tail recursion vs. forward recursion - recursion

Can someone give me the difference between these two kinds recursions and example (specifically in OCaml)?

A tail recursive function is a function where the only recursive call is the last one in the function. A non-tail recursive function is a function where that is not the case.
A backward recursion is a recursion where in each recursive call the value of the parameter is less than in the previous step. A forward recursion is a recursion where it grows bigger with each step.
Those are two orthogonal concepts, i.e. a forward recursion may or may not be tail-recursive and the same applies to backward recursions.
For example the factorial function is often written like this in imperative languages:
fac = 1
for i from 1 to n:
fac := fac * i
The common recursive version of factorial counts backwards (i.e. it calls itself with n-1 as the parameter), however if you'd directly translate the above imperative solution, you'd come up with a recursive version that counts upwards. It would look something like this:
let fac n =
let rec loop i =
if i >= n
then i
else i * loop (i+1)
in
loop 1
This is a forward recursion and as you can see it is slightly more cumbersome than the backward recursive variant as it requires a helper function. Now this is not tail recursive as the last call in loop is the multiplication, not the recursion. So to make it tail-recursive, you'd do something like this:
let fac n =
let rec loop acc i =
if i >= n
then acc
else loop (i*acc) (i+1)
in
loop 1 1
Now this is both a forward recursion and a tail recursion because the recursive call is a) a tail-call and b) calls itself with a greater value (i+1).

Here's an example of a tail recursive factorial function:
let fac n =
let rec f n a =
match n with
0 -> a
| _ -> f (n-1) (n*a)
in
f n 1
Here is it's non-tail recursive counterpart:
let rec non_tail_fac n =
match n with
0 -> 1
| _ -> (non_tail_fac n-1) * n
The tail recursive function uses an accumulator, a, to store the value of the result of the previous call. This allows OCaml to perform tail call optimization which results in the the stack not overflowing. Typically a tail recursive function will make use of an accumulator value to allow tail call optimization to occur.

For example, a recursive function build_word which takes a char list and combine them to a string i.e.['f'; 'o'; 'o'] to string "foo". The induction process can be visualized this way:
build_word ['f'; 'o'; 'o']
"f" ^ (build_word ['o'; 'o'])
"f" ^ ("o" ^ (build_word ['o']) // base case! return "o" and fold back
"f" ^ ("o" ^ ("o"))
"f" ^ ("oo")
"foo"
That was a normal recursion. Note that each pair of parentheses stands for a new stack frame or recursive call. The solution to this problem (i.e. "f", "fo", or "foo") cannot be derived before the end of the recursion (where the base case is met). Only then does the last frame return the last result back to the previous one before "popping", and vice versa.
In theory, each call creates a new stack frame (or scope, if you will) to hold the "place" for the fragmented solution to be returned and collected toward the beginning. This can leads to stackoverflow (this link is a recursion btw).
A tail call version would look something like this:
build_word ['f'; 'o'; 'o'] ""
build_word ['o'; 'o'], "f"
build_word ['o'] ("f" ^ "o")
build_word [] ("f" ^ "o" ^ "o")
"foo"
Here, the accumulated result (often stored in a variable known as accumulator) is being passed forward. With optimization, tail call wouldn't have to create a new stack frame because it does not have to maintain the previous ones. The solution is being solved "forward" rather than "backward".
Here are the build_word functions in two versions:
non-tail
let build_word chars =
match chars with
| [] -> None
| [c] -> Some Char.to_string c
| hd :: tl -> build_word tl
tail
let build_word ?(acc = "") chars =
match chars with
| [] -> None
| [c] -> Some Char.to_string c
| hd::tl -> build_word ~acc:(acc ^ Char.to_string hd) tl
The forward recursion is well-explained in the accepted answer by #sepp2k.

Related

F# Recursive Objects

I'm new to F#, and functional languages. So this might be stupid question, or duplicated with this Recursive objects in F#?, but I don't know.
Here is a simple Fibonacci function:
let rec fib n =
match n with
| 0 -> 1
| 1 -> 1
| _ -> fib (n - 1) + fib (n - 2)
Its signature is int -> int.
It can be rewritten as:
let rec fib =
fun n ->
match n with
| 0 -> 1
| 1 -> 1
| _ -> fib (n - 1) + fib (n - 2)
Its signature is (int -> int) (in Visual Studio for Mac).
So what's the difference with the previous one?
If I add one more line like this:
let rec fib =
printfn "fib" // <-- this line
fun n ->
match n with
| 0 -> 1
| 1 -> 1
| _ -> fib (n - 1) + fib (n - 2)
The IDE gives me a warning:
warning FS0040: This and other recursive references to the object(s) being defined will be checked for initialization-soundness at runtime through the use of a delayed reference. This is because you are defining one or more recursive objects, rather than recursive functions. This warning may be suppressed by using '#nowarn "40"' or '--nowarn:40'.
How does this line affect the initialization?
What does "recursive object" mean? I can't find it in the documentation.
Update
Thanks for your replies, really nice explanation.
After reading your answers, I have some ideas about the Recursive Object.
First, I made a mistake about the signature. The first two code snippets above have a same signature, int -> int; but the last has signature (int -> int) (note: the signatures have different representation in vscode with Ionide extension).
I think the difference between the two signatures is, the first one means it's just a function, the other one means it's a reference to a function, that is, an object.
And every let rec something with no parameter-list is an object rather than a function, see the function definition, while the second snippet is an exception, possibly optimized by the compiler to a function.
One example:
let rec x = (fun () -> x + 1)() // same warning, says `x` is an recursive object
The only one reason I can think of is the compiler is not smart enough, it throws an warning just because it's a recursive object, like the warning indicates,
This is because you are defining one or more recursive objects, rather than recursive functions
even though this pattern would never have any problem.
let rec fib =
// do something here, if fib invoked here directly, it's definitely an error, not warning.
fun n ->
match n with
| 0 -> 1
| 1 -> 1
| _ -> fib (n - 1) + fib (n - 2)
What do you think about this?
"Recursive objects" are just like recursive functions, except they are, well, objects. Not functions.
A recursive function is a function that references itself, e.g.:
let rec f x = f (x-1) + 1
A recursive object is similar, in that it references itself, except it's not a function, e.g.:
let rec x = x + 1
The above will actually not compile. The F# compiler is able to correctly determine the problem and issue an error: The value 'x' will be evaluated as part of its own definition. Clearly, such definition is nonsensical: in order to calculate x, you need to already know x. Does not compute.
But let's see if we can be more clever. How about if I close x in a lambda expression?
let rec x = (fun() -> x + 1) ()
Here, I wrap the x in a function, and immediately call that function. This compiles, but with a warning - the same warning that you're getting, something about "checking for initialization-soundness at runtime".
So let's go to runtime:
> let rec x = (fun() -> x + 1) ()
System.InvalidOperationException: ValueFactory attempted to access the Value property of this instance.
Not surprisingly, we get an error: turns out, in this definition, you still need to know x in order to calculate x - same as with let rec x = x + 1.
But if this is the case, why does it compile at all? Well, it just so happens that, in general, it is impossible to strictly prove that x will or will not access itself during initialization. The compiler is just smart enough to notice that it might happen (and this is why it issues the warning), but not smart enough to prove that it will definitely happen.
So in cases like this, in addition to issuing a warning, the compiler will install a runtime guard, which will check whether x has already been initialized when it's being accessed. The compiled code with such guard might look something like this:
let mutable x_initialized = false
let rec x =
let x_temp =
(fun() ->
if not x_initialized then failwith "Not good!"
else x + 1
) ()
x_initialized <- true
x_temp
(the actual compiled code looks differently of course; use ILSpy to look if you're curious)
In certain special cases, the compiler can prove one way or another. In other cases it can't, so it installs runtime protection:
// Definitely bad => compile-time error
let rec x = x + 1
// Definitely good => no errors, no warnings
let rec x = fun() -> x() + 1
// Might be bad => compile-time warning + runtime guard
let rec x = (fun() -> x+1) ()
// Also might be bad: no way to tell what the `printfn` call will do
let rec x =
printfn "a"
fun() -> x() + 1
There's a major difference between the last two versions. Notice adding a printfn call to the first version generates no warning, and "fib" will be printed each time the function recurses:
let rec fib n =
printfn "fib"
match n with
| 0 -> 1
| 1 -> 1
| _ -> fib (n - 1) + fib (n - 2)
> fib 10;;
fib
fib
fib
...
val it : int = 89
The printfn call is part of the recursive function's body. But the 3rd/final version only prints "fib" once when the function is defined then never again.
What's the difference? In the 3rd version you're not defining just a recursive function, because there are other expressions creating a closure over the lambda, resulting in a recursive object. Consider this version:
let rec fib3 =
let x = 1
let y = 2
fun n ->
match n with
| 0 -> x
| 1 -> x
| _ -> fib3 (n - x) + fib3 (n - y)
fib3 is not a plain recursive function; there's a closure over the function capturing x and y (and same for the printfn version, although it's just a side-effect). This closure is the "recursive object" referred to in the warning. x and y will not be redefined in each recursion; they're part of the root-level closure/recursive object.
From the linked question/answer:
because [the compiler] cannot guarantee that the reference won't be accessed before it is initialized
Although it doesn't apply in your particular example, it's impossible for the compiler to know whether you're doing something harmless, or potentially referencing/invoking the lambda in fib3 definition before fib3 has a value/has been initialized. Here's another good answer explaining the same.

Recursive function to repeat string in OCaml

I am absolute OCaml beginner. I want to create a function that repeats characters 20 times.
This is the function, but it does not work because of an error.
let string20 s =
let n = 20 in
s ^ string20 s (n - 1);;
string20 "u";;
I want to run like this
# string20 "u"
- : string = "uuuuuuuuuuuuuuuuuuuu"
Your function string20 takes one parameter but you are calling it recursively with 2 parameters.
The basic ideas are in there, but not quite in the right form. One way to proceed is to separate out the 2-parameter function as a separate "helper" function. As #PierreG points out, you'll need to delcare the helper function as a recursive function.
let rec string n s =
if n = 0 then "" else s ^ string (n - 1) s
let string20 = string 20
It is a common pattern to separate a function into a "fixed" part and inductive part. In this case, a nested helper function is needed to do the real recursive work in a new scope while we want to fix an input string s as a constant so we can use to append to s2. s2 is an accumulator that build up the train of strings over time while c is an inductor counting down to 1 toward the base case.
let repeat s n =
let rec helper s1 n1 =
if n1 = 0 then s1 else helper (s1 ^ s) (n1 - 1)
in helper "" n
A non-tail call versions is more straightforward since you won't need a helper function at all:
let rec repeat s n =
if n = 0 then "" else s ^ repeat s (n - 1)
On the side note, one very fun thing about a functional language with first-class functions like Ocaml is currying (or partial application). In this case you can create a function named repeat that takes two arguments n of type int and s of type string as above and partially apply it to either n or s like this:
# (* top-level *)
# let repeat_foo = repeat "foo";;
# repeat_foo 5;;
- : bytes = "foofoofoofoofoo" (* top-level output *)
if the n argument was labeled as below:
let rec repeat ?(n = 0) s =
if n = 0 then "" else s ^ repeat s (n - 1)
The order of application can be exploited, making the function more flexible:
# (* top-level *)
# let repeat_10 = repeat ~n:10;;
# repeat_10 "foo";;
- : bytes = "foofoofoofoofoofoofoofoofoofoo" (* top-level output *)
See my post Currying Exercise in JavaScript (though it is in JavaScript but pretty simple to follow) and this lambda calculus primer.
Recursive functions in Ocaml are defined with let rec
As pointed out in the comments you've defined your function to take one parameter but you're trying to recursively call with two.
You probably want something like this:
let rec stringn s n =
match n with
1 -> s
| _ -> s ^ stringn s (n - 1)
;;

Set Intersection with Tail Recursion

I am trying to produce the solution for an intersection of two sets using tail recursion and an empty list [] as an accu:
let rec setintersect list list =
let rec setintersect2 a b c =
match a with
| [] -> (match b with [] -> (setsimplify c) | h::t -> (setsimplify c))
| h1::t1 -> (match b with [] -> (setsimplify c) |h2::t2 -> (if (elementof h1 b) then (setintersect2 t1 b (c#[h1])) else (setintersect2 t1 b c))) in
setintersect2 list list [];;
Elementof takes takes "an int and a list" and is correctly working to give true if x is an element of the list, false otherwise..
Here is the problem:
# setintersect [5;2;1] [2;6;9];;
- : int list = [2; 6; 9]
and it should give [2].
What am I doing wrong?
I feel like there's something really simple that I am misunderstanding!
Edit:
Thanks for the responses so far.
setsimplify just removes the duplicates.
so [2,2,3,5,6,6] becomes [2,3,5,6]. Tested and made sure it is working properly.
I am not supposed to use anything from the List library either. Also, I must use "tail recursion" with the accumulator being a list that I build as I go.
Here is the thought:
Check the head element in list1, IF it exists in list2, THEN recurse with the "tail of list1, list2, and list c with that element added to it". ELSE, then recurse with "tail of list1, list2 and list c(as it is)".
end conditions are either list1 or list2 are empty or both together are empty, return list c (as it is).
let rec setintersect list list = is wrong: the two arguments should be named differently (you should of course update the call to setintersect2 accordingly), otherwise the second will shadow the first. I would have thought that OCaml would have at least warned you about this fact, but it appears that it is not the case.
Apart from that, the code seems to do the trick. There are a couple of things that could be improved though:
setintersect itself is not recursive (only setintersect2 is), you thus don't need the rec
you should find a different name for the argument of setintersect2. In particular, it is not obvious which is the accumulator (acc or accu will be understood by most OCaml programmers in these circumstances).
c#[h1] is inefficient: you will traverse c completely each time you append an element. It's better to do h1::c and reverse the result at the end
As a bonus point, if you append element at the beginning of c, and assume that a is ordered, you don't have to call setsimplify at the end of the call: just check whether c is empty, and if this is not the case, append h1 only if it is not equal to the head of c.
First, You didn't list out your setsimplify function.
To write an ocaml function, try to split it first, and then combine if possible.
To solve this task, you just go through all elements in l1, and for every element, you check whether it is in l2 or not, right?
So definitely you need a function to check whether an element is in a list or not, right?
let make one:
let rec mem x = function
| [] -> false
| hd::tl -> hd = x || mem x tl
Then you can do your intersection:
let rec inter l1 l2 =
match l1 with
| [] -> []
| hd::tl -> if mem hd l2 then hd::(inter tl l2) else inter tl l2
Note that the above function is not tail-recursive, I guess you can change it to tail-recursive as an excise.
If you use std library, then it is simple:
let intersection l1 l2 = List.filter (fun x -> List.mem x l2) l1

F# replacing variables with actual values results in endless loop (recursive function)

I recently started with F# and implemented a very basic recursive function that represents the Sieve of Eratosthenes. I came up with the following, working code:
static member internal SieveOfEratosthenesRecursive sequence accumulator =
match sequence with
| [] -> accumulator
| head::tail -> let rest = tail |> List.filter(fun number -> number % head <> 0L)
let newAccumulator = head::accumulator
Prime.SieveOfEratosthenesRecursive rest newAccumulator
This function is not really memory efficient so I tried to eliminate the variables "rest" and "newAccumulator". I came up with the following code
static member internal SieveOfEratosthenesRecursive sequence accumulator =
match sequence with
| [] -> accumulator
| head::tail -> tail |> List.filter(fun number -> number % head <> 0L)
|> Prime.SieveOfEratosthenesRecursive (head::accumulator)
As far as I understand the tutorials I've read Prime.SieveOfEratosthenesRecursive will be called with the filtered tail as first parameter and a list consisting of head::accumulator as second one. However when I try to run the code with the reduced variable usage, the program gets trappen in an infinite loop. Why is this happening and what did I do wrong?
As far as I understand the tutorials I've read Prime.SieveOfEratosthenesRecursive will be called with the filtered tail as first parameter and a list consisting of head::accumulator as second one.
You have this backwards.
In the first version, you're passing rest then newAccumulator; in the second version, you're effectively passing newAccumulator then rest. I.e., you've transposed the arguments.
Prime.SieveOfEratosthenesRecursive (head::accumulator) is a partial function application wherein you're applying (head::accumulator) as the first argument (sequence). This partial function application yields a unary function (expecting accumulator), to which you are passing (via |>) what is called rest in the first version of your code.
Changing SieveOfEratosthenesRecursive's argument order is the easiest solution, but I would consider something like the following idiomatic as well:
static member internal SieveOfEratosthenesRecursive sequence accumulator =
match sequence with
| [] -> accumulator
| head::tail ->
tail
|> List.filter(fun number -> number % head <> 0L)
|> Prime.SieveOfEratosthenesRecursive <| (head::accumulator)
or
static member internal SieveOfEratosthenesRecursive sequence accumulator =
let inline flipzip a b = b, a
match sequence with
| [] -> accumulator
| head::tail ->
tail
|> List.filter(fun number -> number % head <> 0L)
|> flipzip (head::accumulator)
||> Prime.SieveOfEratosthenesRecursive
FWIW, eliminating rest and newAccumulator as named variables here is not going to impact your memory usage in the slightest.
The last call in your second function is equivalent to:
Prime.SieveOfEratosthenesRecursive newAccumulator rest
where you switch positions of two params. Since newAccumulator grows bigger after each recursive call, you will never reach the base case of empty list.
The rule of thumb is putting the most frequently changing parameter at last:
let rec sieve acc xs =
match xs with
| [] -> acc
| x::xs' -> xs' |> List.filter (fun y -> y % x <> 0L)
|> sieve (x::acc)
The above function could be shortened using function keyword:
let rec sieve acc = function
| [] -> acc
| x::xs' -> xs' |> List.filter (fun y -> y % x <> 0L)
|> sieve (x::acc)
Using pipe (|>) operator only makes the function more readable, it doesn't affect memory usage at all.

Ocaml continuation passing style

I'm new to ocaml and tryin to write a continuation passing style function but quite confused what value i need to pass into additional argument on k
for example, I can write a recursive function that returns true if all elements of the list is even, otherwise false.
so its like
let rec even list = ....
on CPS, i know i need to add one argument to pass function
so like
let rec evenk list k = ....
but I have no clue how to deal with this k and how does this exactly work
for example for this even function, environment looks like
val evenk : int list -> (bool -> ’a) -> ’a = <fun>
evenk [4; 2; 12; 5; 6] (fun x -> x) (* output should give false *)
The continuation k is a function that takes the result from evenk and performs "the rest of the computation" and produces the "answer". What type the answer has and what you mean by "the rest of the computation" depends on what you are using CPS for. CPS is generally not an end in itself but is done with some purpose in mind. For example, in CPS form it is very easy to implement control operators or to optimize tail calls. Without knowing what you are trying to accomplish, it's hard to answer your question.
For what it is worth, if you are simply trying to convert from direct style to continuation-passing style, and all you care about is the value of the answer, passing the identity function as the continuation is about right.
A good next step would be to implement evenk using CPS. I'll do a simpler example.
If I have the direct-style function
let muladd x i n = x + i * n
and if I assume CPS primitives mulk and addk, I can write
let muladdk x i n k =
let k' product = addk x product k in
mulk i n k'
And you'll see that the mulptiplication is done first, then it "continues" with k', which does the add, and finally that continues with k, which returns to the caller. The key idea is that within the body of muladdk I allocated a fresh continuation k' which stands for an intermediate point in the multiply-add function. To make your evenk work you will have to allocate at least one such continuation.
I hope this helps.
Whenever I've played with CPS, the thing passed to the continuation is just the thing you would normally return to the caller. In this simple case, a nice "intuition lubricant" is to name the continuation "return".
let rec even list return =
if List.length list = 0
then return true
else if List.hd list mod 2 = 1
then return false
else even (List.tl list) return;;
let id = fun x -> x;;
Example usage: "even [2; 4; 6; 8] id;;".
Since you have the invocation of evenk correct (with the identity function - effectively converting the continuation-passing-style back to normal style), I assume that the difficulty is in defining evenk.
k is the continuation function representing the rest of the computation and producing a final value, as Norman said. So, what you need to do is compute the result of v of even and pass that result to k, returning k v rather than just v.
You want to give as input the result of your function as if it were not written with continuation passing style.
Here is your function which tests whether a list has only even integers:
(* val even_list : int list -> bool *)
let even_list input = List.for_all (fun x -> x mod 2=0) input
Now let's write it with a continuation cont:
(* val evenk : int list -> (bool -> 'a) -> 'a *)
let evenk input cont =
let result = even_list input in
(cont result)
You compute the result your function, and pass resultto the continuation ...

Resources