Quantum Computing and Encryption Breaking - encryption

I read a while back that Quantum Computers can break most types of hashing and encryption in use today in a very short amount of time(I believe it was mere minutes). How is it possible? I've tried reading articles about it but I get lost at the a quantum bit can be 1, 0, or something else. Can someone explain how this relates to cracking such algorithms in plain English without all the fancy maths?

Preamble: Quantum computers are strange beasts that we really haven't yet tamed to the point of usefulness. The theory that underpins them is abstract and mathematical, so any discussion of how they can be more efficient than classical computers will inevitably be long and involved. You'll need at least an undergraduate understanding of linear algebra and quantum mechanics to understand the details, but I'll try to convey my limited understanding!
The basic premise of quantum computation is quantum superposition. The idea is that a quantum system (such as a quantum bit, or qubit, the quantum analogue of a normal bit) can, as you say, exist not only in the 0 and 1 states (called the computational basis states of the system), but also in any combination of the two (so that each has an amplitude associated with it). When the system is observed by someone, the qubit's state collapses into one of its basis states (you may have heard of the Schrödinger's cat thought experiment, which is related to this).
Because of this, a register of n qubits has 2^n basis states of its own (these are the states that you could observe the register being in; imagine a classical n-bit integer). Since the register can exist in a superposition of all these states at once, it is possible to apply a computation to all 2^n register states rather than just one of them. This is called quantum parallelism.
Because of this property of quantum computers, it may seem like they're a silver bullet that can solve any problem exponentially faster than a classical computer. But it's not that simple: the problem is that once you observe the result of your computation, it collapses (as I mentioned above) into the result of just one of the computations – and you lose all of the others.
The field of quantum computation/algorithms is all about trying to work around this problem by manipulating quantum phenomena to extract information in fewer operations than would be possible on a classical computer. It turns out that it's very difficult to contrive a "quantum algorithm" that is faster than any possible classical counterpart.
The example you ask about is that of quantum cryptanalysis. It's thought that quantum computers might be able to "break" certain encryption algorithms: specifically, the RSA algorithm, which relies on the difficulty of finding the prime factors of very large integers. The algorithm which allows for this is called Shor's algorithm, which can factor integers with polynomial time complexity. By contrast the best classical algorithm for the problem has (almost) exponential time complexity, and the problem is hence considered "intractable".
If you want a deeper understanding of this, get a few books on linear algebra and quantum mechanics and get comfortable. If you want some clarification, I'll see what I can do!
Aside: to better understand the idea of quantum superposition, think in terms of probabilities. Imagine you flip a coin and catch it on your hand, covered so that you can't see it. As a very tenuous analogy, the coin can be thought of as being in a superposition of the heads and tails "states": each one has a probability of 0.5 (and, naturally, since there are two states, these probabilities add up to 1). When you take your hand away and observe the coin directly, it collapses into either the heads state or the tails state, and so the probability of this state becomes 1, while the other becomes 0. One way to think about it, I suppose, is a set of scales that is balanced until observation, at which point it tips to one side as our knowledge of the system increases and one state becomes the "real" state.
Of course, we don't think of the coin as a quantum system: for all practical purposes, the coin has a definite state, even if we can't see it. For genuine quantum systems, however (such as an individual particle trapped in a box), we can't think about it in this way. Under the conventional interpretation of quantum mechanics, the particle fundamentally has no definite position, but exists in all possible positions at once. Only upon observation is its position constrained in space (though only to a limited degree; cf. uncertainty principle), and even this is purely random and determined only by probability.
By the way, quantum systems are not restricted to having just two observable states (those that do are called two-level systems). Some have a large but finite number, some have a countably infinite number (such as a "particle in a box" or a harmonic oscillator), and some even have an uncountably infinite number (such as a free particle's position, which isn't constrained to individual points in space).

It's highly theoretical at this point. Quantum Bits might offer the capability to break encryption, but clearly it's not at that point yet.
At the Quantum Level, the laws that govern behavior are different than in the macro level.
To answer your question, you first need to understand how encryption works.
At a basic level, encryption is the result of multiplying two extremely large prime numbers together. This super large result is divisible by 1, itself, and these two prime numbers.
One way to break encryption is to brute force guess the two prime numbers, by doing prime number factorization.
This attack is slow, and is thwarted by picking larger and larger prime numbers. YOu hear of key sizes of 40bits,56bits,128bits and now 256,512bits and beyond. Those sizes correspond to the size of the number.
The brute force algorithm (in simplified terms) might look like
for(int i = 3; i < int64.max; i++)
{
if( key / i is integral)
{
//we have a prime factor
}
}
So you want to brute force try prime numbers; well that is going to take awhile with a single computer. So you might try grouping a bunch of computers together to divide and conquer. That works, but is still slow for very large keysizes.
How a quantum bit address this is that they are both 0 and 1 at the same time. So say you have 3 quantum bits (no small feat mind you).
With 3 qbits, your program can have the values of 0-7 simulatanously
(000,001,010,011 etc)
, which includes prime numbers 3,5,7 at the same time.
so using the simple algorithm above, instead of increasing i by 1 each time, you can just divide once, and check
0,1,2,3,4,5,6,7
all at the same time.
Of course quantum bits aren't to that point yet; there is still lots of work to be done in the field; but this should give you an idea that if we could program using quanta, how we might go about cracking encryption.

The Wikipedia article does a very good job of explaining this.
In short, if you have N bits, your quantum computer can be in 2^N states at the same time. Similar conceptually to having 2^N CPU's processing with traditional bits (though not exactly the same).

A quantum computer can implement Shor's algorithm which can quickly perform prime factorization. Encryption systems are build on the assumption that large primes can not be factored in a reasonable amount of time on a classical computer.

Almost all our public-key encryptions (ex. RSA) are based solely on math, relying on the difficulty of factorization or discrete-logarithms. Both of these will be efficiently broken using quantum computers (though even after a bachelors in CS and Math, and having taken several classes on quantum mechanics, I still don't understand the algorithm).
However, hashing algorithms (Ex. SHA2) and symmetric-key encryptions (ex. AES), which are based mostly on diffusion and confusion, are still secure.

In the most basic terms, a normal no quantum computer works by operating on bits (sates of on or off) uesing boolean logic. You do this very fast for lots and lots of bits and you can solve any problem in a class of problems that are computable.
However they are "speed limits" namely something called computational complexity.This in lay mans terms means that for a given algorithm you know that the time it takes to run an algorithm (and the memory space required to run the algorithm) has a minimum bound. For example a algorithm that is O(n^2) means that for a data size of n it will require n^2 time to run.
However this kind of goes out the window when we have qbits (quantum bits) when you are doing operations on qbits that can have "in between" values. algorithms that would have very high computational complexity (like factoring huge numbers, the key to cracking many encryption algorithms) can be done in much much lower computational complexity. This is the reason that quantum computing will be able to crack encrypted streams orders of magnitude quicker then normal computers.

First of all, quantum computing is still barely out of the theoretical stage. Lots of research is going on and a few experimental quantum cells and circuits, but a "quantum computer" does not yet exist.
Second, read the wikipedia article: http://en.wikipedia.org/wiki/Quantum_computer
In particular, "In general a quantum computer with n qubits can be in an arbitrary superposition of up to 2^n different states simultaneously (this compares to a normal computer that can only be in one of these 2^n states at any one time). "
What makes cryptography secure is the use of encryption keys that are very long numbers that would take a very, very long time to factor into their constituent primes, and the keys are sufficiently long enough that brute-force attempts to try every possible key value would also take too long to complete.
Since quantum computing can (theoretically) represent a lot of states in a small number of qubit cells, and operate on all of those states simultaneously, it seems there is the potential to use quantum computing to perform brute-force try-all-possible-key-values in a very short amount of time.
If such a thing is possible, it could be the end of cryptography as we know it.

quantum computers etc all lies. I dont believe these science fiction magazines.
in fact rsa system is based on two prime numbers and their multipilation.
p1,p2 is huge primes p1xp2=N modulus.
rsa system is
like that
choose a prime number..maybe small its E public key
(p1-1)*(p2-1)=R
find a D number that makes E*D=1 mod(R)
we are sharing (E,N) data as public key publicly
we are securely saving (D,N) as private.
To solve this Rsa system cracker need to find prime factors of N.
*mass of the Universe is closer to 10^53 kg*
electron mass is 9.10938291 × 10^-31 kilograms
if we divide universe to electrons we can create 10^84 electrons.
electrons has slower speeds than light. its move frequency can be 10^26
if anybody produces electron size parallel rsa prime factor finders from all universe mass.
all universe can handle (10^84)*(10^26)= 10^110 numbers/per second.
rsa has limitles bits of alternative prime numbers. maybe 4096 bits
4096 bit rsa has 10^600 possible prime numbers to brute force.
so your universe mass quantum solver need to make tests during 10^500 years.
rsa vs universe mass quantum computer
1 - 0
maybe quantum computer can break 64/128 bits passwords. because 128 bit password has 10^39 possible brute force nodes.

This circuit is a good start to understand how qubit parallelism works. The 2-qubits-input is on the left side. Top qubit is x and bottom qubit ist y. The y qubit is 0 at the input, just like a normal bit. The x qubit on the other hand is in superposition at the input. y (+) f(x) stands here for addition modulo 2, just meaning 1+1=0, 0+1=1+0=1. But the interesting part is, since the x-qubit is in superposition, f(x) is f(0) and f(1) at the same time and we can perform the evaluation of the f function for all states simultaneously without using any (time consuming) loops. Having enough quibits we can branch this into endlessly complicating curcuits.

Even more bizarr imo. is the Grover's algorithm. As input we get here an unsorted array of integers with arraylength = n. What is the expected runtime of an algorithm, that finds the min value of this array? Well classically we have at least to check every 1..n element of the array resulting in an expected runtime of n. Not so for quantum computers, on a quantum computer we can solve this in expected runtime of maximum root(n), this means we don't even have to check every element to find the guaranteed solution...

Related

Truncation in Homomorphic Encryption

How do you implement truncation in homomorphic encryption libraries like HELib or SEAL when no division operation is allowed?
I have two floating point numbers a=2.3,b=1.5 which I scale to integers with 2-digit precision. Hence my encoder looks basically like this encode(x)=x*10^2. Assuming enc(x) is the encryption function, then enc(encode(a))=enc(230) and enc(encode(b))=enc(150).
Upon multiplication we obtain the huge value of a*b=enc(23*15)=enc(34500) because the scaling factors multiply too. This means that my inputs grow exponentially unless I can truncate the result, so that trunate(enc(34500))=truncate(enc(345)).
I assume such a truncation function is not possible because it cant be represented by a polynomial. Nonetheless, I wonder if there is any trick on how to perform this truncation mathematically or whether it is just an unsolved problem?
It is possible but difficult to perform such truncation in the BFV and BGV schemes, and is unlikely to result in acceptable performance in most use-cases. This problem is very much related to the complexity of bootstrapping said schemes; for more details, see https://eprint.iacr.org/2018/067 and https://eprint.iacr.org/2014/873.
On the other hand, truncation is much easier to achieve in the CKKS scheme (see https://eprint.iacr.org/2016/421) where it is a natural operation. However, the downside of the CKKS scheme is that all computations only yield approximately correct results which may not be what you want.

Game Theory with prediction

To impress two (german) professors i try to improve the game theory.
AI in Computergames.
Game Theory:  Intelligence is a well educated proven Answer to an Question.
This means a thoughtfull decision is choosing an act who leads to an optimal result.
Question -> Resolution -> Answer -> Test (Check)
For Example one robot is fighting another robot.
This robot has 3 choices:
-move forward
-hold position
-move backward
The resulting Programm is pretty simple
randomseed = initvalue;
while (one_is_alive)
{
choice = randomselect(options,probability);
do_choice(roboter);
}  
We are using pseudorandomness.
The test for success is simply did he elimate the opponent.
The robots have automatically shooting weapons :
struct weapon
{
range
damage
}
struct life
{
hitpoints
}
Now for some Evolution.
We let 2 robots fight each other and remember the randomseeds.
What is the sign of a succesfull Roboter ?
struct {
ownrandomseed;
list_of_opponentrandomseed; // the array of the beaten opponents.
}
Now the question is how do we choose the right strategy against an opponent ?
 
We assume we have for every possible seed-strategy the optimal anti-strategy.  
Now the only thing we have to do is to observe the numbers from the opponent
and calculate his seed value.Then we could choose the right strategy.
For cracking the random generator we can use the manual method :
http://alumni.cs.ucr.edu/~jsun/random-number.pdf
or the brute Force :
https://jazzy.id.au/2010/09/20/cracking_random_number_generators_part_1.html
It depends on the algorithm used to generate the (pseudo) random numbers. If the pseudo random number generator algorithm is known, you can guess the seed by observing a number of states (robot moves). This is similar to brute force guessing a password, used for encryption, as, some encryption algorithms are known as stream ciphers, and are basically (sometimes exactly), a one time pad that is used to obfuscate the data. Now, lets say that you know the pseudorandom number generator used is a simple lagged fibonacci generator. Then, you know that they are generating each number by calculating x(n) = x(n - 2) + x(n - 3) % 3. Therefore, by observing 3 different robot moves, you will then be able to predict all of the future moves. The seed, is the first 3 numbers supplied that give the sequence you observe. Now, most random number generators are not this simple, some have up to 1024 bit length seeds, and would be impossible for a modern computer to cycle through all of those possibilities in a brute force manner. So basically, what you would need to do, is to find out what PRNG algorithm is used, find out all possible initial seed values, and devise an algorithm to determine the seed the opponent robot is using based upon their actions. Depending on the algorithm, there are ways of guessing the seed faster than testing each and every one. If there is a faster way of guessing such a seed, this means that the PRNG in question is not suitable from cryptographic applications, as it means passwords are easier guessed. AES256 itself has a break, but it still takes theoretically 2 ^ 111 guesses (instead of the brute force 2 ^256 guesses), which means it has been broken, technically, but 2 ^ 111 is still way too many operations for modern computers to process in a meaningful time frame.
if the PRNG was lagged fibonacci (which is never used anymore, I am just giving a simple example) and you observed that the robot did option 0, then, 1, then 2... you would then know that the next thing the robot will do is... 1, since 0 + 1 % 3 = 1. You could also backtrack, and figure out what the initial values were for this PRNG, which represents the seed.

Generate very very large random numbers

How would you generate a very very large random number? I am thinking on the order of 2^10^9 (one billion bits). Any programming language -- I assume the solution would translate to other languages.
I would like a uniform distribution on [1,N].
My initial thoughts:
--You could randomly generate each digit and concatenate. Problem: even very good pseudorandom generators are likely to develop patterns with millions of digits, right?
You could perhaps help create large random numbers by raising random numbers to random exponents. Problem: you must make the math work so that the resulting number is still random, and you should be able to compute it in a reasonable amount of time (say, an hour).
If it helps, you could try to generate a possibly non-uniform distribution on a possibly smaller range (using the real numbers, for instance) and transform. Problem: this might be equally difficult.
Any ideas?
Generate log2(N) random bits to get a number M,
where M may be up to twice as large as N.
Repeat until M is in the range [1;N].
Now to generate the random bits you could either use a source of true randomness, which is expensive.
Or you might use some cryptographically secure random number generator, for example AES with a random key encrypting a counter for subsequent blocks of bits. The cryptographically secure implies that there can be no noticeable patterns.
It depends on what you need the data for. For most purposes, a PRNG is fast and simple. But they are not perfect. For instance I remember hearing that Monte Carlos simulations of chaotic systems are really good at revealing the underlying pattern in a PRNG.
If that is the sort of thing that you are doing, though, there is a simple trick I learned in grad school for generating lots of random data. Take a large (preferably rapidly changing) file. (Some big data structures from the running kernel are good.) Compress it to increase the entropy. Throw away the headers. Then for good measure, encrypt the result. If you're planning to use this for cryptographic purposes (and you didn't have a perfect entropy data set to work with), then reverse it and encrypt again.
The underlying theory is simple. Information theory tells us that there is no difference between a signal with no redundancy and pure random data. So if we pick a big file (ie lots of signal), remove redundancy with compression, and strip the headers, we have a pretty good random signal. Encryption does a really good job at removing artifacts. However encryption algorithms tend to work forward in blocks. So if someone could, despite everything, guess what was happening at the start of the file, that data is more easily guessable. But then reversing the file and encrypting again means that they would need to know the whole file, and our encryption, to find any pattern in the data.
The reason to pick a rapidly changing piece of data is that if you run out of data and want to generate more, you can go back to the same source again. Even small changes will, after that process, turn into an essentially uncorrelated random data set.
NTL: A Library for doing Number Theory
This was recommended by my Coding Theory and Cryptography teacher... so I guess it does the work right, and it's pretty easy to use.
RandomBnd, RandomBits, RandomLen -- routines for generating pseudo-random numbers
ZZ RandomLen_ZZ(long l);
// ZZ = psuedo-random number with precisely l bits,
// or 0 of l <= 0.
If you have a random number generator that generates random numbers of X bits. And concatenated bits of [X1, X2, ... Xn ] create the number you want of N bits, as long as each X is random, I don't see why your large number wouldn't be random as well for all intents and purposes. And if standard C rand() method is not secure enough, I'm sure there's plenty of other libraries (like the ones mentioned in this thread) whose pseudo-random numbers are "more random".
even very good pseudorandom generators are likely to develop patterns with millions of digits, right?
From the wikipedia on pseudo-random number generation:
A PRNG can be started from an arbitrary starting state using a seed state. It will always produce the same sequence thereafter when initialized with that state. The maximum length of the sequence before it begins to repeat is determined by the size of the state, measured in bits. However, since the length of the maximum period potentially doubles with each bit of 'state' added, it is easy to build PRNGs with periods long enough for many practical applications.
You could perhaps help create large random numbers by raising random numbers to random exponents
I assume you're suggesting something like populating the values of a scientific notation with random values?
E.g.: 1.58901231 x 10^5819203489
The problem with this is that your distribution is going to be logarithmic (or is that exponential? :) - same difference, it isn't even). You will never get a value that has the millionth digit set, yet contains a digit in the one's column.
you could try to generate a possibly non-uniform distribution on a possibly smaller range (using the real numbers, for instance) and transform
Not sure I understand this. Sounds like the same thing as the exponential solution, with the same problems. If you're talking about multiplying by a constant, then you'll get a lumpy distribution instead of a logarithmic (exponential?) one.
Suggested Solution
If you just need really big pseudo-random values, with a good distribution, use a PRNG algorithm with a larger state. The Periodicity of a PRNG is often the square of the number of bits, so it doesn't take that many bits to fill even a really large number.
From there, you can use your first solution:
You could randomly generate each digit and concatenate
Although I'd suggest that you use the full range of values returned by your PRNG (possibly 2^31 or 2^32), and populate a byte array with those values, splitting it up as necessary. Otherwise you might be throwing away a lot of bits of randomness. Also, scaling your values to a range (or using modulo) can easily screw up your distribution, so there's another reason to try to keep the max number of bits your PRNG can return. Be careful to pack your byte array full of the bits returned, though, or you'll again introduce lumpiness to your distribution.
The problem with those solution, though, is how to fill that (larger than normal) seed state with random-enough values. You might be able to use standard-size seeds (populated via time or GUID-style population), and populate your big-PRNG state with values from the smaller-PRNG. This might work if it isn't mission critical how well distributed your numbers are.
If you need truly cryptographically secure random values, the only real way to do it is use a natural form of randomness, such as that at http://www.random.org/. The disadvantages of natural randomness are availability, and the fact that many natural-random devices take a while to generate new entropy, so generating large amounts of data might be really slow.
You can also use a hybrid and be safe - natural-random seeds only (to avoid the slowness of generation), and PRNG for the rest of it. Re-seed periodically.

When is it appropriate to use floating precision data types?

It's clear that one shouldn't use floating precision when working with, say, monetary amounts since the variation in precision leads to inaccuracies when doing calculations with that amount.
That said, what are use cases when that is acceptable? And, what are the general principles one should have in mind when deciding?
Floating point numbers should be used for what they were designed for: computations where what you want is a fixed precision, and you only care that your answer is accurate to within a certain tolerance. If you need an exact answer in all cases, you're best using something else.
Here are three domains where you might use floating point:
Scientific Simulations
Science apps require a lot of number crunching, and often use sophisticated numerical methods to solve systems of differential equations. You're typically talking double-precision floating point here.
Games
Think of games as a simulation where it's ok to cheat. If the physics is "good enough" to seem real then it's ok for games, and you can make up in user experience what you're missing in terms of accuracy. Games usually use single-precision floating point.
Stats
Like science apps, statistical methods need a lot of floating point. A lot of the numerical methods are the same; the application domain is just different. You find a lot of statistics and monte carlo simulations in financial applications and in any field where you're analyzing a lot of survey data.
Floating point isn't trivial, and for most business applications you really don't need to know all these subtleties. You're fine just knowing that you can't represent some decimal numbers exactly in floating point, and that you should be sure to use some decimal type for prices and things like that.
If you really want to get into the details and understand all the tradeoffs and pitfalls, check out the classic What Every Programmer Should Know About Floating Point, or pick up a book on Numerical Analysis or Applied Numerical Linear Algebra if you're really adventurous.
I'm guessing you mean "floating point" here. The answer is, basically, any time the quantities involved are approximate, measured, rather than precise; any time the quantities involved are larger than can be conveniently represented precisely on the underlying machine; any time the need for computational speed overwhelms exact precision; and any time the appropriate precision can be maintained without other complexities.
For more details of this, you really need to read a numerical analysis book.
Short story is that if you need exact calculations, DO NOT USE floating point.
Don't use floating point numbers as loop indices: Don't get caught doing:
for ( d = 0.1; d < 1.0; d+=0.1)
{ /* Some Code... */ }
You will be surprised.
Don't use floating point numbers as keys to any sort of map because you can never count on equality behaving like you may expect.
Most real-world quantities are inexact, and typically we know their numeric properties with a lot less precision than a typical floating-point value. In almost all cases, the C types float and double are good enough.
It is necessary to know some of the pitfalls. For example, testing two floating-point numbers for equality is usually not what you want, since all it takes is a single bit of inaccuracy to make the comparison non-equal. tgamblin has provided some good references.
The usual exception is money, which is calculated exactly according to certain conventions that don't translate well to binary representations. Part of this is the constants used: you'll never see a pi% interest rate, or a 22/7% interest rate, but you might well see a 3.14% interest rate. In other words, the numbers used are typically expressed in exact decimal fractions, not all of which are exact binary fractions. Further, the rounding in calculations is governed by conventions that also don't translate well into binary. This makes it extremely difficult to precisely duplicate financial calculations with standard floating point, and therefore people use other methods for them.
It's appropriate to use floating point types when dealing with scientific or statistical calculations. These will invariably only have, say, 3-8 significant digits of accuracy.
As to whether to use single or double precision floating point types, this depends on your need for accuracy and how many significant digits you need. Typically though people just end up using doubles unless they have a good reason not to.
For example if you measure distance or weight or any physical quantity like that the number you come up with isn't exact: it has a certain number of significant digits based on the accuracy of your instruments and your measurements.
For calculations involving anything like this, floating point numbers are appropriate.
Also, if you're dealing with irrational numbers floating point types are appropriate (and really your only choice) eg linear algebra where you deal with square roots a lot.
Money is different because you typically need to be exact and every digit is significant.
I think you should ask the other way around: when should you not use floating point. For most numerical tasks, floating point is the preferred data type, as you can (almost) forget about overflow and other kind of problems typically encountered with integer types.
One way to look at floating point data type is that the precision is independent of the dynamic, that is whether the number is very small of very big (within an acceptable range of course), the number of meaningful digits is approximately the same.
One drawback is that floating point numbers have some surprising properties, like x == x can be False (if x is nan), they do not follow most mathematical rules (distributivity, that is x( y + z) != xy + xz). Depending on the values for z, y, and z, this can matters.
From Wikipedia:
Floating-point arithmetic is at its
best when it is simply being used to
measure real-world quantities over a
wide range of scales (such as the
orbital period of Io or the mass of
the proton), and at its worst when it
is expected to model the interactions
of quantities expressed as decimal
strings that are expected to be exact.
Floating point is fast but inexact. If that is an acceptable trade off, use floating point.

Psuedo-Random-Number-Generator from a computable normal number

Isn't it easily possible to construct a PRNG in such a fashion? Why is it not done?
That is, as far as I know we could simply have a PRNG that takes a seed n. When you ask for a random bit, it takes the nth digit of the binary expansion of the computable normal number, and increments n.
My first thought was that perhaps we hadn't found a computable normal number, but we have. The remaining thought is that there is a good reason not to-- either there's some property of PRNGs that I'm not familiar with that such a method would not have, or it would be impractical somehow, or is otherwise outstripped by other methods.
That would make predicting the output really simple.
Say, for example, you generate the integer 0x54a30b7f. If you have 4GiB of pi (or random noise or an actual normal number), chances are there's only going to be one (or maybe a handful) occurrence of that particular integer and I can predict with reasonably high probability all future numbers. This is a serious problem in the case of cryptographically strong PRNGs. If instead of simple sequential scan you use some function, I just have to follow the function which if it is difficult enough to follow it turns into a PRNG in it's own right.
If you are not concerned about the cryptographic strength of your generator, then there are much more compact ways of generating random numbers. Mersenne Twister, for example, has a much larger period without requiring a 4GiB lookup table.

Resources