Hello all math masters, I got a problem for you:
I have a 2D game (top down), and I would like to make the character escape from a shot, but not just walk away from the shot (I mean, don't be pushed by the shot), I want it to have a good dodging skills.
The variables are:
shotX - shot x position
shotY - shot y position
shotSpeedX - shot x speed
shotSpeedY - shot x speed
charX - character x position
charY - character y position
keyLeft - Set to true to make the character press the to left key
keyRight - Set to true to make the character press the to right key
keyUp - Set to true to make the character press the to up key
keyDown - Set to true to make the character press the down key
I can understand the following languages:
C/C++
Java
Actionscript 2/3
Javascript
I got this code (Actionscript 3), but sometimes it doesn't work:
var escapeToLeft:Boolean = false;
var r:Number = Math.atan2(0 - shotSpeedY, 0 - shotSpeedX)
var angle:Number = Math.atan2(charY - (shotY + shotSpeedY), charX - (shotX + shotSpeedX));
var b:Number = diepix.fixRotation(r-angle); // This function make the number between -180 and 180
if(b<0) {
escapeToLeft = true;
}
r += (escapeToLeft?1:0 - 1) * Math.PI / 2;
var cx:Number = Math.cos(r);
var cy:Number = Math.sin(r);
if(cx < 0.0) {
keyLeft = true;
}else {
keyRight = true;
}
if(cy < 0.0) {
keyUp = true;
}else {
keyDown = true;
}
Some observations:
Optimal dodging probably involves moving at a 90 degree angle from the bullets direction. That way, you get out of harms way the quickest.
If you do err, you want to err in the direction of the bullet, as that buys you time.
you can calculate 90 degrees to bullet direction with the scalar product
find the closest compass direction to the calculated optimal angle (4 possible answers)
are you allowed to go up and left at the same time? Now you have 8 possible answers to a bullet
bonus points for dodging in optimal direction according to second point
The scalar product of two vectors (ax, ay) and (bx, by) is ax * bx + ay * by. This is 0 if they are orthogonal (90 degrees). So, given the bullet (ax, ay), find a direction (bx, by) to run that has a scalar product of 0:
ax * bx must equal ay * by, so (bx, by) = (-ax, -ay)
Now to find the closest point on the compass for (bx, by), the direction you would like to run to. You can probably figure out the technique from the answer to a question of mine here on SO: How to "snap" a directional (2D) vector to a compass (N, NE, E, SE, S, SW, W, NW)? (note, thow, that I was using a wonky coordinate system there...)
If you have only 4 compass directions, your easiest path is to take:
max(abs(bx), abs(by))
The bigger vector component will show you the general direction to go - for
bx positive: right
bx negative: left
by positive: up (unless (0, 0) is top left with y positive in bottom left...)
by negative: down
I guess you should be able to come up with the rest on your own - otherwise, good luck on writing your own game!
I am not following what the line
var angle:Number = Math.atan2(charY - (shotY + shotSpeedY), charX - (shotX + shotSpeedX));
is supposed to be doing. The vector ( charY - shotY, charX - shotX ) would be the radius vector pointing from the location of the shot to the location of the character. But what do you have when you subtract a speed vector from that, as you are doing in this line?
It seems to me that what you need to do is:
Calculate the radius vector (rY, rX) where rY = shotY - charY; rX = xhotX - charX
Calculate the optimal direction of jump, if the character weren't constrained to a compass point.
Start with a vector rotated 90 degrees from the shot-character radius vector. Say vJump = ( rX, -rY ). (I think Daren has this calculation slightly wrong--you are transposing the two coordinates, and reversing one of their signs.)
The character should either wants to jump in the direction of vJump or the direction of -vJump. To know which, take the scalar product of vJump with (shotSpeedY, shotSpeedX). If this is positive, then the character is jumping towards the bullet, which you don't want, obviously, so reverse the sign of both components of vJump in this case.
Jump in the permissible direction that is closest to vJump. In the code you listed, you are constrained to jump in one of the diagonal directions--you will never jump in one of the cardinal directions. This may in fact be the mathematically optimal solution, since the diagonal jumps are probably longer than the cardinal jumps by a factor of 1.414.
If your jumps are actually equal distance, however, or if you just don't like how it looks if the character always jumps diagonally, you can test each of the eight cardinal and intermediate directions by calculating the scalar product between vJump and each of the eight direction vectors (0,1), (0.7071,0.7071), (1,0), (0.7071,-0.7071), etc. Take the direction that gives you the biggest positive scalar product. Given the patterns present, with some clever programming you can do this in fewer than eight tests.
Note that this algorithm avoids any math more complicated than addition and multiplication, so will likely have much better performance than something that requires trig functions.
Related
Perhaps the question title needs some work.
For context this is for the purpose of a Koch Snowflake (using C-like math syntax in a formula node in LabVIEW), thus why the triangle must be the correct way. (As given 2 points an equilateral triangle may be in one of two directions.)
To briefly go over the algorithm: I have an array of 4 predefined coordinates initially forming a triangle, the first "generation" of the fractal. To generate the next iteration, one must for each line (pair of coordinates) get the 1/3rd and 2/3rd midpoints to be the base of a new triangle on that face, and then calculate the position of the 3rd point of the new triangle (the subject of this question). Do this for all current sides, concatenating the resulting arrays into a new array that forms the next generation of the snowflake.
The array of coordinates is in a clockwise order, e.g. each vertex travelling clockwise around the shape corresponds to the next item in the array, something like this for the 2nd generation:
This means that when going to add a triangle to a face, e.g. between, in that image, the vertices labelled 0 and 1, you first get the midpoints which I'll call "c" and "d", you can just rotate "d" anti-clockwise around "c" by 60 degrees to find where the new triangle top point will be (labelled e).
I believe this should hold (e.g. 60 degrees anticlockwise rotating the later point around the earlier) for anywhere around the snowflake, however currently my maths only seems to work in the case where the initial triangle has a vertical side: [(0,0), (0,1)]. Else wise the triangle goes off in some other direction.
I believe I have correctly constructed my loops such that the triangle generating VI (virtual instrument, effectively a "function" in written languages) will work on each line segment sequentially, but my actual calculation isn't working and I am at a loss as to how to get it in the right direction. Below is my current maths for calculating the triangle points from a single line segment, where a and b are the original vertices of the segment, c and d form new triangle base that are in-line with the original line, and e is the part that sticks out. I don't want to call it "top" as for a triangle formed from a segment going from upper-right to lower-left, the "top" will stick down.
cx = ax + (bx - ax)/3;
dx = ax + 2*(bx - ax)/3;
cy = ay + (by - ay)/3;
dy = ay + 2*(by - ay)/3;
dX = dx - cx;
dY = dy - cy;
ex = (cos(1.0471975512) * dX + sin(1.0471975512) * dY) + cx;
ey = (sin(1.0471975512) * dX + cos(1.0471975512) * dY) + cy;
note 1.0471975512 is just 60 degrees in radians.
Currently for generation 2 it makes this: (note the seemingly separated triangle to the left is formed by the 2 triangles on the top and bottom having their e vertices meet in the middle and is not actually an independent triangle.)
I suspect the necessity for having slightly different equations depending on weather ax or bx is larger etc, perhaps something to do with how the periodicity of sin/cos may need to be accounted for (something about quadrants in spherical coordinates?), as it looks like the misplaced triangles are at 60 degrees, just that the angle is between the wrong lines. However this is a guess and I'm just not able to imagine how to do this programmatically let alone on paper.
Thankfully the maths formula node allows for if and else statements which would allow for this to be implemented if it's the case but as said I am not awfully familiar with adjusting for what I'll naively call the "quadrants thing", and am unsure how to know which quadrant one is in for each case.
This was a long and rambling question which inevitably tempts nonsense so if you've any clarifying questions please comment and I'll try to fix anything/everything.
Answering my own question thanks to #JohanC, Unsurprisingly this was a case of making many tiny adjustments and giving up just before getting it right.
The correct formula was this:
ex = (cos(1.0471975512) * dX + sin(1.0471975512) * dY) + cx;
ey = (-sin(1.0471975512) * dX + cos(1.0471975512) * dY) + cy;
just adding a minus to the second sine function. Note that if one were travelling anticlockwise then one would want to rotate points clockwise, so you instead have the 1st sine function negated and the second one positive.
How can we use vector and scalar in games? What benefit from that.
Could someone please indicate precisely the difference between a scalar and a vector in games field ? I find no matter how many times I try to understand but I maybe need examples for that.
A scalar is just another word for a number. The distinction is that a scalar is a number that is part of a vector. There is nothing special about a scalar.
A vector is a set of numbers (one or more) that define something, in the most common case you have 2 numbers representing a 2D vector or 3 numbers representing a 3D vector. The abstract notion for a vector is simply an arrow.
Take a piece of graph paper. Select any point on that paper and call it the origin. Its coordinate will be x = 0, y = 0. Now draw a straight line from that point in any direction and any length. To describe that arrow you need to define the vector. Count how far across the page the end of the arrow is from the start (origin) and that is the x component. Then how far up the page and that is the y component.
You have just created a vector that has two numbers (x,y) that completely describe the arrow on the paper. This type of vector always starts at zero. You can also describe the vector by its direction (ie north, east, south...) and length.
In 3D you need 3 numbers to describe any arrow. (x,y,z)
Vectors are very handy. You can use a vector to describe how fast something is moving and in what direction. The vector represents a little arrow that starts where the object is now and ends where the object will be in the next time unit.
Thus an object at coordinate x,y has a vector velocity(0.2,0.3). To calculate the position of the object in the next time unit just add the vector to the coordinate
newXPos = currentXPos + velocityVectorX
newYPos = currentYPos + velocityVectorY
If you want to slow the speed by half you can multiply the vector by 0.5
velocityVectorX = velocityVectorX * 0.5
velocityVectorY = velocityVectorY * 0.5
You do the same to increase the speed.
velocityVectorX = velocityVectorX * 2
velocityVectorY = velocityVectorY * 2
You may have an object in 3D space that has many forces acting on it. There is gravity a vector (arrow) pointing down (G). The force of the air resistance pointing up (R). The current velocity another arrow pointing in the direction it is traveling (V). You can have as many as you like (need) to describe all the forces that push and pull at the object. When you need to calculate the position of the object for the next instance in time (say one second) you just add all the force vectors together to get the total force as a vector and add that to the objects position
Object.x = Object.x + G.x + R.x + V.x;
Object.y = Object.y + G.y + R.y + V.y;
Object.z = Object.z + G.y + R.z + V.z;
If you just want the velocity
V.x = V.x + G.x + R.x;
V.y = V.y + G.y + R.y;
V.z = V.z + G.y + R.z;
That is the new velocity in one second.
There are many things that can be done with a vector. A vector can be used to point away from a surface in 3D, this vector is called a surface normal. The you create a vector from a point on that surface pointing to a light. The cosine of the angle between the two vectors is how much light the surface will reflect.
You can use a vector to represent the three direction in space an object has. Say a box, there is a 3D vector pointing along the width, another along the height and the last along the depth. The length of each vector represents the length of each side. You can make another vector to represent how far the corner of the box is from the origin (any known point) In 3D these 4 vectors are used to represent the object and is called a transformation matrix (just another type of vector made up of vectors)
The list of things vectors can do is endless.
The basics is just like number, you can add, subtract, multiply and divide and vector.
Then there are a host of special functions for vectors, normalize, transform, dot product and cross product to name but a few. For these things people normally use a library that does all this for you. My view is that if you really want to learn about vectors and how they are used write your own vector library at some point until then use a library.
Hope that cleared the mud a little bit for you, it is always difficult to describe something you have used for a long time to someone that is new to it so feel free to ask questions in the comments if you need.
I have two points (x1, y1) and (x2,y2) which represent the location of two entities in my space. I calculate the Euclidian distance between them using Pythagoras' theorem and everything is wonderful. However, if my space becomes finite, I want to define a new shortest distance between the points that "wraps around" the seams of the map. For example, if I have point A as (10, 10) and point B as (90,10), and my map is 100 units wide, I'd like to calculate the distance between A and B as 20 (out the right edge of the map and back into the left edge), instead of 80, which is the normal Euclidian distance.
I think my issue is that I'm using a coordinate system that isn't quite right for what I'm trying to do, and that really my flat square map is more of a seamless doughnut shape. Any suggestions for how to implement a system of this nature and convert back and forth from Cartesian coordinates would be appreciated too!
Toroidal plane? Okay, I'll bite.
var raw_dx = Math.abs(x2 - x1);
var raw_dy = Math.abs(y2 - y1);
var dx = (raw_dx < (xmax / 2)) ? raw_dx : xmax - raw_dx;
var dy = (raw_dy < (ymax / 2)) ? raw_dy : ymax - raw_dy;
var l2dist = Math.sqrt((dx * dx) + (dy * dy));
There's a correspondence here between the rollover behavior of your x and y coordinates and the rollover behavior of signed integers represented using the base's complement representation in the method of complements.
If your coordinate bounds map exactly to the bounds of a binary integer type supported by your language, you can take advantage of the two's complement representation used by nearly all current machines by simply performing the subtraction directly, ignoring overflow and reinterpreting the result as a signed value of the same size as the original coordinate. In the general case, you're not going to be that lucky, so the above dance with abs, compare and subtract is required.
Although the context of this question is about making a 2d/3d game, the problem i have boils down to some math.
Although its a 2.5D world, lets pretend its just 2d for this question.
// xa: x-accent, the x coordinate of the projection
// mapP: a coordinate on a map which need to be projected
// _Dist_ values are constants for the projection, choosing them correctly will result in i.e. an isometric projection
xa = mapP.x * xDistX + mapP.y * xDistY;
ya = mapP.x * yDistX + mapP.y * yDistY;
xDistX and yDistX determine the angle of the x-axis, and xDistY and yDistY determine the angle of the y-axis on the projection (and also the size of the grid, but lets assume this is 1-pixel for simplicity).
x-axis-angle = atan(yDistX/xDistX)
y-axis-angle = atan(yDistY/yDistY)
a "normal" coordinate system like this
--------------- x
|
|
|
|
|
y
has values like this:
xDistX = 1;
yDistX = 0;
xDistY = 0;
YDistY = 1;
So every step in x direction will result on the projection to 1 pixel to the right end 0 pixels down. Every step in the y direction of the projection will result in 0 steps to the right and 1 pixel down.
When choosing the correct xDistX, yDistX, xDistY, yDistY, you can project any trimetric or dimetric system (which is why i chose this).
So far so good, when this is drawn everything turns out okay. If "my system" and mindset are clear, lets move on to perspective.
I wanted to add some perspective to this grid so i added some extra's like this:
camera = new MapPoint(60, 60);
dx = mapP.x - camera.x; // delta x
dy = mapP.y - camera.y; // delta y
dist = Math.sqrt(dx * dx + dy * dy); // dist is the distance to the camera, Pythagoras etc.. all objects must be in front of the camera
fac = 1 - dist / 100; // this formula determines the amount of perspective
xa = fac * (mapP.x * xDistX + mapP.y * xDistY) ;
ya = fac * (mapP.x * yDistX + mapP.y * yDistY );
Now the real hard part... what if you got a (xa,ya) point on the projection and want to calculate the original point (x,y).
For the first case (without perspective) i did find the inverse function, but how can this be done for the formula with the perspective. May math skills are not quite up to the challenge to solve this.
( I vaguely remember from a long time ago mathematica could create inverse function for some special cases... could it solve this problem? Could someone maybe try?)
The function you've defined doesn't have an inverse. Just as an example, as user207422 already pointed out anything that's 100 units away from the camera will get mapped to (xa,ya)=(0,0), so the inverse isn't uniquely defined.
More importantly, that's not how you calculate perspective. Generally the perspective scaling factor is defined to be viewdist/zdist where zdist is the perpendicular distance from the camera to the object and viewdist is a constant which is the distance from the camera to the hypothetical screen onto which everything is being projected. (See the diagram here, but feel free to ignore everything else on that page.) The scaling factor you're using in your example doesn't have the same behaviour.
Here's a stab at trying to convert your code into a correct perspective calculation (note I'm not simplifying to 2D; perspective is about projecting three dimensions to two, trying to simplify the problem to 2D is kind of pointless):
camera = new MapPoint(60, 60, 10);
camera_z = camera.x*zDistX + camera.y*zDistY + camera.z*zDistz;
// viewdist is the distance from the viewer's eye to the screen in
// "world units". You'll have to fiddle with this, probably.
viewdist = 10.0;
xa = mapP.x*xDistX + mapP.y*xDistY + mapP.z*xDistZ;
ya = mapP.x*yDistX + mapP.y*yDistY + mapP.z*yDistZ;
za = mapP.x*zDistX + mapP.y*zDistY + mapP.z*zDistZ;
zdist = camera_z - za;
scaling_factor = viewdist / zdist;
xa *= scaling_factor;
ya *= scaling_factor;
You're only going to return xa and ya from this function; za is just for the perspective calculation. I'm assuming the the "za-direction" points out of the screen, so if the pre-projection x-axis points towards the viewer then zDistX should be positive and vice-versa, and similarly for zDistY. For a trimetric projection you would probably have xDistZ==0, yDistZ<0, and zDistZ==0. This would make the pre-projection z-axis point straight up post-projection.
Now the bad news: this function doesn't have an inverse either. Any point (xa,ya) is the image of an infinite number of points (x,y,z). But! If you assume that z=0, then you can solve for x and y, which is possibly good enough.
To do that you'll have to do some linear algebra. Compute camera_x and camera_y similar to camera_z. That's the post-transformation coordinates of the camera. The point on the screen has post-tranformation coordinates (xa,ya,camera_z-viewdist). Draw a line through those two points, and calculate where in intersects the plane spanned by the vectors (xDistX, yDistX, zDistX) and (xDistY, yDistY, zDistY). In other words, you need to solve the equations:
x*xDistX + y*xDistY == s*camera_x + (1-s)*xa
x*yDistX + y*yDistY == s*camera_y + (1-s)*ya
x*zDistX + y*zDistY == s*camera_z + (1-s)*(camera_z - viewdist)
It's not pretty, but it will work.
I think that with your post i can solve the problem. Still, to clarify some questions:
Solving the problem in 2d is useless indeed, but this was only done to make the problem easier to grasp (for me and for the readers here). My program actually give's a perfect 3d projection (i checked it with 3d images rendered with blender). I did left something out about the inverse function though. The inverse function is only for coordinates between 0..camera.x * 0.5 and 0.. camera.y*0.5. So in my example between 0 and 30. But even then i have doubt's about my function.
In my projection the z-axis is always straight up, so to calculate the height of an object i only used the vieuwingangle. But since you cant actually fly or jumpt into the sky everything has only a 2d point. This also means that when you try to solve the x and y, the z really is 0.
I know not every funcion has an inverse, and some functions do, but only for a particular domain. My basic thought in this all was... if i can draw a grid using a function... every point on that grid maps to exactly one map-point. I can read the x and y coordinate so if i just had the correct function i would be able to calculate the inverse.
But there is no better replacement then some good solid math, and im very glad you took the time to give a very helpfull responce :).
I'm trying to make a triangle (isosceles triangle) to move around the screen and at the same time slightly rotate it when a user presses a directional key (like right or left).
I would like the nose (top point) of the triangle to lead the triangle at all times. (Like that old asteroids game).
My problem is with the maths behind this. At every X time interval, I want the triangle to move in "some direction", I need help finding this direction (x and y increments/decrements).
I can find the center point (Centroid) of the triangle, and I have the top most x an y points, so I have a line vector to work with, but not a clue as to "how" to work with it.
I think it has something to do with the old Sin and Cos methods and the amount (angle) that the triangle has been rotated, but I'm a bit rusty on that stuff.
Any help is greatly appreciated.
The arctangent (inverse tangent) of vy/vx, where vx and vy are the components of your (centroid->tip) vector, gives you the angle the vector is facing.
The classical arctangent gives you an angle normalized to -90° < r < +90° degrees, however, so you have to add or subtract 90 degrees from the result depending on the sign of the result and the sign of vx.
Luckily, your standard library should proive an atan2() function that takes vx and vy seperately as parameters, and returns you an angle between 0° and 360°, or -180° and +180° degrees. It will also deal with the special case where vx=0, which would result in a division by zero if you were not careful.
See http://www.arctangent.net/atan.html or just search for "arctangent".
Edit: I've used degrees in my post for clarity, but Java and many other languages/libraries work in radians where 180° = π.
You can also just add vx and vy to the triangle's points to make it move in the "forward" direction, but make sure that the vector is normalized (vx² + vy² = 1), else the speed will depend on your triangle's size.
#Mark:
I've tried writing a primer on vectors, coordinates, points and angles in this answer box twice, but changed my mind on both occasions because it would take too long and I'm sure there are many tutorials out there explaining stuff better than I ever can.
Your centroid and "tip" coordinates are not vectors; that is to say, there is nothing to be gained from thinking of them as vectors.
The vector you want, vForward = pTip - pCentroid, can be calculated by subtracting the coordinates of the "tip" corner from the centroid point. The atan2() of this vector, i.e. atan2(tipY-centY, tipX-centX), gives you the angle your triangle is "facing".
As for what it's relative to, it doesn't matter. Your library will probably use the convention that the increasing X axis (---> the right/east direction on presumably all the 2D graphs you've seen) is 0° or 0π. The increasing Y (top, north) direction will correspond to 90° or (1/2)π.
It seems to me that you need to store the rotation angle of the triangle and possibly it's current speed.
x' = x + speed * cos(angle)
y' = y + speed * sin(angle)
Note that angle is in radians, not degrees!
Radians = Degrees * RadiansInACircle / DegreesInACircle
RadiansInACircle = 2 * Pi
DegressInACircle = 360
For the locations of the vertices, each is located at a certain distance and angle from the center. Add the current rotation angle before doing this calculation. It's the same math as for figuring the movement.
Here's some more:
Vectors represent displacement. Displacement, translation, movement or whatever you want to call it, is meaningless without a starting point, that's why I referred to the "forward" vector above as "from the centroid," and that's why the "centroid vector," the vector with the x/y components of the centroid point doesn't make sense. Those components give you the displacement of the centroid point from the origin. In other words, pOrigin + vCentroid = pCentroid. If you start from the 0 point, then add a vector representing the centroid point's displacement, you get the centroid point.
Note that:
vector + vector = vector
(addition of two displacements gives you a third, different displacement)
point + vector = point
(moving/displacing a point gives you another point)
point + point = ???
(adding two points doesn't make sense; however:)
point - point = vector
(the difference of two points is the displacement between them)
Now, these displacements can be thought of in (at least) two different ways. The one you're already familiar with is the rectangular (x, y) system, where the two components of a vector represent the displacement in the x and y directions, respectively. However, you can also use polar coordinates, (r, Θ). Here, Θ represents the direction of the displacement (in angles relative to an arbitary zero angle) and r, the distance.
Take the (1, 1) vector, for example. It represents a movement one unit to the right and one unit upwards in the coordinate system we're all used to seeing. The polar equivalent of this vector would be (1.414, 45°); the same movement, but represented as a "displacement of 1.414 units in the 45°-angle direction. (Again, using a convenient polar coordinate system where the East direction is 0° and angles increase counter-clockwise.)
The relationship between polar and rectangular coordinates are:
Θ = atan2(y, x)
r = sqrt(x²+y²) (now do you see where the right triangle comes in?)
and conversely,
x = r * cos(Θ)
y = r * sin(Θ)
Now, since a line segment drawn from your triangle's centroid to the "tip" corner would represent the direction your triangle is "facing," if we were to obtain a vector parallel to that line (e.g. vForward = pTip - pCentroid), that vector's Θ-coordinate would correspond to the angle that your triangle is facing.
Take the (1, 1) vector again. If this was vForward, then that would have meant that your "tip" point's x and y coordinates were both 1 more than those of your centroid. Let's say the centroid is on (10, 10). That puts the "tip" corner over at (11, 11). (Remember, pTip = pCentroid + vForward by adding "+ pCentroid" to both sides of the previous equation.) Now in which direction is this triangle facing? 45°, right? That's the Θ-coordinate of our (1, 1) vector!
keep the centroid at the origin. use the vector from the centroid to the nose as the direction vector. http://en.wikipedia.org/wiki/Coordinate_rotation#Two_dimensions will rotate this vector. construct the other two points from this vector. translate the three points to where they are on the screen and draw.
double v; // velocity
double theta; // direction of travel (angle)
double dt; // time elapsed
// To compute increments
double dx = v*dt*cos(theta);
double dy = v*dt*sin(theta);
// To compute position of the top of the triangle
double size; // distance between centroid and top
double top_x = x + size*cos(theta);
double top_y = y + size*sin(theta);
I can see that I need to apply the common 2d rotation formulas to my triangle to get my result, Im just having a little bit of trouble with the relationships between the different components here.
aib, stated that:
The arctangent (inverse tangent) of
vy/vx, where vx and vy are the
components of your (centroid->tip)
vector, gives you the angle the vector
is facing.
Is vx and vy the x and y coords of the centriod or the tip? I think Im getting confused as to the terminology of a "vector" here. I was under the impression that a Vector was just a point in 2d (in this case) space that represented direction.
So in this case, how is the vector of the centroid->tip calculated? Is it just the centriod?
meyahoocomlorenpechtel stated:
It seems to me that you need to store
the rotation angle of the triangle and
possibly it's current speed.
What is the rotation angle relative to? The origin of the triangle, or the game window itself? Also, for future rotations, is the angle the angle from the last rotation or the original position of the triangle?
Thanks all for the help so far, I really appreciate it!
you will want the topmost vertex to be the centroid in order to achieve the desired effect.
First, I would start with the centroid rather than calculate it. You know the position of the centroid and the angle of rotation of the triangle, I would use this to calculate the locations of the verticies. (I apologize in advance for any syntax errors, I have just started to dabble in Java.)
//starting point
double tip_x = 10;
double tip_y = 10;
should be
double center_x = 10;
double center_y = 10;
//triangle details
int width = 6; //base
int height = 9;
should be an array of 3 angle, distance pairs.
angle = rotation_angle + vertex[1].angle;
dist = vertex[1].distance;
p1_x = center_x + math.cos(angle) * dist;
p1_y = center_y - math.sin(angle) * dist;
// and the same for the other two points
Note that I am subtracting the Y distance. You're being tripped up by the fact that screen space is inverted. In our minds Y increases as you go up--but screen coordinates don't work that way.
The math is a lot simpler if you track things as position and rotation angle rather than deriving the rotation angle.
Also, in your final piece of code you're modifying the location by the rotation angle. The result will be that your ship turns by the rotation angle every update cycle. I think the objective is something like Asteroids, not a cat chasing it's tail!