A theoretical question here about the base or halting case in a recursive method, what's its standards?
I mean, is it normal not to have body in it, just a return statement?
Is it always like the following:
if (input operation value)
return sth;
Do you have different thoughts about it?
The pattern for recursive functions is that they look something like this:
f( value )
if ( test value )
return value
else
return f( simplify value )
I don't think you can say much more than that about general cases.
The base case is to terminate the loop (avoid becoming an infinite recursion). There's no standard in the base case, any input that is simple enough to be solved exactly can be chosen as one.
For example, this is perfectly valid:
int factorial (int n) {
if (n <= 5) {
// Not just a return statement
int x = 1;
while (n > 0) {
x *= n;
-- n;
}
return x;
} else {
return n * factorial(n-1);
}
}
In some cases, your base case is
return literal
In some cases, your base case is not simply "return a literal".
There cannot be a "standard" -- it depends on your function.
The "Syracuse Function" http://en.wikipedia.org/wiki/Collatz_conjecture for example,
doesn't have a trivial base case or a trivial literal value.
"Do you have different thoughts about it??" Isn't really a sensible question.
The recursion has to terminate, that's all. A trivial tail recursion may have a "base case" that returns a literal, or it may be a calculation. A more complex recursion may not have a trivial "base case".
It depends entirely on the particular recursive function. In general, it can't be an empty return; statement, though - for any recursive function that returns a value, the base case should also return a value of that type, since func(base) is also a perfectly valid call. For example, a recursive factorial function would return a 1 as the base value.
Related
I was working on this easy problem to practice basic Kotlin, and I ran into a stack overflow with the following code on the recursive return line:
class Solution {
fun isPalindrome(s: String): Boolean {
val cleaned = s.toLowerCase().replace(Regex("[^a-z0-9]"), "")
tailrec fun isPalindrome(start: Int, end: Int): Boolean {
if (start >= end) return true
return cleaned[start] == cleaned[end] && isPalindrome(start+1, end-1)
}
return isPalindrome(0, cleaned.length-1)
}
}
My understanding of tailrec is that it's supposed to convert my recursive function into an iterative one, which wouldn't be susceptible to this sort of crash. If I didn't implement tail recursion correctly, the compiler is supposed to issue an error.
Can someone explain to me why this crashes on large inputs, just like a standard recursive call would?
This behavior looks like a missing optimization of tail calls in short circuiting operators, where the fact that the last operand is being evaluated means that the expression result doesn't depend anymore on the previous operands.
Meanwhile you can rewrite your return statement as
return if (cleaned[start] != cleaned[end]) false else isPalindrome(start+1, end-1)
to get the same result + tail call optimization.
I'm trying to do some operations that would cause a StackOverflow in Kotlin just now.
Knowing that, I remembered that Kotlin has support for tailrec functions, so I tried to do:
private tailrec fun Turn.debuffPhase(): List<Turn> {
val turns = listOf(this)
if (facts.debuff == 0 || knight.damage == 0) {
return turns
}
// Recursively find all possible thresholds of debuffing
return turns + debuff(debuffsForNextThreshold()).debuffPhase()
}
Upon my surprise that IDEA didn't recognize it as a tailrec, I tried to unmake it a extension function and make it a normal function:
private tailrec fun debuffPhase(turn: Turn): List<Turn> {
val turns = listOf(turn)
if (turn.facts.debuff == 0 || turn.knight.damage == 0) {
return turns
}
// Recursively find all possible thresholds of debuffing
val newTurn = turn.debuff(turn.debuffsForNextThreshold())
return turns + debuffPhase(newTurn)
}
Even so it isn't accepted. The important isn't that the last function call is to the same function? I know that the + is a sign to the List plus function, but should it make a difference? All the examples I see on the internet for tail call for another languages allow those kind of actions.
I tried to do that with Int too, that seemed to be something more commonly used than addition to lists, but had the same result:
private tailrec fun discoverBuffsNeeded(dragon: RPGChar): Int {
val buffedDragon = dragon.buff(buff)
if (dragon.turnsToKill(initKnight) < 1 + buffedDragon.turnsToKill(initKnight)) {
return 0
}
return 1 + discoverBuffsNeeded(buffedDragon)
}
Shouldn't all those implementations allow for tail call? I thought of some other ways to solve that(Like passing the list as a MutableList on the parameters too), but when possible I try to avoid sending collections to be changed inside the function and this seems a case that this should be possible.
PS: About the question program, I'm implementing a solution to this problem.
None of your examples are tail-recursive.
A tail call is the last call in a subroutine. A recursive call is a call of a subroutine to itself. A tail-recursive call is a tail call of a subroutine to itself.
In all of your examples, the tail call is to +, not to the subroutine. So, all of those are recursive (because they call themselves), and all of those have tail calls (because every subroutine always has a "last call"), but none of them is tail-recursive (because the recursive call isn't the last call).
Infix notation can sometimes obscure what the tail call is, it is easier to see when you write every operation in prefix form or as a method call:
return plus(turns, debuff(debuffsForNextThreshold()).debuffPhase())
// or
return turns.plus(debuff(debuffsForNextThreshold()).debuffPhase())
Now it becomes much easier to see that the call to debuffPhase is not in tail position, but rather it is the call to plus (i.e. +) which is in tail position. If Kotlin had general tail calls, then that call to plus would indeed be eliminated, but AFAIK, Kotlin only has tail-recursion (like Scala), so it won't.
Without giving away an answer to your puzzle, here's a non-tail-recursive function.
fun fac(n: Int): Int =
if (n <= 1) 1 else n * fac(n - 1)
It is not tail recursive because the recursive call is not in a tail position, as noted by Jörg's answer.
It can be transformed into a tail-recursive function using CPS,
tailrec fun fac2(n: Int, k: Int = 1): Int =
if (n <= 1) k else fac2(n - 1, n * k)
although a better interface would likely hide the continuation in a private helper function.
fun fac3(n: Int): Int {
tailrec fun fac_continue(n: Int, k: Int): Int =
if (n <= 1) k else fac_continue(n - 1, n * k)
return fac_continue(n, 1)
}
For me when making a recursive method. I always need to spend a lot of time to do it, because I will make some test cases and to see whether my recursive case works and to draw a stack diagram. However, when I ask other about it, they just say that I need to believe myself it will work. How am I suppose to believe that if you don't know what is going on in the recursive case?
You define what is going on in the recursive case, just as you define the rest of the method. Imagine someone else wrote a method to do what the one you are writing does; you wouldn't have a problem calling that, would you? The only difference is that you are that method's author, and it just happens to be the one being written.
For example: I am writing the following method:
// Sort array a[i..j-1] in ascending order
method sort_array( a, i, j ) {
..
}
The base case is easy:
if ( i >= j-1 ) // there is at most one element to be sorted
return; // a[i..j-1] is already sorted
Now, when that isn't true, I could do the following:
else {
k = index_of_max( a, i, j );
swap( a, j-1, k );
At this point, I know that a[j-1] has the correct value, so I just need to sort what comes before it -- fortunately, I have a method to do just that:
sort_array( a, i, j-1 );
}
No leap of faith is required; I know that recursive call will work because I wrote the method to do just that.
I have some pseudocode here:
index = 0
function search(A, n)
if A[index] == n
return true
else
index += 1
return search(A, n)
print search ( [0, 1, 2, 3, 4 … 99], 5 )
Is this function recursive even with the index variable? I know that I'm calling the method inside of itself (which is recursion) but I don't know if proper recursion is allowed to have incrementing variables outside the function.
Yes. A recursive function is one that calls itself (or may do). Nothing else it does or does not do is relevant to that definition. "Does" is to be interpreted in the sense of code or potentiality, not in the sense of what actually happens on any given run.
On the other hand, there are plenty of things that it are unwise for a recursive function to do, and depending on a global variable to control its operation is one of them.
suggest you to put it in this way:
function search(A, n)
function aux(i)
if A[i] == n
return true
else
return aux(i+1)
return aux(0)
it's tail recursive.
I got this question in an interview. So, this seems to me a messed up Fibonacci seq. sum generator and this gives a stackoverflow. Because if(n==0) should be if(n<3) (exit condition is wrong). What should be the precise answer to this question? What was expected as an answer?
foo (int n) {
if (n == 0) return 1;
return foo(n-1) + foo(n-2);
}
UPDATE
What does this recursive function do?
What do you infer when you see these 3 lines of code. No debugging.
Yes, it's just a recursive Fibonacci method with an incorrect base case (although I don't think I'd use n < 3 either... it depends on how you define it).
As for "what was expected as an answer" - that would depend on the question. Were you asked exactly the question in the title of your post? If so, the answer is "it recurses forever until it blows up the stack when you pass it any value other than 0" - with an explanation, of course. (It will never end because either n-1 isn't 0, or n-2 isn't 0, or both.)
EDIT: The above answers the first question. To answer "What do you infer when you see these 3 lines of code" - I would infer that the developer in question has never run the code with a value other than 0, or doesn't care about whether or not the code works.
The problem with the code posted is that if we evaluate foo(1) we need to find foo(0) and foo (-1), foo(-1) then needs to find foo(-2) and foo(-3) and so on. This will keep putting more calls to foo() until there is no more space in the memory resulting in a stack overflow. How many calls to foo are made will depend on the size of the call stack, which will be implementation specific.
When I see these lines of code I immediately get the impression that whoever wrote it hasn't thought about all the possible inputs that could be fed to the function.
To make a recursive Fibonacci function that doesn't fail for foo(1) or a negative input we get:
foo (int n) {
if( n < 0 ) return 0;
if (n == 0) return 1;
return foo(n-1) + foo(n-2);
}
Edit: perhaps the return for a negative number should be something else, as the fibonacci sequence isn't implicitly defined for negative indexes.
However if we use the extension that fib(-n) = (-1)^(n+1) fib(n) we could get the following code:
int fib(int n) {
if( n == -1){
return 1;
}else if ( n < 0 ){
return ( (-1)^(-n+1 ) * fib(-n) );
}else if (n == 0){
return 1;
}else{
return fib(n-1) + fib(n-2);
}
}
suppose, you call foo ( 1 ), it will have two sub calls of foo(0) and foo(-1). As you can see, once you get to foo(-1), n will decrease indefinitely and will never reach a terminating condition.
The precise answer would be:
foo (int n) {
if (n <= 1) return 1; // assuming 0th and 1st fib is 1
return foo(n-1) + foo(n-2);
}
Its a recursive fibonacci function with 0th element being 1.
Ignoring the incorrect termination condition, the code is the "naive" recursive implementation of the Fibonacci function. It has very poor big-O time complexity. It would work fine for small n, but if n is greater than say 50 (I'm just guessing that number), then it would take "forever" to run.