, 155L, 156L, 156L,
156L, 157L, 157L, 157L, 158L, 158L, 158L, 159L, 159L, 159L, 160L,
160L, 160L, 161L, 161L, 161L, 162L, 162L, 162L, 163L, 163L, 163L,
164L, 164L, 164L, 165L, 165L, 165L, 166L, 166L, 166L, 167L, 167L,
167L, 168L, 168L, 168L, 169L, 169L, 169L, 170L, 170L, 170L, 171L,
171L, 171L, 172L, 172L, 172L, 173L, 173L, 173L, 174L, 174L, 174L,
175L, 175L, 175L, 176L, 176L, 176L, 177L, 177L, 177L, 178L, 178L,
178L, 179L, 179L, 179L, 180L, 180L, 180L, 181L, 181L, 181L, 182L,
182L, 182L, 183L, 183L, 183L, 184L, 184L, 184L, 185L, 185L, 185L,
186L, 186L, 186L, 187L, 187L, 187L, 188L, 188L, 188L, 189L, 189L,
189L, 190L, 190L, 190L, 191L, 191L, 191L, 192L, 192L, 192L, 133L,
133L, 133L, 134L, 134L, 134L, 135L, 135L, 135L, 136L, 136L, 136L,
137L, 137L, 137L, 138L, 138L, 138L, 139L, 139L, 139L, 140L, 140L,
140L, 141L, 141L, 141L, 142L, 142L, 142L, 143L, 143L, 143L, 144L,
144L, 144L, 241L, 241L, 241L, 242L, 242L, 242L, 243L, 243L, 243L,
244L, 244L, 244L, 245L, 245L, 245L, 246L, 246L, 246L, 385L, 385L,
385L, 386L, 386L, 386L, 387L, 387L, 387L, 388L, 388L, 388L, 389L,
389L, 389L, 390L, 390L, 390L, 433L, 433L, 433L, 434L, 434L, 434L,
435L, 435L, 435L, 436L, 436L, 436L, 437L, 437L, 437L, 438L, 438L,
438L, 439L, 439L, 439L, 440L, 440L, 440L, 441L, 441L, 441L, 442L,
442L, 442L, 443L, 443L, 443L, 444L, 444L, 444L, 445L, 445L, 445L,
446L, 446L, 446L, 447L, 447L, 447L, 448L, 448L, 448L, 449L, 449L,
449L, 450L, 450L, 450L, 451L, 451L, 451L, 452L, 452L, 452L, 453L,
453L, 453L, 454L, 454L, 454L, 455L, 455L, 455L, 456L, 456L, 456L,
457L, 457L, 457L, 458L, 458L, 458L, 459L, 459L, 459L, 460L, 460L,
460L, 461L, 461L, 461L, 462L, 462L, 462L, 463L, 463L, 463L, 464L,
464L, 464L, 465L, 465L, 465L, 466L, 466L, 466L, 467L, 467L, 467L,
468L, 468L, 468L, 469L, 469L, 469L, 470L, 470L, 470L, 471L, 471L,
471L, 472L, 472L, 472L, 473L, 473L, 473L, 474L, 474L, 474L, 475L,
475L, 475L, 476L, 476L, 476L, 477L, 477L, 477L, 478L, 478L, 478L,
479L, 479L, 479L, 480L, 480L, 480L, 247L, 247L, 247L, 248L, 248L,
248L, 249L, 249L, 249L, 250L, 250L, 250L, 251L, 251L, 251L, 252L,
252L, 252L, 253L, 253L, 253L, 254L, 254L, 254L, 255L, 255L, 255L,
256L, 256L, 256L, 257L, 257L, 257L, 258L, 258L, 258L, 259L, 259L,
259L, 260L, 260L, 260L, 261L, 261L, 261L, 262L, 262L, 262L, 263L,
263L, 263L, 264L, 264L, 264L, 265L, 265L, 265L, 266L, 266L, 266L,
267L, 267L, 267L, 268L, 268L, 268L, 269L, 269L, 269L, 270L, 270L,
270L, 271L, 271L, 271L, 272L, 272L, 272L, 273L, 273L, 273L, 274L,
274L, 274L, 275L, 275L, 275L, 276L, 276L, 276L, 277L, 277L, 277L,
278L, 278L, 278L, 279L, 279L, 279L, 280L, 280L, 280L, 281L, 281L,
281L, 282L, 282L, 282L, 283L, 283L, 283L, 284L, 284L, 284L, 285L,
285L, 285L, 286L, 286L, 286L, 287L, 287L, 287L, 288L, 288L, 288L,
289L, 289L, 289L, 290L, 290L, 290L, 291L, 291L, 291L, 292L, 292L,
292L, 293L, 293L, 293L, 294L, 294L, 294L, 295L, 295L, 295L, 296L,
296L, 296L, 297L, 297L, 297L, 298L, 298L, 298L, 299L, 299L, 299L,
300L, 300L, 300L, 301L, 301L, 301L, 302L, 302L, 302L, 303L, 303L,
303L, 304L, 304L, 304L, 305L, 305L, 305L, 306L, 306L, 306L, 307L,
307L, 307L, 308L, 308L, 308L, 309L, 309L, 309L, 310L, 310L, 310L,
311L, 311L, 311L, 312L, 312L, 312L, 319L, 319L, 319L, 320L, 320L,
320L, 321L, 321L, 321L, 322L, 322L, 322L, 323L, 323L, 323L, 324L,
324L, 324L, 325L, 325L, 325L, 326L, 326L, 326L, 327L, 327L, 327L,
328L, 328L, 328L, 329L, 329L, 329L, 330L, 330L, 330L, 331L, 331L,
331L, 332L, 332L, 332L, 333L, 333L, 333L, 334L, 334L, 334L, 335L,
335L, 335L, 336L, 336L, 336L, 337L, 337L, 337L, 338L, 338L, 338L,
339L, 339L, 339L, 340L, 340L, 340L, 341L, 341L, 341L, 342L, 342L,
342L, 343L, 343L, 343L, 344L, 344L, 344L, 345L, 345L, 345L, 346L,
346L, 346L, 347L, 347L, 347L, 348L, 348L, 348L, 349L, 349L, 349L,
350L, 350L, 350L, 351L, 351L, 351L, 352L, 352L, 352L, 353L, 353L,
353L, 354L, 354L, 354L, 355L, 355L, 355L, 356L, 356L, 356L, 357L,
357L, 357L, 358L, 358L, 358L, 359L, 359L, 359L, 360L, 360L, 360L,
361L, 361L, 361L, 362L, 362L, 362L, 363L, 363L, 363L, 364L, 364L,
364L, 365L, 365L, 365L, 366L, 366L, 366L, 367L, 367L, 367L, 368L,
368L, 368L, 369L, 369L, 369L, 370L, 370L, 370L, 371L, 371L, 371L,
372L, 372L, 372L, 391L, 391L, 391L, 392L, 392L, 392L, 393L, 393L,
393L, 394L, 394L, 394L, 395L, 395L, 395L, 396L, 396L, 396L, 397L,
397L, 397L, 398L, 398L, 398L, 399L, 399L, 399L, 400L, 400L, 400L,
401L, 401L, 401L, 402L, 402L, 402L, 403L, 403L, 403L, 404L, 404L,
404L, 405L, 405L, 405L, 406L, 406L, 406L, 407L, 407L, 407L, 408L,
408L, 408L, 409L, 409L, 409L, 410L, 410L, 410L, 411L, 411L, 411L,
412L, 412L, 412L, 413L, 413L, 413L, 414L, 414L, 414L, 415L, 415L,
415L, 416L, 416L, 416L, 417L, 417L, 417L, 418L, 418L, 418L, 419L,
419L, 419L, 420L, 420L, 420L, 421L, 421L, 421L, 422L, 422L, 422L,
423L, 423L, 423L, 424L, 424L, 424L, 425L, 425L, 425L, 426L, 426L,
426L, 427L, 427L, 427L, 428L, 428L, 428L, 429L, 429L, 429L, 430L,
430L, 430L, 431L, 431L, 431L, 432L, 432L, 432L, 373L, 373L, 373L,
374L, 374L, 374L, 375L, 375L, 375L, 376L, 376L, 376L, 377L, 377L,
377L, 378L, 378L, 378L, 379L, 379L, 379L, 380L, 380L, 380L, 381L,
381L, 381L, 382L, 382L, 382L, 383L, 383L, 383L, 384L, 384L, 384L,
313L, 313L, 313L, 314L, 314L, 314L, 315L, 315L, 315L, 316L, 316L,
316L, 317L, 317L, 317L, 318L, 318L, 318L), .Label = c("CUR:0:L1",
"CUR:0:L2", "CUR:0:L3", "CUR:0:L4", "CUR:0:L5", "CUR:0:L6", "CUR:00A:L1",
"CUR:00A:L2", "CUR:00A:L3", "CUR:00A:L4", "CUR:00A:L5", "CUR:00A:L6",
"CUR:00B:L1", "CUR:00B:L2", "CUR:00B:L3", "CUR:00B:L4", "CUR:00B:L5",
"CUR:00B:L6", "CUR:00C:L1", "CUR:00C:L2", "CUR:00C:L3", "CUR:00C:L4",
"CUR:00C:L5", "CUR:00C:L6", "CUR:00D:L1", "CUR:00D:L2", "CUR:00D:L3",
"CUR:00D:L4", "CUR:00D:L5", "CUR:00D:L6", "CUR:00F:L1", "CUR:00F:L2",
"CUR:00F:L3", "CUR:00F:L4", "CUR:00F:L5", "CUR:00F:L6", "CUR:00H:L1",
"CUR:00H:L2", "CUR:00H:L3", "CUR:00H:L4", "CUR:00H:L5", "CUR:00H:L6",
"CUR:00I:L1", "CUR:00I:L2", "CUR:00I:L3", "CUR:00I:L4", "CUR:00I:L5",
"CUR:00I:L6", "CUR:00J:L1", "CUR:00J:L2", "CUR:00J:L3", "CUR:00J:L4",
"CUR:00J:L5", "CUR:00J:L6", "CUR:00K:L1", "CUR:00K:L2", "CUR:00K:L3",
"CUR:00K:L4", "CUR:00K:L5", "CUR:00K:L6", "CUR:00L:L1", "CUR:00L:L2",
"CUR:00L:L3", "CUR:00L:L4", "CUR:00L:L5", "CUR:00L:L6", "CUR:00N:L1",
"CUR:00N:L2", "CUR:00N:L3", "CUR:00N:L4", "CUR:00N:L5", "CUR:00N:L6",
"CUR:00O:L1", "CUR:00O:L2", "CUR:00O:L3", "CUR:00O:L4", "CUR:00O:L5",
"CUR:00O:L6", "CUR:00P:L1", "CUR:00P:L2", "CUR:00P:L3", "CUR:00P:L4",
"CUR:00P:L5", "CUR:00P:L6", "CUR:00Q:L1", "CUR:00Q:L2", "CUR:00Q:L3",
"CUR:00Q:L4", "CUR:00Q:L5", "CUR:00Q:L6", "CUR:00R:L1", "CUR:00R:L2",
"CUR:00R:L3", "CUR:00R:L4", "CUR:00R:L5", "CUR:00R:L6", "CUR:00T:L1",
"CUR:00T:L2", "CUR:00T:L3", "CUR:00T:L4", "CUR:00T:L5", "CUR:00T:L6",
"CUR:00U:L1", "CUR:00U:L2", "CUR:00U:L3", "CUR:00U:L4", "CUR:00U:L5",
"CUR:00U:L6", "CUR:00V:L1", "CUR:00V:L2", "CUR:00V:L3", "CUR:00V:L4",
"CUR:00V:L5", "CUR:00V:L6", "CUR:00W:L1", "CUR:00W:L2", "CUR:00W:L3",
"CUR:00W:L4", "CUR:00W:L5", "CUR:00W:L6", "CUR:00X:L1", "CUR:00X:L2",
"CUR:00X:L3", "CUR:00X:L4", "CUR:00X:L5", "CUR:00X:L6", "CUR:00Z:L1",
"CUR:00Z:L2", "CUR:00Z:L3", "CUR:00Z:L4", "CUR:00Z:L5", "CUR:00Z:L6",
"CUR:01A:L1", "CUR:01A:L2", "CUR:01A:L3", "CUR:01A:L4", "CUR:01A:L5",
"CUR:01A:L6", "CUR:01B:L1", "CUR:01B:L2", "CUR:01B:L3", "CUR:01B:L4",
"CUR:01B:L5", "CUR:01B:L6", "CUR:1:L1", "CUR:1:L2", "CUR:1:L3",
"CUR:1:L4", "CUR:1:L5", "CUR:1:L6", "CUR:10:L1", "CUR:10:L2",
"CUR:10:L3", "CUR:10:L4", "CUR:10:L5", "CUR:10:L6", "CUR:11:L1",
"CUR:11:L2", "CUR:11:L3", "CUR:11:L4", "CUR:11:L5", "CUR:11:L6",
"CUR:12:L1", "CUR:12:L2", "CUR:12:L3", "CUR:12:L4", "CUR:12:L5",
"CUR:12:L6", "CUR:13:L1", "CUR:13:L2", "CUR:13:L3", "CUR:13:L4",
"CUR:13:L5", "CUR:13:L6", "CUR:16:L1", "CUR:16:L2", "CUR:16:L3",
"CUR:16:L4", "CUR:16:L5", "CUR:16:L6", "CUR:18:L1", "CUR:18:L2",
"CUR:18:L3", "CUR:18:L4", "CUR:18:L5", "CUR:18:L6", "CUR:19:L1",
"CUR:19:L2", "CUR:19:L3", "CUR:19:L4", "CUR:19:L5", "CUR:19:L6",
"CUR:2:L1", "CUR:2:L2", "CUR:2:L3", "CUR:2:L4", "CUR:2:L5", "CUR:2:L6",
"CUR:3:L1", "CUR:3:L2", "CUR:3:L3", "CUR:3:L4", "CUR:3:L5", "CUR:3:L6",
"CUR:4:L1", "CUR:4:L2", "CUR:4:L3", "CUR:4:L4", "CUR:4:L5", "CUR:4:L6",
"CUR:5:L1", "CUR:5:L2", "CUR:5:L3", "CUR:5:L4", "CUR:5:L5", "CUR:5:L6",
"CUR:6:L1", "CUR:6:L2", "CUR:6:L3", "CUR:6:L4", "CUR:6:L5", "CUR:6:L6",
"CUR:7:L1", "CUR:7:L2", "CUR:7:L3", "CUR:7:L4", "CUR:7:L5", "CUR:7:L6",
"CUR:8:L1", "CUR:8:L2", "CUR:8:L3", "CUR:8:L4", "CUR:8:L5", "CUR:8:L6",
"CUR:9:L1", "CUR:9:L2", "CUR:9:L3", "CUR:9:L4", "CUR:9:L5", "CUR:9:L6",
"PRI:0:L1", "PRI:0:L2", "PRI:0:L3", "PRI:0:L4", "PRI:0:L5", "PRI:0:L6",
"PRI:00A:L1", "PRI:00A:L2", "PRI:00A:L3", "PRI:00A:L4", "PRI:00A:L5",
"PRI:00A:L6", "PRI:00B:L1", "PRI:00B:L2", "PRI:00B:L3", "PRI:00B:L4",
"PRI:00B:L5", "PRI:00B:L6", "PRI:00C:L1", "PRI:00C:L2", "PRI:00C:L3",
"PRI:00C:L4", "PRI:00C:L5", "PRI:00C:L6", "PRI:00D:L1", "PRI:00D:L2",
"PRI:00D:L3", "PRI:00D:L4", "PRI:00D:L5", "PRI:00D:L6", "PRI:00F:L1",
"PRI:00F:L2", "PRI:00F:L3", "PRI:00F:L4", "PRI:00F:L5", "PRI:00F:L6",
"PRI:00H:L1", "PRI:00H:L2", "PRI:00H:L3", "PRI:00H:L4", "PRI:00H:L5",
"PRI:00H:L6", "PRI:00I:L1", "PRI:00I:L2", "PRI:00I:L3", "PRI:00I:L4",
"PRI:00I:L5", "PRI:00I:L6", "PRI:00J:L1", "PRI:00J:L2", "PRI:00J:L3",
"PRI:00J:L4", "PRI:00J:L5", "PRI:00J:L6", "PRI:00K:L1", "PRI:00K:L2",
"PRI:00K:L3", "PRI:00K:L4", "PRI:00K:L5", "PRI:00K:L6", "PRI:00L:L1",
"PRI:00L:L2", "PRI:00L:L3", "PRI:00L:L4", "PRI:00L:L5", "PRI:00L:L6",
"PRI:00N:L1", "PRI:00N:L2", "PRI:00N:L3", "PRI:00N:L4", "PRI:00N:L5",
"PRI:00N:L6", "PRI:00O:L1", "PRI:00O:L2", "PRI:00O:L3", "PRI:00O:L4",
"PRI:00O:L5", "PRI:00O:L6", "PRI:00P:L1", "PRI:00P:L2", "PRI:00P:L3",
"PRI:00P:L4", "PRI:00P:L5", "PRI:00P:L6", "PRI:00Q:L1", "PRI:00Q:L2",
"PRI:00Q:L3", "PRI:00Q:L4", "PRI:00Q:L5", "PRI:00Q:L6", "PRI:00R:L1",
"PRI:00R:L2", "PRI:00R:L3", "PRI:00R:L4", "PRI:00R:L5", "PRI:00R:L6",
"PRI:00T:L1", "PRI:00T:L2", "PRI:00T:L3", "PRI:00T:L4", "PRI:00T:L5",
"PRI:00T:L6", "PRI:00U:L1", "PRI:00U:L2", "PRI:00U:L3", "PRI:00U:L4",
"PRI:00U:L5", "PRI:00U:L6", "PRI:00V:L1", "PRI:00V:L2", "PRI:00V:L3",
"PRI:00V:L4", "PRI:00V:L5", "PRI:00V:L6", "PRI:00W:L1", "PRI:00W:L2",
"PRI:00W:L3", "PRI:00W:L4", "PRI:00W:L5", "PRI:00W:L6", "PRI:00X:L1",
"PRI:00X:L2", "PRI:00X:L3", "PRI:00X:L4", "PRI:00X:L5", "PRI:00X:L6",
"PRI:00Z:L1", "PRI:00Z:L2", "PRI:00Z:L3", "PRI:00Z:L4", "PRI:00Z:L5",
"PRI:00Z:L6", "PRI:01A:L1", "PRI:01A:L2", "PRI:01A:L3", "PRI:01A:L4",
"PRI:01A:L5", "PRI:01A:L6", "PRI:01B:L1", "PRI:01B:L2", "PRI:01B:L3",
"PRI:01B:L4", "PRI:01B:L5", "PRI:01B:L6", "PRI:1:L1", "PRI:1:L2",
"PRI:1:L3", "PRI:1:L4", "PRI:1:L5", "PRI:1:L6", "PRI:10:L1",
"PRI:10:L2", "PRI:10:L3", "PRI:10:L4", "PRI:10:L5", "PRI:10:L6",
"PRI:11:L1", "PRI:11:L2", "PRI:11:L3", "PRI:11:L4", "PRI:11:L5",
"PRI:11:L6", "PRI:12:L1", "PRI:12:L2", "PRI:12:L3", "PRI:12:L4",
"PRI:12:L5", "PRI:12:L6", "PRI:13:L1", "PRI:13:L2", "PRI:13:L3",
"PRI:13:L4", "PRI:13:L5", "PRI:13:L6", "PRI:16:L1", "PRI:16:L2",
"PRI:16:L3", "PRI:16:L4", "PRI:16:L5", "PRI:16:L6", "PRI:18:L1",
"PRI:18:L2", "PRI:18:L3", "PRI:18:L4", "PRI:18:L5", "PRI:18:L6",
"PRI:19:L1", "PRI:19:L2", "PRI:19:L3", "PRI:19:L4", "PRI:19:L5",
"PRI:19:L6", "PRI:2:L1", "PRI:2:L2", "PRI:2:L3", "PRI:2:L4",
"PRI:2:L5", "PRI:2:L6", "PRI:3:L1", "PRI:3:L2", "PRI:3:L3", "PRI:3:L4",
"PRI:3:L5", "PRI:3:L6", "PRI:4:L1", "PRI:4:L2", "PRI:4:L3", "PRI:4:L4",
"PRI:4:L5", "PRI:4:L6", "PRI:5:L1", "PRI:5:L2", "PRI:5:L3", "PRI:5:L4",
"PRI:5:L5", "PRI:5:L6", "PRI:6:L1", "PRI:6:L2", "PRI:6:L3", "PRI:6:L4",
"PRI:6:L5", "PRI:6:L6", "PRI:7:L1", "PRI:7:L2", "PRI:7:L3", "PRI:7:L4",
"PRI:7:L5", "PRI:7:L6", "PRI:8:L1", "PRI:8:L2", "PRI:8:L3", "PRI:8:L4",
"PRI:8:L5", "PRI:8:L6", "PRI:9:L1", "PRI:9:L2", "PRI:9:L3", "PRI:9:L4",
"PRI:9:L5", "PRI:9:L6"), class = "factor")
I wanted to use caret to partition my data, so this is what I did:
library(caret)
train.rows<- createDataPartition(gg, p=0.7,list = FALSE)
> length(train.rows)
[1] 1440
However, I am getting everything in gg in my train.rows even after 0.7 partitioning. What am I missing here?
Try it without class = factor
Then your partitioned vector will be:
indexes <- caret::createDataPartition(gg, times = 1, p = 0.7, list=FALSE)
train <- gg[indexes]
test <- gg[-indexes]
Is there a way to show the numbers that correspond to a point on a circle? I read up on the text(xy) function but it is for scatter plots which this is not. The scripts is as follows and the image attached shows what the result is. I would like to identify the point in the plots. Any help rendered is appreciated! Thanks.
library (circular)
df<- read.csv("Direction.csv", header = TRUE)
df1 <- df [ which(df$Month==1 & df$Day>0 & df$Day <32) ,]
df2 <- df1[c(-1,-2,-3)]
df3<- lapply(df2, function(df2) circular(df2, units='degrees', template='geographics'))
dens<- lapply(df3, density.circular, bw =5)
par(mfrow=c(5,4), oma=c(2,1.3,2,2), mar=c(1.5,2,2,1), tcl=-0.2, mgp=c(0,1,0))
titles <- c("1000mb", "925mb", "850mb", "700mb", "600mb", "500mb", "400mb", "300mb",
"250mb", "200mb", "150mb", "100mb","70mb", "50mb", "30mb", "20mb", "10mb")
for(i in 1:17){
plot(mean(df3[[1]]), main = titles[1],)
print(mean(df3[[1]]))
print(var(df3[[1]]))
print(summary(df3[[1]]))
}
dput(df3[1])
structure(list(X1000mb = structure(c(86L, 130L, 75L, 59L, 56L,
69L, 139L, 358L, 98L, 175L, 322L, 17L, 336L, 46L, 137L, 1L, 2L,
102L, 225L, 121L, 179L, 291L, 325L, 317L, 321L, 349L, 28L, 38L,
36L, 117L, 144L, 73L, 121L, 135L, 131L, 127L, 139L, 167L, 298L,
213L, 37L, 33L, 71L, 120L, 156L, 14L, 51L, 92L, 168L, 332L, 24L,
71L, 128L, 98L, 104L, 86L, 155L, 5L, 281L, 342L, 356L, 346L,
210L, 186L, 199L, 133L, 191L, 282L, 139L, 168L, 158L, 154L, 117L,
149L, 162L, 157L, 192L, 175L, 197L, 171L, 184L, 305L, 70L, 169L,
207L, 8L, 72L, 134L, 160L, 135L, 154L, 149L, 161L, 182L, 259L,
173L, 205L, 331L, 112L, 26L, 129L, 137L, 120L, 136L, 156L, 327L,
332L, 349L, 16L, 28L, 42L, 352L, 94L, 149L, 153L, 183L, 183L,
196L, 170L, 164L, 212L, 169L, 180L, 206L, 81L, 135L, 145L, 148L,
172L, 174L, 160L, 188L, 193L, 197L, 247L, 68L, 181L, 177L, 219L,
204L, 86L, 333L, 354L, 132L, 0L, 35L, 27L, 38L, 77L, 123L, 174L,
172L, 191L, 312L, 307L, 29L, 161L, 62L, 104L, 240L, 300L, 292L,
194L, 202L, 274L, 349L, 26L, 198L, 294L, 185L, 178L, 324L, 28L,
36L, 93L, 115L, 280L, 24L, 353L, 348L, 68L, 24L, 357L, 17L, 47L,
45L, 238L, 333L, 342L, 111L, 233L, 183L, 193L, 212L, 188L, 164L,
142L, 158L, 179L, 300L, 336L, 297L, 346L, 17L, 149L, 115L, 8L,
358L, 341L, 22L, 142L, 283L, 349L, 273L, 271L, 224L, 313L, 62L,
100L, 137L, 158L, 235L, 155L, 184L, 132L, 153L, 206L, 182L, 187L,
238L, 275L, 292L, 1L, 36L, 148L, 334L, 30L, 58L, 356L, 6L, 345L,
91L, 157L, 332L, 327L, 11L, 170L, 169L, 120L, 158L, 160L, 177L,
168L, 300L, 295L, 7L, 75L, 172L, 328L, 3L, 63L, 348L, 34L, 185L,
347L, 66L, 105L, 130L, 151L, 83L, 120L, 154L, 172L, 152L, 174L,
174L, 159L, 147L, 173L, 212L, 327L, 55L, 203L, 192L, 95L, 139L,
200L, 227L, 209L, 262L, 129L, 151L, 200L, 133L, 190L, 112L, 85L,
184L, 185L, 186L, 256L, 28L, 157L, 54L, 55L, 88L, 315L, 27L,
53L, 126L, 179L, 161L, 163L, 168L, 280L, 336L, 89L, 175L, 253L,
357L, 250L, 36L, 62L, 103L, 1L, 5L, 55L, 97L, 114L, 143L, 156L,
156L, 178L, 183L, 191L, 285L, 4L, 16L, 69L, 340L, 63L, 131L,
128L, 137L, 137L, 253L, 213L, 165L, 166L, 166L, 171L, 193L, 186L,
180L, 194L, 255L, 294L, 60L, 175L, 123L, 136L, 147L, 144L, 146L,
135L, 157L, 228L, 177L, 165L, 168L, 176L, 182L, 352L, 23L, 260L,
298L, 283L, 152L, 151L, 180L, 170L, 2L, 60L, 121L, 110L, 153L,
174L, 204L, 312L, 153L, 250L, 223L, 244L, 345L, 225L, 233L, 289L,
212L, 190L, 285L, 226L, 136L, 111L, 179L, 200L, 274L, 2L, 351L,
10L, 12L, 13L, 340L, 336L, 331L, 258L, 36L, 95L, 117L, 149L,
151L, 155L, 135L, 187L, 191L, 195L, 15L, 103L, 161L, 194L, 186L,
167L, 90L, 174L, 205L, 173L, 208L, 197L, 217L, 246L, 151L, 161L,
119L, 128L, 159L, 232L, 198L, 227L, 175L, 213L, 220L, 226L, 171L,
244L, 203L, 167L, 185L, 156L, 182L, 157L, 154L, 144L, 146L, 174L,
196L, 141L, 348L, 22L, 63L, 125L, 163L, 32L, 331L, 19L, 72L,
85L, 186L, 297L, 353L, 32L, 242L, 240L, 191L, 200L, 192L, 208L,
256L, 193L, 243L, 3L, 18L, 293L, 357L, 233L, 169L, 160L, 189L,
310L, 305L, 288L, 201L, 334L, 56L, 274L, 269L, 303L, 237L, 224L,
230L, 170L, 192L, 135L, 194L, 132L, 122L, 149L, 171L, 199L, 217L,
133L, 172L, 195L, 329L, 11L, 48L, 120L, 158L, 198L, 23L, 109L,
154L, 145L, 86L, 41L, 156L, 186L, 222L, 150L, 163L, 19L, 278L,
325L, 352L, 5L, 72L, 136L, 123L, 149L, 154L, 132L, 155L, 233L,
187L, 168L, 9L, 41L, 262L, 4L, 40L, 154L, 157L, 233L, 97L, 162L,
171L, 171L, 181L, 355L, 35L, 103L, 214L, 355L, 335L, 345L, 13L,
331L, 347L, 323L, 294L, 234L, 295L, 190L, 151L, 182L, 231L, 268L,
286L, 20L, 11L, 144L, 181L, 149L, 160L, 180L, 343L, 65L, 130L,
108L, 166L, 164L, 182L, 160L, 174L, 101L, 27L, 62L, 110L, 76L,
25L, 150L, 173L, 169L, 183L, 181L, 189L, 167L, 232L, 345L, 154L,
216L, 195L, 212L, 242L, 289L, 252L, 111L, 148L, 161L, 159L, 153L,
162L, 139L, 158L, 150L, 164L, 198L, 14L, 141L, 156L, 288L, 355L,
36L, 73L, 208L, 215L, 323L, 135L, 188L, 289L, 232L, 227L, 317L,
222L, 192L, 76L, 40L, 172L, 157L, 142L, 216L, 223L, 163L, 237L,
344L, 30L, 126L, 143L, 162L, 162L, 104L, 103L, 123L, 110L, 140L,
146L, 149L, 139L, 161L, 194L, 187L, 283L, 13L, 16L, 185L, 177L,
200L, 155L, 152L, 169L, 238L, 282L, 161L, 185L, 224L, 198L, 159L,
208L, 309L, 179L, 182L, 244L, 290L, 217L, 236L, 20L, 61L, 130L,
162L, 262L, 245L, 206L, 225L, 193L, 331L, 34L, 133L, 216L, 277L,
343L, 300L, 342L, 15L, 50L, 307L, 314L, 5L, 24L, 19L, 86L, 120L,
356L, 34L, 19L, 346L, 359L, 25L, 45L, 97L, 151L, 67L, 100L, 23L,
66L, 9L, 223L, 121L, 164L, 175L, 174L, 217L, 227L, 241L, 184L,
265L, 196L, 215L, 178L, 326L, 102L, 339L, 21L, 43L, 19L, 65L,
289L, 288L, 94L, 97L, 132L, 123L, 141L, 141L, 282L, 220L, 281L,
202L, 252L, 225L, 350L, 77L, 199L, 274L, 209L, 229L, 5L, 67L,
19L, 28L, 56L, 89L, 71L, 68L, 126L, 120L, 124L, 112L, 83L, 171L,
25L, 306L, 305L, 338L, 3L, 319L, 12L, 70L, 19L, 185L, 199L, 88L,
140L, 176L, 207L, 149L, 155L, 162L, 152L, 164L, 178L, 201L, 214L,
169L, 175L, 180L, 168L, 183L, 163L, 186L, 257L, 223L, 166L, 157L,
133L, 24L, 115L, 162L, 173L, 245L, 147L, 105L, 81L, 75L, 75L,
47L, 27L, 15L, 347L, 21L, 116L, 160L, 178L, 193L, 51L, 232L,
295L, 358L, 311L, 16L, 17L, 7L, 47L, 345L, 4L, 36L, 118L, 209L,
173L, 231L, 8L, 90L, 156L, 237L, 163L, 343L, 350L, 354L, 36L,
62L, 45L, 43L, 95L, 113L, 164L, 317L, 315L, 168L, 188L, 190L,
168L, 227L, 185L, 142L, 249L, 200L, 228L, 7L, 50L, 95L, 265L,
10L, 75L, 63L, 151L, 124L, 146L, 35L, 303L, 331L, 218L, 303L,
312L, 341L, 33L, 36L, 9L, 74L, 85L, 105L, 99L, 101L, 91L, 130L,
152L, 14L, 211L, 271L, 319L, 315L, 309L, 358L, 31L), circularp = structure(list(
type = "angles", units = "degrees", template = "geographics",
modulo = "asis", zero = 1.5707963267949, rotation = "clock"), .Names = c("type",
"units", "template", "modulo", "zero", "rotation")), class = c("circular",
"integer"))), .Names = "X1000mb")
It doesn't matter that it's not strictly a "scatterplot" . Now that you've set up an array of subplots, you can cycle thru them again, but this time using text() to place data at the desired location within each subplot. Roughly,
for (i in 1:17 ) text(x_loc[i],y_loc[i], some_text_vector[i])
Where you've "preloaded" the text strings and locations.