How can I structure and recode messy categorical data in R? - r

I'm struggling with how to best structure categorical data that's messy, and comes from a dataset I'll need to clean.
The Coding Scheme
I'm analyzing data from a university science course exam. We're looking at patterns in
student responses, and we developed a coding scheme to represent the kinds of things
students are doing in their answers. A subset of the coding scheme is shown below.
Note that within each major code (1, 2, 3) are nested non-unique sub-codes (a, b, ...).
What the Raw Data Looks Like
I've created an anonymized, raw subset of my actual data which you can view here.
Part of my problem is that those who coded the data noticed that some students displayed
multiple patterns. The coders' solution was to create enough columns (reason1, reason2,
...) to hold students with multiple patterns. That becomes important because the order
(reason1, reason2) is arbitrary--two students (like student 41 and student 42 in my
dataset) who correctly applied "dependency" should both register in an analysis, regardless of
whether 3a appears in the reason column or the reason2 column.
How Can I Best Structure Student Data?
Part of my problem is that in the raw data, not all students display the same
patterns, or the same number of them, in the same order. Some students may do just one
thing, others may do several. So, an abstracted representation of example students might
look like this:
Note in the example above that student002 and student003 both are coded as "1b", although I've deliberately shown the order as different to reflect the reality of my data.
My (Practical) Questions
Should I concatenate reason1, reason2, ... into one column?
How can I (re)code the reasons in R to reflect the multiplicity for some students?
Thanks
I realize this question is as much about good data conceptualization as it is about specific features of R, but I thought it would be appropriate to ask it here. If you feel it's inappropriate for me to ask the question, please let me know in the comments, and stackoverflow will automatically flood my inbox with sadface emoticons. If I haven't been specific enough, please let me know and I'll do my best to be clearer.

Make it "long":
library(reshape)
dnow <- read.csv("~/Downloads/catsample20100504.csv")
dnow <- melt(dnow, id.vars=c("Student", "instructor"))
dnow$variable <- NULL ## since ordering does not matter
subset(dnow, Student%in%c(41,42)) ## see the results
What to do next will depend on the kind of analysis you would like to do. But the long format is the useful for irregular data such as yours.

you should use ddply from plyr and split on all of the columns if you want to take into account the different reasons, if you want to ignore them don't use those columns in the split. You'll need to clean up some of the question marks and extra stuff first though.
x <- ddply(data, c("split_column1", "split_column3" etc),
summarize(result_df, stats you want from result_df))

What's the (bigger picture) question you're attempting to answer? Why is this information interesting to you?
Are you just trying to find patterns such as 'if the student does this, then they also likely do this'?
Something I'd consider if that's the case - split the data set into smaller random samples for your analysis to reduce the risk of false positives.
Interesting problem though!

Related

Grouping and transposing data in R

It is hard to explain this without just showing what I have, where I am, and what I need in terms of data structure:
What structure I had:
Where I have got to with my transformation efforts:
What I need to end up with:
Notes:
I've not given actual names for anything as the data is classed as sensitive, but:
Metrics are things that can be measured- for example, the number of permanent or full-time jobs. The number of metrics is larger than presented in the test data (and the example structure above).
Each metric has many years of data (whilst trying to do the code I have restricted myself to just 3 years. The illustration of the structure is based on this test). The number of years captured will change overtime- generally it will increase.
The number of policies will fluctuate, I've just labelled them policy 1, 2 etc for sensitivity reasons and limited the number whilst testing the code. Again, I have limited the number to make it easier to check the outputs.
The source data comes from a workbook of surveys with a tab for each policy. The initial import creates a list of tibbles consisting of a row for each metric, and 4 columns (the metric names, the values for 2024, the values for 2030, and the values for 2035). I converted this to a dataframe, created a vector to be a column header and used cbind() to put this on top to get the "What structure I had" data.
To get to the "Where I have got to with my transformation efforts" version of the table, I removed all the metric columns, created another vector of metrics and used rbind() to put this as the first column.
The idea in my head was to group the data by policy to get a vector for each metric, then transpose this so that the metric became the column, and the grouped data would become the row. Then expand the data to get the metrics repeated for each year. A friend of mine who does coding (but has never used R) has suggested using loops might be a better way forward. Again, I am not sure of the best approach so welcome advice. On Reddit someone suggested using pivot_wider/pivot_longer but this appears to be a summarise tool and I am not trying to summarise the data rather transform its structure.
Any suggestions on approaches or possible tools/functions to use would be gratefully received. I am learning R whilst trying to pull this data together to create a database that can be used for analysis, so, if my approach sounds weird, feel free to suggest alternatives. Thanks

R - select cases so that the mean of a variable is some given number

I previously worked on a project where we examined some sociological data. I did the descriptive statistics and after several months, I was asked to make some graphs from the stats.
I made the graphs, but something seemed odd and when I compared the graph to the numbers in the report, I noticed that they are different. Upon investigating further, I noticed that my cleaning code (which removed participants with duplicate IDs) now results with more rows, e.g. more participants with unique IDs than previously. I now have 730 participants, whereas previously there were 702 I don't know if this was due to updates of some packages and unfortunately I cannot post the actual data here because it is confidential, but I am trying to find out who these 28 participants are and what happened in the data.
Therefore, I would like to know if there is a method that allows the user to filter the cases so that the mean of some variables is a set number. Ideally it would be something like this, but of course I know that it's not going to work in this form:
iris %>%
filter_if(mean(.$Petal.Length) == 1.3)
I know that this was an incorrect attempt but I don't know any other way that I would try this, so I am looking for help and suggestions.
I'm not convinced this is a tractable problem, but you may get somewhere by doing the following.
Firstly, work out what the sum of the variable was in your original analysis, and what it is now:
old_sum <- 702 * old_mean
new_sum <- 730 * new_mean
Now work out what the sum of the variable in the extra 28 cases would be:
extra_sum <- new_sum - old_sum
This allows you to work out the relative proportions of the sum of the variable from the old cases and from the extra cases. Put these proportions in a vector:
contributions <- c(extra_sum/new_sum, old_sum/new_sum)
Now, using the functions described in my answer to this question, you can find the optimal solution to partitioning your variable to match these two proportions. The rows which end up in the "extra" partition are likely to be the new ones. Even if they aren't the new ones, you will be left with a sample that has a mean that differs from your original by less than one part in a million.

How do I change numeric data that is reading in as a character in R?

I am trying to read in a csv file (exported from survey monkey).
I have tried survey <- read.csv("Survey Item Evaluation2.csv", header=TRUE, stringsAsFactors = FALSE)
I ran skim(survey), which shows it is reading in as characters.
str(survey) output: data.frame: 623obs. of 68 variables. G1 (which is a survey item) reads in as chr "1" "3" "4" "1"....
How do I change those survey item variables to numeric?
The correct answer to your question is given in the first two comments by two very well respected people with a combined reputation of over 600k. I'll post their very similar answer here:
as.numeric(survey$G1)
However, that is not very good advice in my opinion. Your question should really have been:
"Why am I getting character data when I'm sure this variable should be numeric?"
To which the answer would be: "Either your not reading the data correctly (does the data start at row 3), or there is non-numeric (garbage) data among the numeric data (for example NA is entered as . or some other character), or certain people entered a , instead of a . to represent decimal point (such as nationals of Indonesia and some European countries), or they entered a thin thousand separator instead of a comma, or some other unknown reason which needs further investigation. Maybe a certain group of people enter text instead of numbers for their age (fifty instead of 50), or they put a . at the end of the data, for example 62.5. instead of 62.5 for their age (older folks were taught to always end a sentence with a period!). In these last two cases, certain groups (elderly) will have missing data and your data is then missing not at random (MNAR), a big bias in your analysis".
I see this all too often and I worry that new users of R are making terrible mistakes due being given poor advice, or because they didn't learn the basics. Importing data is the first step of analysis. It can be difficult because data files come in all shapes and sizes - there is no global standard. Data is also often entered without any quality control mechanisms. I'm glad that you added the stringsAsFactors=FALSE argument in your command to import the data. Someone gave you good advice there. But that person forgot to advise you not to trust your data, especially if it was given to you by someone else to analyse. Always check every variable carefully before the analysis. This can take time, but it can be worth the investment.
Hope that helps at least someone out there.

R + Bioconductor : combining probesets in an ExpressionSet

First off, this may be the wrong Forum for this question, as it's pretty darn R+Bioconductor specific. Here's what I have:
library('GEOquery')
GDS = getGEO('GDS785')
cd4T = GDS2eSet(GDS)
cd4T <- cd4T[!fData(cd4T)$symbol == "",]
Now cd4T is an ExpressionSet object which wraps a big matrix with 19794 rows (probesets) and 15 columns (samples). The final line gets rid of all probesets that do not have corresponding gene symbols. Now the trouble is that most genes in this set are assigned to more than one probeset. You can see this by doing
gene_symbols = factor(fData(cd4T)$Gene.symbol)
length(gene_symbols)-length(levels(gene_symbols))
[1] 6897
So only 6897 of my 19794 probesets have unique probeset -> gene mappings. I'd like to somehow combine the expression levels of each probeset associated with each gene. I don't care much about the actual probe id for each probe. I'd like very much to end up with an ExpressionSet containing the merged information as all of my downstream analysis is designed to work with this class.
I think I can write some code that will do this by hand, and make a new expression set from scratch. However, I'm assuming this can't be a new problem and that code exists to do it, using a statistically sound method to combine the gene expression levels. I'm guessing there's a proper name for this also but my googles aren't showing up much of use. Can anyone help?
I'm not an expert, but from what I've seen over the years everyone has their own favorite way of combining probesets. The two methods that I've seen used the most on a large scale has been using only the probeset which has the largest variance across the expression matrix and the other being to take the mean of the probesets and creating a meta-probeset out of it. For smaller blocks of probesets I've seen people use more intensive methods involving looking at per-probeset plots to get a feel for what's going on ... generally what happens is that one probeset turns out to be the 'good' one and the rest aren't very good.
I haven't seen generalized code to do this - as an example we recently realized in my lab that a few of us have our own private functions to do this same thing.
The word you are looking for is 'nsFilter' in R genefilter package. This function assign two major things, it looks for only entrez gene ids, rest of the probesets will be filtered out. When an entrez id has multiple probesets, then the largest value will be retained and the others removed. Now you have unique entrez gene id mapped matrix. Hope this helps.

Fuzzy matching of product names

I need to automatically match product names (cameras, laptops, tv-s etc) that come from different sources to a canonical name in the database.
For example "Canon PowerShot a20IS", "NEW powershot A20 IS from Canon" and "Digital Camera Canon PS A20IS"
should all match "Canon PowerShot A20 IS". I've worked with levenshtein distance with some added heuristics (removing obvious common words, assigning higher cost to number changes etc), which works to some extent, but not well enough unfortunately.
The main problem is that even single-letter changes in relevant keywords can make a huge difference, but it's not easy to detect which are the relevant keywords. Consider for example three product names:
Lenovo T400
Lenovo R400
New Lenovo T-400, Core 2 Duo
The first two are ridiculously similar strings by any standard (ok, soundex might help to disinguish the T and R in this case, but the names might as well be 400T and 400R), the first and the third are quite far from each other as strings, but are the same product.
Obviously, the matching algorithm cannot be a 100% precise, my goal is to automatically match around 80% of the names with a high confidence.
Any ideas or references is much appreciated
I think this will boil down to distinguishing key words such as Lenovo from chaff such as New.
I would run some analysis over the database of names to identify key words. You could use code similar to that used to generate a word cloud.
Then I would hand-edit the list to remove anything obviously chaff, like maybe New is actually common but not key.
Then you will have a list of key words that can be used to help identify similarities. You would associate the "raw" name with its keywords, and use those keywords when comparing two or more raw names for similarities (literally, percentage of shared keywords).
Not a perfect solution by any stretch, but I don't think you are expecting one?
The key understanding here is that you do have a proper distance metric. That is in fact not your problem at all. Your problem is in classification.
Let me give you an example. Say you have 20 entries for the Foo X1 and 20 for the Foo Y1. You can safely assume they are two groups. On the other hand, if you have 39 entries for the Bar X1 and 1 for the Bar Y1, you should treat them as a single group.
Now, the distance X1 <-> Y1 is the same in both examples, so why is there a difference in the classification? That is because Bar Y1 is an outlier, whereas Foo Y1 isn't.
The funny part is that you do not actually need to do a whole lot of work to determine these groups up front. You simply do an recursive classification. You start out with node per group, and then add the a supernode for the two closest nodes. In the supernode, store the best assumption, the size of its subtree and the variation in it. As many of your strings will be identical, you'll soon get large subtrees with identical entries. Recursion ends with the supernode containing at the root of the tree.
Now map the canonical names against this tree. You'll quickly see that each will match an entire subtree. Now, use the distances between these trees to pick the distance cutoff for that entry. If you have both Foo X1 and Foo Y1 products in the database, the cut-off distance will need to be lower to reflect that.
edg's answer is in the right direction, I think - you need to distinguish key words from fluff.
Context matters. To take your example, Core 2 Duo is fluff when looking at two instances of a T400, but not when looking at a a CPU OEM package.
If you can mark in your database which parts of the canonical form of a product name are more important and must appear in one form or another to identify a product, you should do that. Maybe through the use of some sort of semantic markup? Can you afford to have a human mark up the database?
You can try to define equivalency classes for things like "T-400", "T400", "T 400" etc. Maybe a set of rules that say "numbers bind more strongly than letters attached to those numbers."
Breaking down into cases based on manufacturer, model number, etc. might be a good approach. I would recommend that you look at techniques for term spotting to try and accomplish that: http://www.worldcat.org/isbn/9780262100854
Designing everything in a flexible framework that's mostly rule driven, where the rules can be modified based on your needs and emerging bad patterns (read: things that break your algorithm) would be a good idea, as well. This way you'd be able to improve the system's performance based on real world data.
You might be able to make use of a trigram search for this. I must admit I've never seen the algorithm to implement an index, but have seen it working in pharmaceutical applications, where it copes very well indeed with badly misspelt drug names. You might be able to apply the same kind of logic to this problem.
This is a problem of record linkage. The dedupe python library provides a complete implementation, but even if you don't use python, the documentation has a good overview of how to approach this problem.
Briefly, within the standard paradigm, this task is broken into three stages
Compare the fields, in this case just the name. You can use one or more comparator for this, for example an edit distance like the Levenshtein distance or something like the cosine distance that compares the number of common words.
Turn an array fo distance scores into a probability that a pair of records are truly about the same thing
Cluster those pairwise probability scores into groups of records that likely all refer to the same thing.
You might want to create logic that ignores the letter/number combination of model numbers (since they're nigh always extremely similar).
Not having any experience with this type of problem, but I think a very naive implementation would be to tokenize the search term, and search for matches that happen to contain any of the tokens.
"Canon PowerShot A20 IS", for example, tokenizes into:
Canon
Powershot
A20
IS
which would match each of the other items you want to show up in the results. Of course, this strategy will likely produce a whole lot of false matches as well.
Another strategy would be to store "keywords" with each item, such as "camera", "canon", "digital camera", and searching based on items that have matching keywords. In addition, if you stored other attributes such as Maker, Brand, etc., you could search on each of these.
Spell checking algorithms come to mind.
Although I could not find a good sample implementation, I believe you can modify a basic spell checking algorithm to comes up with satisfactory results. i.e. working with words as a unit instead of a character.
The bits and pieces left in my memory:
Strip out all common words (a, an, the, new). What is "common" depends on context.
Take the first letter of each word and its length and make that an word key.
When a suspect word comes up, looks for words with the same or similar word key.
It might not solve your problems directly... but you say you were looking for ideas, right?
:-)
That is exactly the problem I'm working on in my spare time. What I came up with is:
based on keywords narrow down the scope of search:
in this case you could have some hierarchy:
type --> company --> model
so that you'd match
"Digital Camera" for a type
"Canon" for company and there you'd be left with much narrower scope to search.
You could work this down even further by introducing product lines etc.
But the main point is, this probably has to be done iteratively.
We can use the Datadecision service for matching products.
It will allow you to automatically match your product data using statistical algorithms. This operation is done after defining a threshold score of confidence.
All data that cannot be automatically matched will have to be manually reviewed through a dedicated user interface.
The online service uses lookup tables to store synonyms as well as your manual matching history. This allows you to improve the data matching automation next time you import new data.
I worked on the exact same thing in the past. What I have done is using an NLP method; TF-IDF Vectorizer to assign weights to each word. For example in your case:
Canon PowerShot a20IS
Canon --> weight = 0.05 (not a very distinguishing word)
PowerShot --> weight = 0.37 (can be distinguishing)
a20IS --> weight = 0.96 (very distinguishing)
This will tell your model which words to care and which words to not. I had quite good matches thanks to TF-IDF.
But note this: a20IS cannot be recognized as a20 IS, you may consider to use some kind of regex to filter such cases.
After that, you can use a numeric calculation like cosine similarity.

Resources